The Method of Alternating Projections

Matthew Tam

 \Box

 λ = λ

重

 209

Variational Analysis Session 56th Annual AustMS Meeting 24th – 27th September 2012

My Year So Far. . .

Honours student supervised by Jon Borwein. Thesis topic: alternating projections.

Over the past year I've learnt about:

• Classical alternating projection results.

ヨメ メヨメ

 Ω

- Difficulties of nonconvex alternating projections (AMSI Vacation) including development of an interactive Cinderella interface. <http://carma.newcastle.edu.au/summer/matt/>
- Alternating Bregman projection in Banach Spaces.
- Computational experiments including nonconvex instances.

My Year So Far. . .

Honours student supervised by Jon Borwein. Thesis topic: alternating projections.

Over the past year I've learnt about:

• Classical alternating projection results.

化重新 化重新

 Ω

- Difficulties of nonconvex alternating projections (AMSI Vacation) including development of an interactive Cinderella interface. <http://carma.newcastle.edu.au/summer/matt/>
- Alternating Bregman projection in Banach Spaces.
- Computational experiments including nonconvex instances.

Now routinely applied to nonconvex problems (convergence not guaranteed) including hard combinatorial problems with good results. Eg. Diophantine equations, protein folding, sphere-packing, 3SAT, Sudoku, image reconstruction

My Year So Far. . .

Honours student supervised by Jon Borwein. Thesis topic: alternating projections.

Over the past year I've learnt about:

• Classical alternating projection results.

医单位 医单位

 Ω

- Difficulties of nonconvex alternating projections (AMSI Vacation) including development of an interactive Cinderella interface. <http://carma.newcastle.edu.au/summer/matt/>
- Alternating Bregman projection in Banach Spaces.
- Computational experiments including nonconvex instances.

Now routinely applied to nonconvex problems (convergence not guaranteed) including hard combinatorial problems with good results. Eg. Diophantine equations, protein folding, sphere-packing, 3SAT, Sudoku, image reconstruction

We are designing large scale experiments to understand this better.

Introduction

Let H be a Hilbert space. The (metric) projection of $x \in \mathcal{H}$ onto the set M is a point $p \in M$ such that

$$
||p - x|| \le ||m - x|| \quad \text{for all } m \in M
$$

We write $P_M(x) = p$ when p exists uniquely.

 -10.5

 2990

目

ヨメ メヨメ

Introduction

Let H be a Hilbert space. The (metric) projection of $x \in H$ onto the set M is a point $p \in M$ such that

$$
\|p - x\| \le \|m - x\| \quad \text{for all } m \in M
$$

We write $P_M(x) = p$ when p exists uniquely.

Given sets M, N such that $M \cap N \neq \emptyset$ can we:

- Compute $P_{M\cap N}(x)$ given $x \in \mathcal{H}$? (Best approximation)
- Find a point $x^* \in M \cap N$? (Feasibility)

ヨメ メヨメ

 \equiv

 Ω

Introduction

Let H be a Hilbert space. The (metric) projection of $x \in H$ onto the set M is a point $p \in M$ such that

$$
||p - x|| \le ||m - x|| \quad \text{for all } m \in M
$$

We write $P_M(x) = p$ when p exists uniquely.

Given sets M, N such that $M \cap N \neq \emptyset$ can we:

- Compute $P_{M\cap N}(x)$ given $x \in \mathcal{H}$? (Best approximation)
- Find a point $x^* \in M \cap N$? (Feasibility)

We address the question:

Can these problems be solved knowing only P_M and P_N ?

化重变 化重变

 209

Two Closed Subspaces

Let M , N be closed subspaces. Then:

If the projections commute then their composition gives $P_{M\cap N}$.

 -10.5

化重子 化重子

重

 QQ

Two Closed Subspaces

Fact

Let M , N be closed subspaces. Then:

 P_M , P_N commute if and only if their composition is equal to $P_{M \cap N}$.

If the projections commute then their composition gives $P_{M\cap N}$.

Otherwise, try projecting alternatively:

$$
x_0 \stackrel{P_M}{\mapsto} x_1 \stackrel{P_N}{\mapsto} x_2 \stackrel{P_M}{\mapsto} x_3 \stackrel{P_N}{\mapsto} x_4 \stackrel{P_M}{\mapsto} x_5 \stackrel{P_N}{\mapsto} \dots
$$

What happens in the limit?

イヨメ イヨメ

 -111

 209

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

メロメ メ御メ メきメ メきメ

ミー 299

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

メロメ メ部メ メミメ メミメ

高山 299

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

メロメ メ部メ メミメ メミメ

ミー 299

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

 2990

ミー

メロメ メ御 メメ きょうくきょう

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

 2990

ミー

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

 2990

ミー

メロメ メ御メ メきメ メきメ

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

 2990

高山

メロメ メ御 メメ きょうくきょう

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

 2990

重

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

 2990

重

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

 2990

重

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$
.

 2990

重

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$

(ロ) (@)

人名英格兰人姓氏

 2990

重

Why It Works?

If *H* is the hyperplane given by
$$
\langle a, x \rangle = b
$$
 then

$$
P_H(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a
$$

(ロ) (@)

人名英格兰人姓氏

 2990

重

von Neumann's Alternating Projections

Theorem (von Neumann, 1933)

Let M, $N \subseteq H$ be closed subspaces then $\forall x \in \mathcal{H}$:

 $(P_M P_N)^n(x) \to P_{M \cap N}(x)$

Proof.

To show that (x_n) is Cauchy:

$$
P_N \underbrace{(\dots P_M P_N P_M P_N)}_{k \text{ terms}} = \underbrace{(P_N P_N \dots P_N P_M P_N)}_{(k+1) \text{ terms}} \text{ or } \underbrace{(P_N P_M \dots P_N P_M P_N)}_{(k+1) \text{ terms}}
$$

イヨメ イヨメ

 -111

E

 209

von Neumann's Alternating Projections

Theorem (von Neumann, 1933)

Let M, $N \subseteq H$ be closed subspaces then $\forall x \in \mathcal{H}$:

 $(P_M P_N)^n(x) \to P_{M \cap N}(x)$

Proof.

To show that (x_n) is Cauchy:

$$
P_N(\underbrace{\ldots P_M P_N P_M P_N}_{k \text{ terms}}) = \underbrace{(P_N \ldots P_N P_M P_N)}_{k \text{ terms}} \text{ or } \underbrace{(P_N P_M \ldots P_N P_M P_N)}_{(k+1) \text{ terms}}
$$

化重变 化重变

 -111

重

 209

Halperin's Extension

Theorem (Halperin, 1962)

Let $S_1, S_2, \ldots, S_r \subseteq \mathcal{H}$ be closed subspaces then $\forall x \in \mathcal{H}$:

$$
(P_{S_r}\ldots P_{S_2}P_{S_1})^n(x)\to (P_{\cap_{i=1}^rS_i})(x)
$$

Proof.

If T linear, nonexpansive then $\mathcal{H} = \mathsf{ker}(I-T) \bigoplus \mathsf{cl}(\mathsf{range}(I-T)).$

- K 등 X - K 등 X - 1

目

 Ω

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

Halperin's Extension

Theorem (Halperin, 1962)

Let $S_1, S_2, \ldots, S_r \subseteq \mathcal{H}$ be closed subspaces then $\forall x \in \mathcal{H}$:

$$
(P_{S_r}\ldots P_{S_2}P_{S_1})^n(x)\to (P_{\cap_{i=1}^rS_i})(x)
$$

Proof.

If T linear, nonexpansive then $\mathcal{H} = \mathsf{ker}(I-T) \bigoplus \mathsf{cl}(\mathsf{range}(I-T)).$

If τ linear, idempotent, nonexpansive then $\tau = P_{\mathsf{ker}(I-\tau)}.$

医单侧 医骨关节

G.

 Ω

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

Halperin's Extension

Theorem (Halperin, 1962)

Let $S_1, S_2, \ldots, S_r \subseteq \mathcal{H}$ be closed subspaces then $\forall x \in \mathcal{H}$:

$$
T^{n}(x)=(P_{S_{r}}\ldots P_{S_{2}}P_{S_{1}})^{n}(x)\rightarrow (P_{\cap_{i=1}^{r}S_{i}})(x)
$$

Proof.

If T linear, nonexpansive then $\mathcal{H} = \mathsf{ker}(I-T) \bigoplus \mathsf{cl}(\mathsf{range}(I-T)).$

If τ linear, idempotent, nonexpansive then $\tau = P_{\mathsf{ker}(I-\tau)}.$

 $\|T^{n}x - T^{n+1}x\| \to 0$ hence $T^{n}(I - T)x \to 0$,

イロメ イ団メ イ君メ イ君メー 君

 QQ

Halperin's Extension

Theorem (Halperin, 1962)

Let $S_1, S_2, \ldots, S_r \subseteq \mathcal{H}$ be closed subspaces then $\forall x \in \mathcal{H}$:

$$
T^{n}(x)=(P_{S_{r}}\ldots P_{S_{2}}P_{S_{1}})^{n}(x)\rightarrow (P_{\cap_{i=1}^{r}S_{i}})(x)
$$

Proof.

If T linear, nonexpansive then $\mathcal{H} = \mathsf{ker}(I-T) \bigoplus \mathsf{cl}(\mathsf{range}(I-T)).$

If τ linear, idempotent, nonexpansive then $\tau = P_{\mathsf{ker}(I-\tau)}.$

$$
||T^{n}x - T^{n+1}x|| \to 0
$$
 hence $T^{n}y \to 0$, $\forall y \in \text{range}(I - T)$

医单侧 医骨关节

目

 QQ

4 m k

Halperin's Extension

Theorem (Halperin, 1962)

Let $S_1, S_2, \ldots, S_r \subseteq \mathcal{H}$ be closed subspaces then $\forall x \in \mathcal{H}$:

$$
T^{n}(x)=(P_{S_{r}}\ldots P_{S_{2}}P_{S_{1}})^{n}(x)\rightarrow (P_{\cap_{i=1}^{r}S_{i}})(x)
$$

Proof.

If T linear, nonexpansive then $\mathcal{H} = \mathsf{ker}(I-T) \bigoplus \mathsf{cl}(\mathsf{range}(I-T)).$

If τ linear, idempotent, nonexpansive then $\tau = P_{\mathsf{ker}(I-\tau)}.$

$$
||T^{n}x - T^{n+1}x|| \to 0 \text{ hence } T^{n}y \to 0, \ \forall y \in \text{cl range}(I - T)
$$

医单侧 医骨关节

目

 Ω

4. 17. 6.

Best Approximation for Half-Spaces?

$$
P_E(u, v) = \left(\frac{a^2u}{a^2 - t}, \frac{b^2v}{b^2 - t}\right) \text{ where } \frac{a^2u^2}{a^2 - t} + \frac{b^2v^2}{b^2 - t} = 1
$$

Best Approximation for Half-Spaces?

$$
P_E(u, v) = \left(\frac{a^2u}{a^2 - t}, \frac{b^2v}{b^2 - t}\right) \text{ where } \frac{a^2u^2}{a^2 - t} + \frac{b^2v^2}{b^2 - t} = 1
$$

Best Approximation for Half-Spaces?

$$
P_E(u, v) = \left(\frac{a^2u}{a^2 - t}, \frac{b^2v}{b^2 - t}\right) \text{ where } \frac{a^2u^2}{a^2 - t} + \frac{b^2v^2}{b^2 - t} = 1
$$

Best Approximation for Half-Spaces?

$$
P_E(u, v) = \left(\frac{a^2u}{a^2 - t}, \frac{b^2v}{b^2 - t}\right) \text{ where } \frac{a^2u^2}{a^2 - t} + \frac{b^2v^2}{b^2 - t} = 1
$$

Best Approximation for Half-Spaces?

$$
P_E(u, v) = \left(\frac{a^2u}{a^2 - t}, \frac{b^2v}{b^2 - t}\right) \text{ where } \frac{a^2u^2}{a^2 - t} + \frac{b^2v^2}{b^2 - t} = 1
$$

Best Approximation for Half-Spaces?

$$
P_E(u, v) = \left(\frac{a^2u}{a^2 - t}, \frac{b^2v}{b^2 - t}\right) \text{ where } \frac{a^2u^2}{a^2 - t} + \frac{b^2v^2}{b^2 - t} = 1
$$

Bregman's Generalisation

Theorem (Bregman, 1965)

Let $C_1, C_2, \ldots, C_r \subseteq \mathcal{H}$ be closed convex sets then $\forall x \in \mathcal{H}$:

$$
(P_{C_r}\ldots P_{C_2}P_{C_1})^n(x)\stackrel{w_i}{\rightharpoonup} x^*\in \bigcap_{i=1}^r C_i
$$

Proof.

Use weak compactness to extract a weakly convergence subsequence.

 \Box

目

 QQ

 $\langle \langle \bigcap \Phi \rangle \rangle \rangle$ $\langle \Phi \rangle \rangle$ $\langle \Phi \rangle$

COLL

Bregman's Generalisation

Theorem (Bregman, 1965)

Let $C_1, C_2, \ldots, C_r \subseteq \mathcal{H}$ be closed convex sets then $\forall x \in \mathcal{H}$:

$$
(P_{C_r}\ldots P_{C_2}P_{C_1})^n(x)\stackrel{w_i}{\rightharpoonup} x^*\in \bigcap_{i=1}^r C_i
$$

Proof.

Use weak compactness to extract a weakly convergence subsequence.

 \Box

目

 Ω

イロメ イ何 ト イヨ ト イヨ トー

Can MAP fail to converge in norm?

Failure of Norm Convergence (Hundal, 2004)

Let $\mathcal{H} = \ell_2$ and $\{e_i\}$ an orthonormal basis. Take $x_0 = e_3$ and

$$
\mathcal{C}_1 = \mathsf{ker}(e_1) \text{ and } \mathcal{C}_2 = \mathsf{cl} \mathop{\mathsf{conv}}\nolimits \bigcup_{k=2}^\infty \mathsf{epi}\, \mathcal{C}_{0,k}
$$

then MAP fails to converge is norm.

Note: C_1 is a hyperplane and C_2 a closed convex cone.

Failure of Norm Convergence (Hundal, 2004) (Matoušková & Reich, 2003)

Let $\mathcal{H} = \ell_2$ and $\{e_i\}$ an orthonormal basis. Take $x_0 = e_{k_0}$ and

$$
\mathcal{C}_1 = \mathsf{ker}(e_1) \text{ and } \mathcal{C}_2 = \mathsf{cl} \mathsf{conv} \bigcup\nolimits_{k = k_0}^\infty \mathsf{epi}\; \mathcal{C}_{0,k}
$$

then MAP fails to converge is norm.

Note: C_1 is a hyperplane and C_2 a closed convex cone.

Failure of Norm Convergence (Hundal, 2004) (Matoušková & Reich, 2003)

Let $\mathcal{H} = \ell_2$ and $\{e_i\}$ an orthonormal basis. Take $x_0 = e_{k_0}$ and

$$
\mathcal{C}_1 = \mathsf{ker}(e_1) \text{ and } \mathcal{C}_2 = \mathsf{cl} \mathsf{conv} \bigcup\nolimits_{k = k_0}^\infty \mathsf{epi}\; \mathcal{C}_{0,k}
$$

then MAP fails to converge is norm.

Note: C_1 is a hyperplane and C_2 a closed convex cone.

イヨメ イヨメ

 Ω

Failure of Norm Convergence (Hundal, 2004) (Matoušková & Reich, 2003)

Let $\mathcal{H} = \ell_2$ and $\{e_i\}$ an orthonormal basis. Take $x_0 = e_{k_0}$ and

$$
\mathcal{C}_1 = \mathsf{ker}(e_1) \text{ and } \mathcal{C}_2 = \mathsf{cl} \mathop{\mathsf{conv}}\nolimits \bigcup_{k=k_0}^\infty \mathsf{epi}\, \mathcal{C}_{0,k}
$$

then MAP fails to converge is norm.

Note: C_1 is a hyperplane and C_2 a closed convex cone.

$$
h_k(t) = \exp(-(t + k\pi/2)^3)
$$

$$
C_1 \cap C_2 = \{0\}
$$

Final step:

$$
||(P_{C_2}P_{C_1})^{N_m}e_{k_0}-e_m||<1/7
$$

\n
$$
\implies ||(P_{C_2}P_{C_1})^{N_m}e_{k_0}||>6/7
$$

The Hundal Example (Revisited)

Can it fail to converge in norm on a 'real' problem?

Conjecture (Borwein & Bauschke, 1993)

If C_1 is closed and affine with finite codimension, C_2 is the nonnegative cone in $\ell_2(N)$ then MAP is norm convergent.

- \bullet True when C_1 is a hyperplane (unlike Hundal).
- This captures most concrete applications.

化重子 化重子

 209

Given $C_1, C_2, \ldots, C_r \subseteq \mathcal{H}$ consider $\mathcal{H}^r = \mathcal{H} \times \cdots \times \mathcal{H}$. Define:

 $C = \{(x_1, x_2, \ldots, x_r) : x_i \in C_i\}, \quad D = \{(x_1, x_2, \ldots, x_r) : x_1 = x_i\}$

 -111

医心理 医心包 医心包的

 QQ

Given $C_1, C_2, \ldots, C_r \subseteq \mathcal{H}$ consider $\mathcal{H}^r = \mathcal{H} \times \cdots \times \mathcal{H}$. Define:

 $C = \{(x_1, x_2, \ldots, x_r) : x_i \in C_i\}, \quad D = \{(x_1, x_2, \ldots, x_r) : x_1 = x_i\}$

It is easily verified that:

$$
(P_c \mathbf{x})_i = P_{c_i} x_i, \quad (P_D \mathbf{x})_i = \frac{1}{r} \sum_{j=1}^r x_j
$$

 -111

医心室 医心室 医心室

 Ω

Given $C_1, C_2, \ldots, C_r \subseteq \mathcal{H}$ consider $\mathcal{H}^r = \mathcal{H} \times \cdots \times \mathcal{H}$. Define:

 $C = \{(x_1, x_2, \ldots, x_r) : x_i \in C_i\}, \quad D = \{(x_1, x_2, \ldots, x_r) : x_1 = x_i\}$

It is easily verified that:

$$
(P_c \mathbf{x})_i = P_{C_i} x_i, \quad (P_D \mathbf{x})_i = \frac{1}{r} \sum_{j=1}^r x_j
$$

Each iteration, $P_D P_C : \mathcal{H}^r \to \mathcal{H}^r$, can be described by:

$$
(P_D P_C \mathbf{x})_i = \frac{1}{r} \sum_{j=1}^r P_{C_j} x_j
$$

イヨメ イヨメー

 -111

 Ω

Given $C_1, C_2, \ldots, C_r \subseteq \mathcal{H}$ consider $\mathcal{H}^r = \mathcal{H} \times \cdots \times \mathcal{H}$. Define:

$$
C = \{(x_1, x_2, \ldots, x_r) : x_i \in C_i\}, \quad D = \{(x_1, x_2, \ldots, x_r) : x_1 = x_i\}
$$

It is easily verified that:

$$
(P_c \mathbf{x})_i = P_{C_i} x_i, \quad (P_D \mathbf{x})_i = \frac{1}{r} \sum_{j=1}^r x_j
$$

Each iteration, $P_D P_C : \mathcal{H}^r \to \mathcal{H}^r$, can be described by:

$$
(P_D P_C \mathbf{x})_i = \frac{1}{r} \sum_{j=1}^r P_{C_j} x
$$

化重变 化重变化

 -111

目

 209

Given $C_1, C_2, \ldots, C_r \subseteq \mathcal{H}$ consider $\mathcal{H}^r = \mathcal{H} \times \cdots \times \mathcal{H}$. Define:

 $C = \{(x_1, x_2, \ldots, x_r) : x_i \in C_i\}, \quad D = \{(x_1, x_2, \ldots, x_r) : x_1 = x_i\}$

It is easily verified that:

$$
(P_c \mathbf{x})_i = P_{C_i} x_i, \quad (P_D \mathbf{x})_i = \frac{1}{r} \sum_{j=1}^r x_j
$$

Each iteration, $T : \mathcal{H} \to \mathcal{H}$, can be described by:

$$
Tx = \frac{1}{r} \sum_{j=1}^r P_{C_j} x
$$

化重新 化重新

 -111

目

 209

Douglas-Rachford and Dykstra Methods

Theorem (Lions & Mercier, 1979)

Let C_1 , $C_2 \subset \mathcal{H}$ be closed convex sets, $\forall x \in \mathcal{H}$ iterate:

$$
x_{n+1} := \frac{x_n + R_{C_2} R_{C_1}(x_n)}{2} \quad \text{where } R_{C_i}(x) := 2P_{C_i}(x) - x
$$

then $x_n \stackrel{w}{\rightharpoonup} x$, a fixed point, with $P_{C_1}(x) \in C_1 \cap C_2$.

Theorem (Boyle & Dykstra, 1980)

Let $C_1, \ldots, C_r \subseteq \mathcal{H}$ be closed convex sets, $\forall x \in \mathcal{H}$ iterate:

$$
x_n^i := P_{C_i}(x_n^{i-1} - I_{n-1}^i), \quad I_n^i := x_n^i - (x_n^{i-1} - I_{n-1}^i), \quad x_n^0 := x_{n-1}^r
$$

with initial values $x_1^0 := x$, $I_0^i := 0$ then $x_n \to (P_{\bigcap_{i=1}^r C_i})(x)$.

イロト イ押 トイヨ トイヨ トーヨ

 Ω

Non-Convex Sets

Projections onto non-convex sets are no longer guaranteed to be:

- Nonexpansive/Firmly nonexpansive
- Unique (i.e. P_C is set-valued). The method becomes:

$$
x_{2n+1} \in P_{C_1}(x_{2n}), \quad x_{2n} \in P_{C_2}(x_{2n-1})
$$

In \mathbb{R}^n :

- "Local linear convergence for alternating and averaged nonconvex projections", Lewis, Luke & Malick (2009).
- "Restricted normal cones and the method of alternating projections", Bauschke, Luke, Phan & Wang (2012).
- . "The Douglas-Rachford algorithm in the absence of convexity", Borwein & Sims (2011).

化重变 化重变化

 209

Sudoku: Modelling an NP-Complete Non-Convex Problem

ほう メラメ

 -111

E

 2990

Sudoku: Modelling an NP-Complete Non-Convex Problem

 2990

Ε

ミメスミメ

 \Box

Sudoku: Modelling an NP-Complete Non-Convex Problem

 2990

Ε

ミメスミメ

 \Box

Sudoku: Modelling an NP-Complete Non-Convex Problem

Let $A \in (\mathbb{R}^9)^3$ indexed by (i, j, k) . Constraint types are:

 $C_1 = \{A_{ij}$ is a standard unit vector} $C_2 = \{A_{ik}$ is a standard unit vector} $C_3 = \{A_{ik}$ is a standard unit vector}

 $C_4 = \{3 \times 3 \text{ submatrix} \cong \text{standard unit vector}\}\$

k Erkik Erki

 Ω

Sudoku: Modelling an NP-Complete Non-Convex Problem

Let $A \in (\mathbb{R}^9)^3$ indexed by (i, j, k) . Constraint types are:

 $C_1 = \{A_{ij}$ is a standard unit vector} $C_2 = \{A_{ik}$ is a standard unit vector} $C_3 = \{A_{ik}$ is a standard unit vector}

 $C_4 = \{3 \times 3 \text{ submatrix} \cong \text{standard unit vector}\}\$

k Erkik Erki

 Ω

Sudoku: Modelling an NP-Complete Non-Convex Problem

Let $A \in (\mathbb{R}^9)^3$ indexed by (i, j, k) . Constraint types are:

 $C_1 = \{A_{ij}$ is a standard unit vector} $C_2 = \{A_{ik}$ is a standard unit vector} $C_3 = \{A_{ik}$ is a standard unit vector}

 $C_4 = \{3 \times 3 \text{ submatrix} \cong \text{standard unit vector}\}\$

k Erkik Erki

 Ω

Sudoku: Modelling an NP-Complete Non-Convex Problem

Let $A \in (\mathbb{R}^9)^3$ indexed by (i, j, k) . Constraint types are:

 $C_1 = \{A_{ij}$ is a standard unit vector} $C_2 = \{A_{ik}$ is a standard unit vector} $C_3 = \{A_{ik}$ is a standard unit vector}

 $C_4 = \{3 \times 3 \text{ submatrix} \cong \text{standard unit vector}\}\$

k Erkik Erki

 Ω

Sudoku: Modelling an NP-Complete Non-Convex Problem

Let $A \in (\mathbb{R}^9)^3$ indexed by (i, j, k) . Constraint types are:

 $C_1 = \{A_{ij}$ is a standard unit vector} $C_2 = \{A_{ik}$ is a standard unit vector} $C_3 = \{A_{ik}$ is a standard unit vector}

 $C_4 = \{3 \times 3 \text{ submatrix} \cong \text{standard unit vector}\}\$

④ 重 を ④ 重 を …

 Ω

Sudoku: Modelling an NP-Complete Non-Convex Problem

Let $A \in (\mathbb{R}^9)^3$ indexed by (i, j, k) . Constraint types are:

 $C_1 = \{A_{ij}$ is a standard unit vector} $C_2 = \{A_{ik}$ is a standard unit vector} $C_3 = \{A_{ik}$ is a standard unit vector}

 $C_4 = \{3 \times 3 \text{ submatrix} \cong \text{standard unit vector}\}\$

A solution is
$$
x^* \in C_1 \cap C_2 \cap C_3 \cap C_4
$$
.

Similar modelling can be done for:

- N-queens
- 3-SAT (NP-Complete)
- TetraVex (NP-Complete)

Solves large instances! (Sudoku = \mathbb{R}^{2916})

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 2990

- F J. von Neumann. Functional operators Vol. II. The geometry of orthogonal spaces. Annal. of Math. Studies, 22, 1950.
- 譶 I. Halperin. The product of projection operators. Acta. Sci. Math., 23:96–99, 1962.
- 螶 L.M. Bregman. The method of successive projection for finding a common point of convex sets. Soviet Mathematics, 6:688–692, 1965.
- 靠 H.S. Hundal. An alternating projection that does not converge in norm. Nonlinear analysis, 57(1):35–61, 2004.
- 晶 E. Matoušková & S. Reich. The Hundal example revisited. J. Nonlinear Convex Anal, 4:411–427, 2003.
- 晶
- P.L. Lions & B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis, 964–979, 1979.
- F.

J.P. Boyle & R.L. Dykstra. A method for finding projections onto the intersection of convex sets in Hilbert spaces. Advances in Order Restricted Statistical Inference, 1980.

J. Schaad. Modelling the 8-queens problem and Sudoku using an algorithm based on projections onto nonconvex sets, Mas[ter](#page-57-0)'[s T](#page-58-0)[h](#page-48-0)[e](#page-49-0)[s](#page-57-0)[is](#page-58-0)[,](#page-41-0) [2](#page-42-0)[01](#page-47-0)[0](#page-48-0)[.](#page-41-0) E QQ