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My Year So Far. . .

Honours student supervised by Jon Borwein.
Thesis topic: alternating projections.

Over the past year I’ve learnt about:

Classical alternating projection results.

Difficulties of nonconvex alternating projections (AMSI Vacation)
including development of an interactive Cinderella interface.
http://carma.newcastle.edu.au/summer/matt/

Alternating Bregman projection in Banach Spaces.

Computational experiments including nonconvex instances.

Now routinely applied to nonconvex problems (convergence not
guaranteed) including hard combinatorial problems with good results.
Eg. Diophantine equations, protein folding, sphere-packing, 3SAT, Sudoku, image reconstruction

We are designing large scale experiments to understand this better.
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Introduction

Let H be a Hilbert space. The (metric) projection of x ∈ H onto the set
M is a point p ∈ M such that

‖p − x‖ ≤ ‖m − x‖ for all m ∈ M

We write PM(x) = p when p exists uniquely.

Given sets M, N such that M ∩ N 6= ∅ can we:

Compute PM∩N(x) given x ∈ H? (Best approximation)

Find a point x∗ ∈ M ∩ N? (Feasibility)

We address the question:

Can these problems be solved knowing only PM and PN?
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Two Closed Subspaces

Let M, N be closed subspaces. Then:

Fact

PM , PN commute if and only if their composition is equal to PM∩N .

If the projections commute then their composition gives PM∩N .

Otherwise, try projecting alternatively:

x0
PM7→ x1

PN7→ x2
PM7→ x3

PN7→ x4
PM7→ x5

PN7→ . . .

What happens in the limit?
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Why It Works?

M

N

PM∩N(x0)

x0

PM(x0)

PN
PM

(x0
)

If H is the hyperplane given by 〈a, x〉 = b then

PH(x) = x −
〈a, x〉
‖a‖2

a

.
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von Neumann’s Alternating Projections

Theorem (von Neumann, 1933)

Let M, N ⊆ H be closed subspaces then ∀x ∈ H:

(PMPN)n(x)→ PM∩N(x)

Proof.

To show that (xn) is Cauchy:

PN (. . .PMPNPMPN)︸ ︷︷ ︸
k terms

= (PNPN . . .PNPMPN)︸ ︷︷ ︸
(k+1) terms

or (PNPM . . .PNPMPN)︸ ︷︷ ︸
(k+1) terms
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Halperin’s Extension

Theorem (Halperin, 1962)

Let S1, S2, . . . ,Sr ⊆ H be closed subspaces then ∀x ∈ H:

(PSr . . .PS2PS1 )n(x)→ (P∩r
i=1Si )(x)

Proof.

If T linear, nonexpansive then H = ker(I − T )
⊕

cl(range(I − T )).

If T linear, idempotent, nonexpansive then T = Pker(I−T ).

‖T nx − T n+1x‖ → 0 hence T n → 0,

Matthew Tam (University of Newcastle) The Method of Alternating Projections
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Best Approximation for Half-Spaces?

M

N

x0

PNPMPMPN(x0)

Beyond hyperplanes, half-spaces, spheres, balls,... projections are difficult to compute.
Even for the ellipse in R2, given by x2/a2 + y2/b2 = 1, we have:

PE (u, v) =

(
a2u

a2 − t
,

b2v

b2 − t

)
where

a2u2

a2 − t
+

b2v2

b2 − t
= 1
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Bregman’s Generalisation

Theorem (Bregman, 1965)

Let C1, C2, . . . , Cr ⊆ H be closed convex sets then ∀x ∈ H:

(PCr . . .PC2PC1 )n(x)
w .
⇀ x∗ ∈

r⋂
i=1

Ci

Proof.

Use weak compactness to extract a weakly convergence subsequence.

Can MAP fail to converge in norm?
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The Hundal Example (Revisited)

Failure of Norm Convergence (Hundal, 2004)

Let H = `2 and {ei} an orthonormal basis. Take x0 = e3 and

C1 = ker(e1) and C2 = cl conv
⋃∞

k=2 epiC0,k

then MAP fails to converge is norm.

Note: C1 is a hyperplane and C2 a closed convex cone.

hk(t) = exp(−(t + kπ/2)3)

C1 ∩ C2 = {0}

Final step:

‖(PC2PC1 )Nmek0 − em‖ < 1/7

=⇒ ‖(PC2PC1 )Nmek0‖ > 6/7

Matthew Tam (University of Newcastle) The Method of Alternating Projections
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The Hundal Example (Revisited)

Can it fail to converge in norm on a ‘real’ problem?

Conjecture (Borwein & Bauschke, 1993)

If C1 is closed and affine with finite codimension, C2 is the nonnegative
cone in `2(N) then MAP is norm convergent.

True when C1 is a hyperplane (unlike Hundal).

This captures most concrete applications.
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Averaged Projections (The Crucial Product Space Trick)

Given C1, C2, . . . ,Cr ⊆ H consider Hr = H× · · · × H. Define:

C = {(x1, x2, . . . , xr ) : xi ∈ Ci}, D = {(x1, x2, . . . , xr ) : x1 = xi}

It is easily verified that:

(PCx)i = PCi xi , (PDx)i =
1

r

r∑
j=1

xj

Each iteration, : H → H, can be described by:

=
1

r

r∑
j=1

PCj

Matthew Tam (University of Newcastle) The Method of Alternating Projections



Closed Subspaces
Closed Convex Sets

Some Variants
Non-Convex Sets

Averaged Projections (The Crucial Product Space Trick)

Given C1, C2, . . . ,Cr ⊆ H consider Hr = H× · · · × H. Define:

C = {(x1, x2, . . . , xr ) : xi ∈ Ci}, D = {(x1, x2, . . . , xr ) : x1 = xi}

It is easily verified that:

(PCx)i = PCi xi , (PDx)i =
1

r

r∑
j=1

xj

Each iteration, : H → H, can be described by:

=
1

r

r∑
j=1

PCj

Matthew Tam (University of Newcastle) The Method of Alternating Projections



Closed Subspaces
Closed Convex Sets

Some Variants
Non-Convex Sets

Averaged Projections (The Crucial Product Space Trick)

Given C1, C2, . . . ,Cr ⊆ H consider Hr = H× · · · × H. Define:

C = {(x1, x2, . . . , xr ) : xi ∈ Ci}, D = {(x1, x2, . . . , xr ) : x1 = xi}

It is easily verified that:

(PCx)i = PCi xi , (PDx)i =
1

r

r∑
j=1

xj

Each iteration, PDPC : Hr → Hr , can be described by:

(PDPCx)i =
1

r

r∑
j=1

PCj xj

Matthew Tam (University of Newcastle) The Method of Alternating Projections



Closed Subspaces
Closed Convex Sets

Some Variants
Non-Convex Sets

Averaged Projections (The Crucial Product Space Trick)

Given C1, C2, . . . ,Cr ⊆ H consider Hr = H× · · · × H. Define:

C = {(x1, x2, . . . , xr ) : xi ∈ Ci}, D = {(x1, x2, . . . , xr ) : x1 = xi}

It is easily verified that:

(PCx)i = PCi xi , (PDx)i =
1

r

r∑
j=1

xj

Each iteration, PDPC : Hr → Hr , can be described by:

(PDPCx)i =
1
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r∑
j=1
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Averaged Projections (The Crucial Product Space Trick)

Given C1, C2, . . . ,Cr ⊆ H consider Hr = H× · · · × H. Define:

C = {(x1, x2, . . . , xr ) : xi ∈ Ci}, D = {(x1, x2, . . . , xr ) : x1 = xi}

It is easily verified that:

(PCx)i = PCi xi , (PDx)i =
1

r

r∑
j=1

xj

Each iteration, T : H → H, can be described by:

Tx =
1

r

r∑
j=1

PCj x
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Douglas-Rachford and Dykstra Methods

Theorem (Lions & Mercier, 1979)

Let C1, C2 ⊆ H be closed convex sets, ∀x ∈ H iterate:

xn+1 :=
xn + RC2RC1 (xn)

2
where RCi (x) := 2PCi (x)− x

then xn
w .
⇀ x , a fixed point, with PC1 (x) ∈ C1 ∩ C2.

Theorem (Boyle & Dykstra, 1980)

Let C1, . . . ,Cr ⊆ H be closed convex sets, ∀x ∈ H iterate:

x in := PCi (x
i−1
n − I in−1), I in := x in − (x i−1

n − I in−1), x0
n := x rn−1

with initial values x0
1 := x , I i0 := 0 then xn → (P∩r

i=1Ci )(x).
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Non-Convex Sets

Projections onto non-convex sets are no longer guaranteed to be:

Nonexpansive/Firmly nonexpansive

Unique (i.e. PC is set-valued). The method becomes:

x2n+1 ∈ PC1 (x2n), x2n ∈ PC2 (x2n−1)

In Rn:

“Local linear convergence for alternating and averaged nonconvex
projections”, Lewis, Luke & Malick (2009).

“Restricted normal cones and the method of alternating
projections”, Bauschke, Luke, Phan & Wang (2012).

“The Douglas-Rachford algorithm in the absence of convexity”,
Borwein & Sims (2011).
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Sudoku: Modelling an NP-Complete Non-Convex Problem

Let A ∈ (R9)3 indexed by (i , j , k).
Constraint types are:

C1 = {Aij is a standard unit vector}
C2 = {Aik is a standard unit vector}
C3 = {Ajk is a standard unit vector}
C4 = {3× 3 submatrix ∼= standard unit vector}

A solution is x∗ ∈ C1 ∩C2 ∩C3 ∩C4.

Similar modelling can be done for:

N-queens

3-SAT (NP-Complete)

TetraVex (NP-Complete)

Solves large instances! (Sudoku = R2916)
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