Cyclic Douglas–Rachford Iterations

Matthew K. Tam Joint work with Laureate Professor Jonathan M. Borwein

School of Mathematical and Physical Sciences University of Newcastle, Australia

 -111

医单位 医单位

目

 209

[Preliminaries](#page-2-0) [Main Results](#page-38-0) [Computation Results](#page-75-0)

Talk Outline

2 [Main Results](#page-38-0)

³ [Computation Results](#page-75-0)

4.000

K 御 と K 君 と K 君 と

重

 299

Feasibility Problems

The N-set convex feasibility problem asks:

Find
$$
x \in \bigcap_{i=1}^{N} C_i \subseteq \mathcal{H}
$$
, (CFP)

化重新 化重新

 209

where C_i are closed and convex, H a Hilbert space.

A common approach is the use of projection algorithms.

- von Neumann's alternating projection method (cyclic projections).
- **·** Dysktra's method.
- Douglas–Rachford method.
- Many variants exist!

Projections, Reflections

Let $S \subseteq \mathcal{H}$. The (nearest point) projection of x onto S is the (set-valued) mapping defined by

Variational Characterisation of Projections

Let $C \subseteq \mathcal{H}$ be closed and convex. Then $P_C(x)$ exists uniquely $\forall x \in \mathcal{H}$, and

$$
P_C(x) = p \iff \langle x - p, c - p \rangle \leq 0, \quad \forall c \in C.
$$

 \leftarrow

K 御 と K 君 と K 君 と…

E

 2990

Projections, Reflections

Let $S \subseteq \mathcal{H}$. The (nearest point) projection of x onto S is the (set-valued) mapping defined by

Variational Characterisation of Projections

Let $C \subseteq \mathcal{H}$ be closed and convex. Then $P_C(x)$ exists uniquely $\forall x \in \mathcal{H}$, and

$$
P_C(x) = p \iff \langle x - p, c - p \rangle \leq 0, \quad \forall c \in C.
$$

 \leftarrow

 $\left\{ \left(\left| \mathbf{P} \right| \right) \in \mathbb{R} \right\} \times \left(\left| \mathbf{P} \right| \right) \times \left| \mathbf{P} \right| \times \mathbb{R}$

E

 2990

Projections, Reflections

Let $S \subseteq \mathcal{H}$. The reflection of x onto S is the (set-valued) mapping defined by

$$
R_S(x) := 2P_S(x) - x.
$$

Variational Characterisation of Reflections

Let $C \subseteq \mathcal{H}$ be closed and convex. Then $R_C(x)$ exists uniquely $\forall x \in \mathcal{H}$, and

$$
R_C(x) = r \iff \langle x - r, c - r \rangle \leq \frac{1}{2} ||x - r||^2, \quad \forall c \in C.
$$

K 등 > 'K 등 >

 299

э

Douglas–Rachford Scheme (Douglas–Rachford, 1956 & Lions–Mercier, 1979)

Let $A, B \subseteq \mathcal{H}$ be closed and convex with $A \cap B \neq \emptyset$. For any $x_0 \in \mathcal{H}$, set $x_{n+1} := T_{A,B} x_n$ where

$$
T_{A,B}:=\frac{I+R_{B}R_{A}}{2}.
$$

Then (x_n) converges weakly to x such that $P_Ax \in A \cap B$.

Douglas–Rachford Scheme (Douglas–Rachford, 1956 & Lions–Mercier, 1979)

Let $A, B \subseteq \mathcal{H}$ be closed and convex with $A \cap B \neq \emptyset$. For any $x_0 \in \mathcal{H}$, set $x_{n+1} := T_{A,B} x_n$ where

$$
T_{A,B}:=\frac{I+R_{B}R_{A}}{2}.
$$

Then (x_n) converges weakly to x such that $P_Ax \in A \cap B$.

 QQ

Douglas–Rachford Scheme (Douglas–Rachford, 1956 & Lions–Mercier, 1979)

Let $A, B \subseteq \mathcal{H}$ be closed and convex with $A \cap B \neq \emptyset$. For any $x_0 \in \mathcal{H}$, set $x_{n+1} := T_{A,B} x_n$ where

$$
T_{A,B}:=\frac{I+R_{B}R_{A}}{2}.
$$

Then (x_n) converges weakly to x such that $P_Ax \in A \cap B$.

 QQ

Douglas–Rachford Scheme (Douglas–Rachford, 1956 & Lions–Mercier, 1979)

Let $A, B \subseteq \mathcal{H}$ be closed and convex with $A \cap B \neq \emptyset$. For any $x_0 \in \mathcal{H}$, set $x_{n+1} := T_{A,B} x_n$ where

$$
T_{A,B}:=\frac{I+R_{B}R_{A}}{2}.
$$

Then (x_n) converges weakly to x such that $P_Ax \in A \cap B$.

 QQ

Douglas–Rachford Scheme (Douglas–Rachford, 1956 & Lions–Mercier, 1979)

Let $A, B \subseteq \mathcal{H}$ be closed and convex with $A \cap B \neq \emptyset$. For any $x_0 \in \mathcal{H}$, set $x_{n+1} := T_{A,B} x_n$ where

$$
T_{A,B}:=\frac{I+R_{B}R_{A}}{2}.
$$

Then (x_n) converges weakly to x such that $P_Ax \in A \cap B$.

 Ω

Let $T: \mathcal{H} \to \mathcal{H}$. Then T is:

• nonexpansive if

$$
\|Tx - Ty\| \leq \|x - y\|, \quad \forall x, y \in \mathcal{H}.
$$

o firmly nonexpansive if

 $||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2$, $\forall x, y \in \mathcal{H}$.

 $4.171 +$

個→ <ミ> <ミ> ニミーのA@

Let $T: \mathcal{H} \rightarrow \mathcal{H}$. Then T is:

• nonexpansive if

$$
\|Tx - Ty\| \leq \|x - y\|, \quad \forall x, y \in \mathcal{H}.
$$

• firmly nonexpansive if

 $||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2$, $\forall x, y \in \mathcal{H}$.

Proposition (Nonexpansive properties)

The following are equivalent.

- \bullet T is firmly nonexpansive.
- \bullet $I T$ is firmly nonexpansive.
- $2T I$ is nonexpansive.
- \bullet $\mathcal{T} = \alpha I + (1 \alpha)R$, for $\alpha \in (0, 1/2]$ and some nonexpansive R.
- Many other characterisations.

メ御 ドメ ヨ ドメ ヨ ドー

目

 Ω

Let $T: \mathcal{H} \rightarrow \mathcal{H}$. Then T is:

• nonexpansive if

$$
\|Tx - Ty\| \leq \|x - y\|, \quad \forall x, y \in \mathcal{H}.
$$

• firmly nonexpansive if

 $||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2$, $\forall x, y \in \mathcal{H}$.

Nonexpansive properties of projections

Let $A, B \subseteq \mathcal{H}$ be closed and convex. Then

- $P_A := \arg \min_{s \in S} || \cdot -s||$ is firmly nonexpansive.
- $R_A := 2P_A I$ is nonexpansive.
- $T_{A,B} := (I + R_B R_A)/2$ is firmly nonexpansive.

Nonexpansive maps are closed under composition, convex combinations, etc. Firmly nonexpansive maps need not be. E.g. Composition of two projection[s](#page-14-0) onto subspace in \mathbb{R}^2 (Bauschke–Bor[wei](#page-12-0)n[–](#page-14-0)[Le](#page-10-0)[wi](#page-13-0)s[,](#page-1-0) [1](#page-2-0)[9](#page-38-0)9[7\)](#page-1-0)[.](#page-2-0)

 2990

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$
\|T^{n+1}x-T^nx\|\to 0.
$$

Any firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

 -10.5

医毛囊 医毛囊 医心包

 QQ

G.

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$
||T^{n+1}x-T^nx||\to 0.
$$

Any firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

Theorem (Opial, 1967)

Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive and asymptotically regular. Set $x_{n+1} = T^n x_n$. Then (x_n) converges weakly to a point in Fix T.

御 ト イヨ ト イヨ トー

目

 Ω

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$
||T^{n+1}x-T^nx||\to 0.
$$

Any firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

Theorem (Opial, 1967)

Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive and asymptotically regular. Set $x_{n+1} = T^n x_n$. Then (x_n) converges weakly to a point in Fix T.

Corollary

The Douglas–Rachford scheme converges weakly to a point $x \in Fix T_{AB}$.

(何) イミト イミト

 209

What do fixed points of $T_{A,B}$ look like?

$$
x \in \text{Fix } T_{A,B} \iff x = \frac{x + R_B R_A x}{2}
$$

$$
\iff x = 2P_B R_A x - R_A x
$$

$$
\iff x = 2P_B R_A x - 2P_A x + x
$$

$$
\iff P_A x = P_B R_A x
$$

メロメ メ御 メメ きょくきょう

造り 299

What do fixed points of $T_{A,B}$ look like?

$$
x \in Fix \ T_{A,B} \iff x = \frac{x + R_B R_A x}{2}
$$

$$
\iff x = 2P_B R_A x - R_A x
$$

$$
\iff x = 2P_B R_A x - 2P_A x + x
$$

$$
\iff P_A x = P_B R_A x
$$

$$
\Longrightarrow P_A x \in A \cap B.
$$

メロメ メ御 メメ きょくきょう

造り 299

What do fixed points of $T_{A,B}$ look like?

$$
x \in Fix \ T_{A,B} \iff x = \frac{x + R_B R_A x}{2}
$$

$$
\iff x = 2P_B R_A x - R_A x
$$

$$
\iff x = 2P_B R_A x - 2P_A x + x
$$

$$
\iff P_A x = P_B R_A x
$$

$$
\implies P_A x \in A \cap B.
$$

In an implementation of the Douglas–Rachford, one should also monitor the shadow sequence (P_Ax_n) .

 -10.5

医阿雷氏阿雷氏征

 2990

目

What do fixed points of $T_{A,B}$ look like?

$$
x \in Fix \ T_{A,B} \iff x = \frac{x + R_B R_A x}{2}
$$

$$
\iff x = 2P_B R_A x - R_A x
$$

$$
\iff x = 2P_B R_A x - 2P_A x + x
$$

$$
\iff P_A x = P_B R_A x
$$

$$
\implies P_A x \in A \cap B.
$$

In an implementation of the Douglas–Rachford, one should also monitor the shadow sequence (P_Ax_n) .

What if the feasibility problem has more than 2 sets? Can we generalise?

 QQ

医单位 医单位

[Preliminaries](#page-2-0) [Main Results](#page-38-0) [Computation Results](#page-75-0)

Product Reformulation

Find
$$
x \in \bigcap_{i=1}^N C_i \subseteq \mathcal{H}
$$
.

 (CFP)

造り 299

メロメ メ御 メメ きょうくきょう

Product Reformulation

Find
$$
x \in \bigcap_{i=1}^N C_i \subseteq \mathcal{H}
$$
.

 (CFP)

人名英格兰人姓氏

重

 2990

Define

$$
C:=\prod_{i=1}^N C_i, \quad D:=\{(x,x,\ldots,x)\in\mathcal{H}^N:x\in\mathcal{H}\}.
$$

Then (CFP) is equivalent to

Find
$$
\mathbf{x} = (x, \ldots, x) \in C \cap D
$$
.

4.000

 \leftarrow \leftarrow \leftarrow

Product Reformulation

Find
$$
x \in \bigcap_{i=1}^N C_i \subseteq \mathcal{H}
$$
.

 (CFP)

 2990

目

Define

$$
C:=\prod_{i=1}^N C_i, \quad D:=\{(x,x,\ldots,x)\in\mathcal{H}^N:x\in\mathcal{H}\}.
$$

Then (CFP) is equivalent to

Find
$$
\mathbf{x} = (x, \dots, x) \in C \cap D
$$
.

Moreover, the projections can be computed. If $z = (z_1, \ldots, z_n) \in \mathcal{H}^N$,

$$
P_C \mathbf{z} = \prod_{i=1}^N P_{C_i} \mathbf{z}_i, \quad P_D \mathbf{z} = \left(\frac{1}{N} \sum_{i=1}^N \mathbf{z}_i\right)^N.
$$

Question

Is there a Douglas–Rachford variant which can be directly applied to H , without recourse to a product space formulation?

 \leftarrow \Box

 299

Ε

イヨメ イヨメ

Question

Is there a Douglas–Rachford variant which can be directly applied to H , without recourse to a product space formulation?

An obvious candidate is the following. Give $x_0 \in \mathcal{H}$, set $x_{n+1} = T_{A,B,C} x_n$ where

$$
T_{A,B,C}=\frac{I+R_C R_B R_A}{2}.
$$

化重新 化重新

 209

Question

Is there a Douglas–Rachford variant which can be directly applied to H , without recourse to a product space formulation?

An obvious candidate is the following. Give $x_0 \in \mathcal{H}$, set $x_{n+1} = T_{A,B,C} x_n$ where

$$
T_{A,B,C}=\frac{I+R_C R_B R_A}{2}.
$$

Now,

 \bullet $T_{A,B,C}$ is firmly nonexpansive.

 \odot

 209

医毛囊 医牙骨下的

Question

Is there a Douglas–Rachford variant which can be directly applied to H , without recourse to a product space formulation?

An obvious candidate is the following. Give $x_0 \in \mathcal{H}$, set $x_{n+1} = T_{A,B,C} x_n$ where

$$
T_{A,B,C}=\frac{I+R_C R_B R_A}{2}.
$$

Now,

- $T_{A,B,C}$ is firmly nonexpansive.
- $T_{A,B,C}$ is asymptotically regular.

 \odot \odot

 209

- イラメ イラメ

Question

Is there a Douglas–Rachford variant which can be directly applied to H , without recourse to a product space formulation?

An obvious candidate is the following. Give $x_0 \in \mathcal{H}$, set $x_{n+1} = T_{AB} c x_n$ where

$$
T_{A,B,C}=\frac{I+R_C R_B R_A}{2}.
$$

Now,

- $T_{A,B,C}$ is firmly nonexpansive.
- $T_{A,B,C}$ is asymptotically regular.
- \bullet (x_n) converges weakly to a point $x \in Fix T_{A,B,C}$.

☺ \odot \odot

 209

AD > (E > (E >

Question

Is there a Douglas–Rachford variant which can be directly applied to \mathcal{H} , without recourse to a product space formulation?

An obvious candidate is the following. Give $x_0 \in \mathcal{H}$, set $x_{n+1} = T_{AB} c x_n$ where

$$
T_{A,B,C}=\frac{I+R_C R_B R_A}{2}.
$$

Now,

- $T_{A,B,C}$ is firmly nonexpansive.
- $T_{A,B,C}$ is asymptotically regular.
- \bullet (x_n) converges weakly to a point $x \in Fix T_{A,B,C}$.
- Possible that P_{AX} , P_{BX} , $P_{CX} \notin A \cap B \cap C$.

☺ \odot \odot \odot

 Ω

AD > (E > (E >

[Preliminaries](#page-2-0) [Main Results](#page-38-0) [Computation Results](#page-75-0)

A Possible Generalisation

$$
x_{n+1} = T_{A,B,C}x_n
$$
, $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Matthew K. Tam [Cyclic Douglas–Rachford Iterations](#page-0-0)

4.000

→ イ団 メ イ ヨ メ イ ヨ メ

ミー 299

$$
x_{n+1} = T_{A,B,C}x_n
$$
, $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

B

つへへ

$$
x_{n+1} = T_{A,B,C}x_n
$$
, $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

 R_Ax_0

つへへ

$$
x_{n+1} = T_{A,B,C}x_n
$$
, $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

$$
x_{n+1} = T_{A,B,C}x_n
$$
, $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

$$
x_{n+1} = T_{A,B,C}x_n
$$
, $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

A Possible Generalisation

$$
x_{n+1} = T_{A,B,C}x_n
$$
, $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

 R_Ax_0

つへへ

A Possible Generalisation

$$
x_{n+1} = T_{A,B,C}x_n
$$
, $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

 R_Ax_0

つへへ

Question

Is there a Douglas–Rachford variant which can be directly applied to H , without resource to a product space formulation?

 -111

 2990

目

何 ▶ マミ ▶ マミ ▶

Question

Is there a Douglas–Rachford variant which can be directly applied to H , without resource to a product space formulation?

A cyclic Douglas–Rachford iteration

For $x_0 \in \mathcal{H}$, define $x_{n+1} := T_{[C_1 C_2 ... C_M]} x_n$ where

$$
\mathcal{T}_{[C_1\,C_2\,...\,C_N]}:=\,\mathcal{T}_{C_1,\,C_N}\,\mathcal{T}_{C_N,\,C_{N-1}}\,\dots\,\mathcal{T}_{C_2,\,C_3}\,\mathcal{T}_{C_1,\,C_2}.
$$

御 ト イヨ ト イヨ トー

目

 QQ

Question

Is there a Douglas–Rachford variant which can be directly applied to H , without resource to a product space formulation?

A cyclic Douglas–Rachford iteration

For
$$
x_0 \in \mathcal{H}
$$
, define $x_{n+1} := T_{[C_1 C_2 ... C_N]}x_n$ where

$$
\mathcal{T}_{[C_1\,C_2\,...\,C_N]}:=\, \mathcal{T}_{C_1,\,C_N}\, \mathcal{T}_{C_N,\,C_{N-1}}\, \dots \, \mathcal{T}_{C_2,\,C_3}\, \mathcal{T}_{C_1,\,C_2}.
$$

In the $N = 2$ case, the mapping is:

$$
T_{[AB]} = T_{B,A} T_{A,B} = \left(\frac{I + R_A R_B}{2}\right) \left(\frac{I + R_B R_A}{2}\right).
$$

 \leftarrow \Box

医单位 医单位

$T_{A,B} = \frac{I + R_B R_A}{2}, \quad T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.$

 $4.171 +$

御き メミメ メミメート

GHT 1 299

$$
T_{A,B} = \frac{I + R_B R_A}{2}, \quad T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

Cyclic Douglas–Rachford (Borwein–T, 2013)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex sets with a nonempty intersection. For any $x_0 \in \mathcal{H}$, set

$$
x_{n+1} = T_{[C_1 C_2 ... C_N]} x_n.
$$

Then (x_n) converges weakly to a point x such that $P_{C_i} x = P_{C_j} x$, for all indices i,j . Moreover, ${P}_{C_j}x\in \bigcap_{i=1}^N C_i$, for each index j .

Note: The iteration can be applied with or without the product space formulation.

医阿雷氏阿雷氏征

$$
P_S(x) := \underset{s \in S}{\arg \min} ||x - s||, \quad R_S = 2P_S - I, \quad T_{A,B} = \frac{I + R_B R_A}{2}.
$$

$$
T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

Step 1 (weak convergence):

 \leftarrow \Box

K 御 と K 君 と K 君 と

重

$$
P_S(x) := \underset{s \in S}{\text{arg min}} \, \|x - s\|, \quad R_S = 2P_S - I, \quad T_{A,B} = \frac{I + R_B R_A}{2}.
$$
\n
$$
T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

Step 1 (weak convergence):

 $T_{[C_1 C_2 ... C_N]}$ is nonexpansive.

4 D F

 \odot

 299

Ε

 $\mathbf{A} \equiv \mathbf{A} \quad \mathbf{A} \equiv \mathbf{A}$

 \sim

$$
P_S(x) := \underset{s \in S}{\text{arg min}} \, \|x - s\|, \quad R_S = 2P_S - I, \quad T_{A,B} = \frac{I + R_B R_A}{2}.
$$
\n
$$
T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

Step 1 (weak convergence):

- $T_{[C_1 C_2 ... C_N]}$ is nonexpansive.
- $T_{[C_1 C_2 ... C_N]}$ is asymptotically regular. Use either:
	- If Fix $T_{[C_1 C_2 ... C_N]} \neq \emptyset$, use firm nonexpansivity of the $T_{C_i, C_{i+1}}$'s.
	- Compositions of asymptotically regular firmly nonexpansive mappings are also asymptotically regular (Bauschke et al, 2012).

 \odot \odot

目

 Ω

医毛囊 医牙骨下的

$$
P_S(x) := \underset{s \in S}{\text{arg min}} \, \|x - s\|, \quad R_S = 2P_S - I, \quad T_{A,B} = \frac{I + R_B R_A}{2}.
$$
\n
$$
T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

Step 1 (weak convergence):

- $T_{[C_1 C_2 ... C_N]}$ is nonexpansive.
- $T_{[C_1 C_2 ... C_N]}$ is asymptotically regular. Use either:
	- If Fix $T_{[C_1 C_2 ... C_N]} \neq \emptyset$, use firm nonexpansivity of the $T_{C_i, C_{i+1}}$'s.
	- Compositions of asymptotically regular firmly nonexpansive mappings are also asymptotically regular (Bauschke et al, 2012).

 \odot \odot

 \odot

目

 Ω

御 ト イヨ ト イヨ トー

 (x_n) convergent to a point $x \in Fix T_{[C_1 C_2 ... C_N]}$.

$$
P_S(x) := \underset{s \in S}{\arg\min} \|x - s\|, \quad R_S = 2P_S - I, \quad T_{A,B} = \frac{I + R_B R_A}{2}.
$$

$$
T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

$$
p = P_C x \iff \langle x - p, c - p \rangle \le 0, \quad \forall c \in C.
$$

Step 2 (characterise fixed points):

$$
x \in \text{Fix } T_{[C_i C_{i+1}]} \iff x \in \bigcap_{i=1}^N \text{Fix } T_{C_i, C_{i+1}}
$$

4 D F

a \sim → 唐) → 唐)

重

$$
P_S(x) := \underset{s \in S}{\arg \min} ||x - s||, \quad R_S = 2P_S - I, \quad T_{A,B} = \frac{I + R_B R_A}{2}.
$$

$$
T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

$$
p = P_C x \iff \langle x - p, c - p \rangle \le 0, \quad \forall c \in C.
$$

Step 2 (characterise fixed points):

$$
x \in \text{Fix } T_{[C_i C_{i+1}]} \iff x \in \bigcap_{i=1}^N \text{Fix } T_{C_i, C_{i+1}} \implies \boxed{P_{C_i} x \in C_{i+1}}.
$$

4 D F

a \sim → 君 ≯ → 君 き

 2990

活

$$
P_S(x) := \underset{s \in S}{\arg \min} ||x - s||, \quad R_S = 2P_S - I, \quad T_{A,B} = \frac{I + R_B R_A}{2}.
$$

$$
T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

$$
p = P_C x \iff \langle x - p, c - p \rangle \le 0, \quad \forall c \in C.
$$

Step 2 (characterise fixed points):

$$
x \in \text{Fix } T_{[C_i C_{i+1}]} \iff x \in \bigcap_{i=1}^N \text{Fix } T_{C_i, C_{i+1}} \implies \boxed{P_{C_i} x \in C_{i+1}.}
$$

Hence,

$$
\frac{1}{2}\sum_{i=1}^N \|P_{C_i}x - P_{C_{i+1}}x\|^2 = \sum_{i=1}^N \langle x - P_{C_{i+1}}x, P_{C_i}x - P_{C_{i+1}}\rangle \leq 0.
$$

4 D F

a \sim ス重き ス重き

重

$$
P_S(x) := \underset{s \in S}{\arg \min} ||x - s||, \quad R_S = 2P_S - I, \quad T_{A,B} = \frac{I + R_B R_A}{2}.
$$

$$
T_{[C_1 C_2 ... C_N]} := T_{C_1, C_N} T_{C_N, C_{N-1}} ... T_{C_2, C_3} T_{C_1, C_2}.
$$

$$
p = P_C x \iff \langle x - p, c - p \rangle \le 0, \quad \forall c \in C.
$$

Step 2 (characterise fixed points):

$$
x \in \text{Fix } T_{[C_i C_{i+1}]} \iff x \in \bigcap_{i=1}^N \text{Fix } T_{C_i, C_{i+1}} \implies \boxed{P_{C_i} x \in C_{i+1}.}
$$

Hence,

$$
\frac{1}{2}\sum_{i=1}^N \|P_{C_i}x - P_{C_{i+1}}x\|^2 = \sum_{i=1}^N \langle x - P_{C_{i+1}}x, P_{C_i}x - P_{C_{i+1}}\rangle \leq 0. \qquad \text{(1)}
$$

4 D F

a \sim ス重き ス重き

重

A natural question

Can the cyclic Douglas–Rachford fail to converge in norm?

4 D F

K 御 と K 君 と K 君 と …

重

A natural question

Can the cyclic Douglas–Rachford fail to converge in norm? Yes.

4 D F

K 御 と K 君 と K 君 と …

 299

Ε

A natural question

Can the cyclic Douglas–Rachford fail to converge in norm? Yes.

• If
$$
y \in C_i
$$
 then $T_{C_i, C_{i+1}}y = P_{C_{i+1}}y$.

• Hence, if $x_0 \in C_1$ then

$$
x_{n+1} = T_{[C_1 C_2 ... C_N]} x_n = P_{C_1} P_{C_N} ... P_{C_3} P_{C_2} x_n.
$$

If $x_0 \in C_1$, cyclic Douglas–Rachford and cyclic projections coincide.

 -111

- 4 重 8 3 番 8

目

 QQ

A natural question

Can the cyclic Douglas–Rachford fail to converge in norm? Yes.

• If
$$
y \in C_i
$$
 then $T_{C_i, C_{i+1}}y = P_{C_{i+1}}y$.

• Hence, if $x_0 \in C_1$ then

$$
x_{n+1} = T_{[C_1 C_2 ... C_N]} x_n = P_{C_1} P_{C_N} ... P_{C_3} P_{C_2} x_n.
$$

If $x_0 \in C_1$, cyclic Douglas–Rachford and cyclic projections coincide.

Failure of Norm Convergence (Hundal, 2004)

Let $\mathcal{H} = \ell_2$ and $\{e_i\}$ denote the standard basis vectors. Define

$$
\mathcal{C}_1=\{x\in \mathcal{H}: \langle e_1,x\rangle \leq 0\}, \quad \mathcal{C}_2=\text{an ``unnatural'' cone}.
$$

Then $C_1 \cap C_2 = \{0\}$. If $x_0 = \exp(-100)e_1 + e_3$, then

 $\lim_{n\to\infty}$ $\|(P_{C_2}P_{C_1})^n x_0\| > 0.$

Our framework can be applied more generally.

4 D F

a.

医间周的 间面的

 \equiv

Our framework can be applied more generally. Replacing, the mapping $T_{[C_1 ... C_N]}$ with T, the important ingredients are:

 $T = T_M \dots T_2 T_1$ is nonexpansive and asymptotically regular.

• Fix
$$
T = \bigcap_{j=1}^{M} Fix T_j \neq \emptyset
$$
.

•
$$
P_{C_i}
$$
 Fix $T_j \subseteq C_{j+1}$, for each j.

御 ト イヨ ト イヨ トー

G.

 Ω

Our framework can be applied more generally. Replacing, the mapping $T_{[C_1 ... C_N]}$ with T, the important ingredients are:

 $T = T_M \dots T_2 T_1$ is nonexpansive and asymptotically regular.

• Fix
$$
T = \bigcap_{j=1}^{M} Fix T_j \neq \emptyset
$$
.

•
$$
P_{C_i}
$$
 Fix $T_j \subseteq C_{j+1}$, for each j.

Under these assumptions, the previous theorem remains true.

▶ イヨ ▶ イヨ ▶ ○

 Ω

Our framework can be applied more generally. Replacing, the mapping $T_{[C_1 ... C_N]}$ with T, the important ingredients are:

 $T = T_M \dots T_2 T_1$ is nonexpansive and asymptotically regular.

• Fix
$$
T = \bigcap_{j=1}^{M} Fix T_j \neq \emptyset
$$
.

•
$$
P_{C_i}
$$
 Fix $T_j \subseteq C_{j+1}$, for each j.

Under these assumptions, the previous theorem remains true.

These are many other applicable variants. E.g. Krasnoselski–Mann iterations:

$$
x_{n+1}=x_n+\lambda_n(Tx_n-x_n),
$$

where $\lambda_n \in [0,1]$ such that $\sum_{i=1}^{\infty} \lambda_n (1 - \lambda_n) = +\infty$.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

 Ω
Averaged Douglas–Rachford

A particularly nice variant is the following.

4 D F

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow \mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow$

 \sim

 299

目

Averaged Douglas–Rachford

A particularly nice variant is the following.

Averaged Douglas–Rachford (Borwein–T, 2013)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex sets with a nonempty intersection. For any $x_0 \in \mathcal{H}$, set

$$
x_{n+1} := \frac{1}{N} \left(\sum_{i=1}^N T_{C_i, C_{i+1}} \right) x_n.
$$

Then (x_n) converges weakly to a point x such that $P_{C_i} x = P_{C_j} x$, for any indexes i,j . Moreover, $P_{C_j}x\in \bigcap_{i=1}^N C_i$, for each index j .

Proof.

医阿雷氏阿雷氏征

Averaged Douglas–Rachford

A particularly nice variant is the following.

Averaged Douglas–Rachford (Borwein–T, 2013)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex sets with a nonempty intersection. For any $x_0 \in \mathcal{H}$, set

$$
x_{n+1} := \frac{1}{N} \left(\sum_{i=1}^N T_{C_i, C_{i+1}} \right) x_n.
$$

Then (x_n) converges weakly to a point x such that $P_{C_i} x = P_{C_j} x$, for any indexes i,j . Moreover, $P_{C_j}x\in \bigcap_{i=1}^N C_i$, for each index j .

Proof. For $x_0 \in \mathcal{H}$, set $\mathbf{x}_0 = (x_0, \ldots, x_0)$. Now consider the (product space) iteration

$$
\mathbf{x}_{n+1} = P_D\left(\prod_{i=1}^N T_{C_i, C_{i+1}}\right) \mathbf{x}_n.
$$

御き メミメ メミメー 毛

Numerical Experiments

Here we shall consider the N-set feasibly problem:

Find
$$
x \in \bigcap_{i=1}^N C_i
$$
, where $C_i = y_i + r_i \mathcal{B}_{\mathbb{R}^n} := \{x \in \mathbb{R}^n : ||x - y_i|| \le r_i\}.$

We have also consider the same problem replacing the ball constraints with (non-convex) spheres, and certain types of (convex) ellipsoids. Results are similar.

 \leftarrow \Box

 2990

重

Barbara

Numerical Experiments

Here we shall consider the N-set feasibly problem:

Find
$$
x \in \bigcap_{i=1}^N C_i
$$
, where $C_i = y_i + r_i \mathcal{B}_{\mathbb{R}^n} := \{x \in \mathbb{R}^n : ||x - y_i|| \le r_i\}.$

We have also consider the same problem replacing the ball constraints with (non-convex) spheres, and certain types of (convex) ellipsoids. Results are similar.

- Initialise: Random $x_0 \in [-5, 5]^n$.
- **Termination criterion:**
	- $||x_{n+1} x_n|| < \epsilon$ where $\epsilon = 10^{-3}, 10^{-6}$.
	- Maximum of 1000 iterations.

Quality of solution was assessed by: error $= \sum_{i=2}^N \| P_{C_1} x - P_{C_i} x \|^2$

御 ト イヨ ト イヨ トー

Numerical Experiments

Here we shall consider the N-set feasibly problem:

Find
$$
x \in \bigcap_{i=1}^N C_i
$$
, where $C_i = y_i + r_i \mathcal{B}_{\mathbb{R}^n} := \{x \in \mathbb{R}^n : ||x - y_i|| \le r_i\}.$

We have also consider the same problem replacing the ball constraints with (non-convex) spheres, and certain types of (convex) ellipsoids. Results are similar.

- Initialise: Random $x_0 \in [-5, 5]^n$.
- **•** Termination criterion:
	- $||x_{n+1} x_n|| < \epsilon$ where $\epsilon = 10^{-3}, 10^{-6}$.
	- Maximum of 1000 iterations.

Quality of solution was assessed by: error $= \sum_{i=2}^N \| P_{C_1} x - P_{C_i} x \|^2$

- We compared:
	- Cyclic Douglas–Rachford, applied directly to the problem.
	- The classical Douglas–Rachford, in the product formulation.

K 御 X X 경 X X 경 X X 경 .

 QQ

Numerical Results

Table 1. Mean (Max) results for N ball constraints in \mathbb{R}^n with $\epsilon = 10^{-3}$.

 \leftarrow \Box

メ御き メミメ メミメ

 \equiv

Numerical Results

Table 2. Mean (Max) results for N ball constraints in \mathbb{R}^n with $\epsilon = 10^{-6}$.

 \leftarrow \Box

メ御き メミメ メミメ

 \equiv

Interactive Geometry and Visualisations

Figure 1. Two circle constraints in \mathbb{R}^2 , drawn in *Cinderella*.

Figure 2. Three ball constraints in \mathbb{R}^3 , drawn in *Sage*.

∢ n ≯

4 D F

医单侧 医骨间的

 2990

目

Future Work and Open Questions

• What happens in the infeasible case? i.e. $C_1 \cap C_2 = \emptyset$.

 -10.5

医毛囊 医毛囊 医心包

 299

目

Future Work and Open Questions

• What happens in the infeasible case? i.e. $C_1 \cap C_2 = \emptyset$. We conjecture the following, known to be true if $x_0 \in C_1$.

Conjecture

Let $C_1, C_2 \in \mathcal{H}$ be closed and convex with empty intersection. Suppose best approximation pairs relative to (C_1, C_2) exists. Then the cyclic Douglas–Rachford scheme converges weakly to a point x such that $(P_{C_1}x, P_{C_2}x)$ is a best approximation pair relative to (C_1, C_2) .

化重新润滑脂

Future Work and Open Questions

• What happens in the infeasible case? i.e. $C_1 \cap C_2 = \emptyset$. We conjecture the following, known to be true if $x_0 \in C_1$.

Conjecture

Let $C_1, C_2 \in \mathcal{H}$ be closed and convex with empty intersection. Suppose best approximation pairs relative to (C_1, C_2) exists. Then the cyclic Douglas–Rachford scheme converges weakly to a point x such that $(P_{C_1}x, P_{C_2}x)$ is a best approximation pair relative to (C_1, C_2) .

> • In comparison, applied to infeasible problems, classical Douglas–Rachford iterations are unbounded. i.e. $||x_n|| \to \infty$.

医阿里氏阿里氏征

• What happens in the infeasible case? i.e. $C_1 \cap C_2 = \emptyset$. We conjecture the following, known to be true if $x_0 \in C_1$.

Conjecture

Let $C_1, C_2 \in \mathcal{H}$ be closed and convex with empty intersection. Suppose best approximation pairs relative to (C_1, C_2) exists. Then the cyclic Douglas–Rachford scheme converges weakly to a point x such that $(P_{C_1}x, P_{C_2}x)$ is a best approximation pair relative to (C_1, C_2) .

- In comparison, applied to infeasible problems, classical
- Douglas–Rachford iterations are unbounded. i.e. $||x_n|| \to \infty$.
- . What can be said for three or more sets?

医阿里氏阿里氏征

• What happens in the infeasible case? i.e. $C_1 \cap C_2 = \emptyset$. We conjecture the following, known to be true if $x_0 \in C_1$.

Conjecture

Let $C_1, C_2 \in \mathcal{H}$ be closed and convex with empty intersection. Suppose best approximation pairs relative to (C_1, C_2) exists. Then the cyclic Douglas–Rachford scheme converges weakly to a point x such that $(P_{C_1}x, P_{C_2}x)$ is a best approximation pair relative to (C_1, C_2) .

- In comparison, applied to infeasible problems, classical Douglas–Rachford iterations are unbounded. i.e. $||x_n|| \to \infty$.
- What can be said for three or more sets? For cyclic projections, the limit cycles can not be characterised in terms of minimising a potential functional. (Baillon–Combettes–Cominetti, 2012).

(何) イミン イミン

• What happens in the infeasible case? i.e. $C_1 \cap C_2 = \emptyset$. We conjecture the following, known to be true if $x_0 \in C_1$.

Conjecture

Let $C_1, C_2 \in \mathcal{H}$ be closed and convex with empty intersection. Suppose best approximation pairs relative to (C_1, C_2) exists. Then the cyclic Douglas–Rachford scheme converges weakly to a point x such that $(P_{C_1}x, P_{C_2}x)$ is a best approximation pair relative to (C_1, C_2) .

- In comparison, applied to infeasible problems, classical Douglas–Rachford iterations are unbounded. i.e. $||x_n|| \to \infty$.
- What can be said for three or more sets? For cyclic projections, the limit cycles can not be characterised in terms of minimising a potential functional. (Baillon–Combettes–Cominetti, 2012).
- Can the scheme be applied to the non-convex framework of Borwein–Sims? i.e. A Euclidean sphere and a line.

 $\mathcal{A}(\overline{\mathbb{Q}}) \times \mathcal{A}(\mathbb{B}) \times \mathcal{A}(\mathbb{B}) \times \mathbb{R}$

• What happens in the infeasible case? i.e. $C_1 \cap C_2 = \emptyset$. We conjecture the following, known to be true if $x_0 \in C_1$.

Conjecture

Let $C_1, C_2 \in \mathcal{H}$ be closed and convex with empty intersection. Suppose best approximation pairs relative to (C_1, C_2) exists. Then the cyclic Douglas–Rachford scheme converges weakly to a point x such that $(P_{C_1}x, P_{C_2}x)$ is a best approximation pair relative to (C_1, C_2) .

- In comparison, applied to infeasible problems, classical Douglas–Rachford iterations are unbounded. i.e. $||x_n|| \to \infty$.
- What can be said for three or more sets? For cyclic projections, the limit cycles can not be characterised in terms of minimising a potential functional. (Baillon–Combettes–Cominetti, 2012).
- Can the scheme be applied to the non-convex framework of Borwein–Sims? i.e. A Euclidean sphere and a line.
- Further numerical experiments. e.g. arbitra[ry](#page-86-0) e[lli](#page-88-0)[p](#page-80-0)[so](#page-81-0)[i](#page-87-0)[d](#page-88-0)[s.](#page-80-0)

References

- S. Borwein, J.M., Tam, M.K. (2013). A cyclic Douglas–Rachford Iteration Scheme. Submitted. <http://arxiv.org/abs/1303.1859>
- 螶 Bauschke, H.H. and Combettes, P.L. (2011). Convex analysis and monotone operator theory in Hilbert spaces. Springer.
- **Aragón Artacho, F.J., Borwein, J.M. Tam, M.K. (2013). Recent** results on Douglas–Rachford methods for combinatorial optimization. Submitted. <http://arxiv.org/abs/1305.2657>

Many resources available at:

<http://carma.newcastle.edu.au/DRmethods>

イヨメ イヨメ