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Feasibility Problems

The N-set convex feasibility problem asks:

Find x ∈
N⋂
i=1

Ci ⊆ H, (CFP)

where Ci are closed and convex, H a Hilbert space.

A common approach is the use of projection algorithms.

von Neumann’s alternating projection method (cyclic projections).

Dysktra’s method.

Douglas–Rachford method.

Many variants exist!
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Projections, Reflections

Let S ⊆ H. The (nearest point) projection of x onto S is the
(set-valued) mapping defined by

PS(x) := arg min
s∈S

‖x − s‖.

p

x

c

p1

p2

x

Variational Characterisation of Projections

Let C ⊆ H be closed and convex. Then PC (x) exists uniquely ∀x ∈ H,
and

PC (x) = p ⇐⇒ 〈x − p, c − p〉 ≤ 0, ∀c ∈ C .

Matthew K. Tam Cyclic Douglas–Rachford Iterations



Preliminaries
Main Results

Computation Results

Projections, Reflections

Let S ⊆ H. The (nearest point) projection of x onto S is the
(set-valued) mapping defined by

PS(x) := arg min
s∈S

‖x − s‖.

p

x

c

θ

θ ∈ [π/2, π]

p1

p2

x

Variational Characterisation of Projections

Let C ⊆ H be closed and convex. Then PC (x) exists uniquely ∀x ∈ H,
and

PC (x) = p ⇐⇒ 〈x − p, c − p〉 ≤ 0, ∀c ∈ C .

Matthew K. Tam Cyclic Douglas–Rachford Iterations



Preliminaries
Main Results

Computation Results

Projections, Reflections

Let S ⊆ H. The reflection of x onto S is the (set-valued) mapping
defined by

RS(x) := 2PS(x)− x .
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Variational Characterisation of Reflections

Let C ⊆ H be closed and convex. Then RC (x) exists uniquely ∀x ∈ H,
and

RC (x) = r ⇐⇒ 〈x − r , c − r〉 ≤ 1

2
‖x − r‖2, ∀c ∈ C .
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Classical Douglas–Rachford

Douglas–Rachford Scheme (Douglas–Rachford, 1956 & Lions–Mercier, 1979)

Let A,B ⊆ H be closed and convex with A ∩ B 6= ∅. For any x0 ∈ H, set
xn+1 := TA,Bxn where

TA,B :=
I + RBRA

2
.

Then (xn) converges weakly to x such that PAx ∈ A ∩ B.

xn

RAxn

RBRAxn

xn+1 = TA,Bxn

A

B

A = {x ∈ H : ‖x‖ ≤ 1}, B = {x ∈ H : 〈a, x〉 = b}.
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Some Tools

Let T : H → H. Then T is:
nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x , y ∈ H.
firmly nonexpansive if

‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, ∀x , y ∈ H.

Matthew K. Tam Cyclic Douglas–Rachford Iterations



Preliminaries
Main Results

Computation Results

Some Tools

Let T : H → H. Then T is:
nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x , y ∈ H.
firmly nonexpansive if

‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, ∀x , y ∈ H.

Proposition (Nonexpansive properties)

The following are equivalent.

T is firmly nonexpansive.

I − T is firmly nonexpansive.

2T − I is nonexpansive.

T = αI + (1− α)R, for α ∈ (0, 1/2] and some nonexpansive R.

Many other characterisations.
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Some Tools

Let T : H → H. Then T is:
nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x , y ∈ H.
firmly nonexpansive if

‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, ∀x , y ∈ H.

Nonexpansive properties of projections

Let A,B ⊆ H be closed and convex. Then

PA := arg mins∈S ‖ · −s‖ is firmly nonexpansive.

RA := 2PA − I is nonexpansive.

TA,B := (I + RBRA)/2 is firmly nonexpansive.

Nonexpansive maps are closed under composition, convex combinations,
etc. Firmly nonexpansive maps need not be. E.g. Composition of two
projections onto subspace in R2 (Bauschke–Borwein–Lewis, 1997).
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Some Tools

asymptotically regular if, for all x ∈ H,

‖T n+1x − T nx‖ → 0.

Any firmly nonexpansive mapping with at least one fixed point is
asymptotically regular.

Theorem (Opial, 1967)

Let T : H → H be nonexpansive and asymptotically regular. Set
xn+1 = T nxn. Then (xn) converges weakly to a point in FixT .

Corollary

The Douglas–Rachford scheme converges weakly to a point x ∈ FixTA,B .
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Some Tools

What do fixed points of TA,B look like?

x ∈ FixTA,B ⇐⇒ x =
x + RBRAx

2
⇐⇒ x = 2PBRAx − RAx

⇐⇒ x = 2PBRAx − 2PAx + x

⇐⇒ PAx = PBRAx

=⇒ PAx ∈ A ∩ B.

In an implementation of the Douglas–Rachford, one should also monitor
the shadow sequence (PAxn).

What if the feasibility problem has more than 2 sets? Can we generalise?
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Product Reformulation

Find x ∈
N⋂
i=1

Ci ⊆ H. (CFP)

Define

C :=
N∏
i=1

Ci , D := {(x , x , . . . , x) ∈ HN : x ∈ H}.

Then (CFP) is equivalent to

Find x = (x , . . . , x) ∈ C ∩ D.

Moreover, the projections can be computed. If z = (z1, . . . , zn) ∈ HN ,

PCz =
N∏
i=1

PCi zi , PDz =

(
1

N

N∑
i=1

zi

)N

.
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A Possible Generalisation

Question

Is there a Douglas–Rachford variant which can be directly applied to H,
without recourse to a product space formulation?

An obvious candidate is the following. Give x0 ∈ H, set xn+1 = TA,B,Cxn
where

TA,B,C =
I + RCRBRA

2
.

Now,

TA,B,C is firmly nonexpansive.

TA,B,C is asymptotically regular.

(xn) converges weakly to a point x ∈ FixTA,B,C .

Possible that PAx ,PBx ,PCx 6∈ A ∩ B ∩ C .
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A Possible Generalisation

xn+1 = TA,B,Cxn, TA,B,C = I+RCRBRA

2 .

Let x0 = (−
√

3,−1) and
2 ≤ α ≤ ∞. Define

A := {λ(0, 1) : |λ| ≤ α},

B := {λ(
√

3, 1) : |λ| ≤ α},

C := {λ(−
√

3, 1) : |λ| ≤ α}.

Then A ∩ B ∩ C = {0}.

We have x0 ∈ FixTA,B,C . However,

PAx0,PBx0,PCx0 6= 0. A

B

C

x0

= RCRBRAx0

0

PAx0

PBx0

PCx0
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Cyclic Douglas–Rachford

Question

Is there a Douglas–Rachford variant which can be directly applied to H,
without resource to a product space formulation?

A cyclic Douglas–Rachford iteration

For x0 ∈ H, define xn+1 := T[C1 C2 ...CN ]xn where

T[C1 C2 ...CN ] := TC1,CN
TCN ,CN−1

. . .TC2,C3TC1,C2 .

In the N = 2 case, the mapping is:

T[AB] = TB,ATA,B =

(
I + RARB

2

)(
I + RBRA

2

)
.

Matthew K. Tam Cyclic Douglas–Rachford Iterations



Preliminaries
Main Results

Computation Results

Cyclic Douglas–Rachford

Question

Is there a Douglas–Rachford variant which can be directly applied to H,
without resource to a product space formulation?

A cyclic Douglas–Rachford iteration

For x0 ∈ H, define xn+1 := T[C1 C2 ...CN ]xn where

T[C1 C2 ...CN ] := TC1,CN
TCN ,CN−1

. . .TC2,C3TC1,C2 .

In the N = 2 case, the mapping is:

T[AB] = TB,ATA,B =

(
I + RARB

2

)(
I + RBRA

2

)
.

Matthew K. Tam Cyclic Douglas–Rachford Iterations



Preliminaries
Main Results

Computation Results

Cyclic Douglas–Rachford

Question

Is there a Douglas–Rachford variant which can be directly applied to H,
without resource to a product space formulation?

A cyclic Douglas–Rachford iteration

For x0 ∈ H, define xn+1 := T[C1 C2 ...CN ]xn where

T[C1 C2 ...CN ] := TC1,CN
TCN ,CN−1

. . .TC2,C3TC1,C2 .

In the N = 2 case, the mapping is:

T[AB] = TB,ATA,B =

(
I + RARB

2

)(
I + RBRA

2

)
.
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TA,B = I+RBRA

2 , T[C1 C2 ...CN ] := TC1,CN
TCN ,CN−1

. . .TC2,C3TC1,C2 .

Cyclic Douglas–Rachford (Borwein–T, 2013)

Let C1,C2, . . . ,CN ⊆ H be closed and convex sets with a nonempty
intersection. For any x0 ∈ H, set

xn+1 = T[C1 C2 ...CN ]xn.

Then (xn) converges weakly to a point x such that PCi x = PCj x , for all

indices i , j . Moreover, PCj x ∈
⋂N

i=1 Ci , for each index j .

Note: The iteration can be applied with or without the product space
formulation.
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Proof Sketch

PS (x) := argmin
s∈S

‖x − s‖, RS = 2PS − I , TA,B =
I + RBRA

2
.

T[C1 C2 ... CN ] := TC1,CN
TCN ,CN−1

. . .TC2,C3
TC1,C2

.

Step 1 (weak convergence):

T[C1 C2 ...CN ] is nonexpansive.

T[C1 C2 ...CN ] is asymptotically regular. Use either:

If FixT[C1 C2 ...CN ] 6= ∅, use firm nonexpansivity of the TCi ,Ci+1 ’s.
Compositions of asymptotically regular firmly nonexpansive mappings
are also asymptotically regular (Bauschke et al, 2012).

(xn) convergent to a point x ∈ FixT[C1 C2 ...CN ].
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Proof Sketch (cont.)

PS (x) := argmin
s∈S

‖x − s‖, RS = 2PS − I , TA,B =
I + RBRA

2
.

T[C1 C2 ... CN ] := TC1,CN
TCN ,CN−1

. . .TC2,C3
TC1,C2

.

p = PC x ⇐⇒ 〈x − p, c − p〉 ≤ 0, ∀c ∈ C .

Step 2 (characterise fixed points):

x ∈ FixT[Ci Ci+1] ⇐⇒ x ∈
N⋂
i=1

FixTCi ,Ci+1

=⇒ PCi x ∈ Ci+1.

Hence,

1

2

N∑
i=1

‖PCi x − PCi+1x‖2 =
N∑
i=1

〈x − PCi+1x ,PCi x − PCi+1〉 ≤ 0.
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Example Revisited

2 ≤ α ≤ ∞.
A := {λ(0, 1) : |λ| ≤ α},

B := {λ(
√

3, 1) : |λ| ≤ α},

C := {λ(−
√

3, 1) : |λ| ≤ α}.

A

BC

x0
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Weak Convergence

A natural question

Can the cyclic Douglas–Rachford fail to converge in norm?

Yes.

If y ∈ Ci then TCi ,Ci+1y = PCi+1y .
Hence, if x0 ∈ C1 then

xn+1 = T[C1 C2...CN ]xn = PC1PCN
. . .PC3PC2xn.

If x0 ∈ C1, cyclic Douglas–Rachford and cyclic projections coincide.

Failure of Norm Convergence (Hundal, 2004)

Let H = `2 and {ei} denote the standard basis vectors. Define

C1 = {x ∈ H : 〈e1, x〉 ≤ 0}, C2 = an “unnatural” cone.

Then C1 ∩ C2 = {0}. If x0 = exp(−100)e1 + e3, then

lim
n→∞

‖(PC2PC1)nx0‖ > 0.
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Averaged Douglas–Rachford

Our framework can be applied more generally.

Replacing, the mapping
T[C1 ...CN ] with T , the important ingredients are:

1 T = TM . . .T2T1 is nonexpansive and asymptotically regular.

2 FixT = ∩Mj=1 FixTj 6= ∅.
3 PCi FixTj ⊆ Cj+1, for each j .

Under these assumptions, the previous theorem remains true.

These are many other applicable variants. E.g. Krasnoselski–Mann
iterations:

xn+1 = xn + λn(Txn − xn),

where λn ∈ [0, 1] such that
∑∞

i=1 λn(1− λn) = +∞.
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Averaged Douglas–Rachford

A particularly nice variant is the following.

Averaged Douglas–Rachford (Borwein–T, 2013)

Let C1,C2, . . . ,CN ⊆ H be closed and convex sets with a nonempty
intersection. For any x0 ∈ H, set

xn+1 :=
1

N

(
N∑
i=1

TCi ,Ci+1

)
xn.

Then (xn) converges weakly to a point x such that PCi x = PCj x , for any

indexes i , j . Moreover, PCj x ∈
⋂N

i=1 Ci , for each index j .

Proof. For x0 ∈ H, set x0 = (x0, . . . , x0). Now consider the (product
space) iteration

xn+1 = PD

(
N∏
i=1

TCi ,Ci+1

)
xn.
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Numerical Experiments

Here we shall consider the N-set feasibly problem:

Find x ∈
N⋂
i=1

Ci , where Ci = yi + riBRn := {x ∈ Rn : ‖x − yi‖ ≤ ri}.

We have also consider the same problem replacing the ball constraints with (non-convex) spheres,

and certain types of (convex) ellipsoids. Results are similar.

Initialise: Random x0 ∈ [−5, 5]n.

Termination criterion:

‖xn+1 − xn‖ < ε where ε = 10−3, 10−6.
Maximum of 1000 iterations.

Quality of solution was assessed by: error =
∑N

i=2 ‖PC1x − PCi x‖2

We compared:

Cyclic Douglas–Rachford, applied directly to the problem.
The classical Douglas–Rachford, in the product formulation.
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Quality of solution was assessed by: error =
∑N

i=2 ‖PC1x − PCi x‖2

We compared:

Cyclic Douglas–Rachford, applied directly to the problem.
The classical Douglas–Rachford, in the product formulation.

Matthew K. Tam Cyclic Douglas–Rachford Iterations



Preliminaries
Main Results

Computation Results

Numerical Results

Table 1. Mean (Max) results for N ball constraints in Rn with ε = 10−3.

n N
Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 4.6 (5) 22.9 (45) 0.004 (0.005) 0.022 (0.041) 0 (0) 7.91e-34 (1.65e-33)
100 20 3.4 (4) 42.4 (113) 0.006 (0.007) 0.071 (0.183) 0 (0) 1.59e-33 (6.11e-33)
100 50 2.3 (3) 75.3 (241) 0.008 (0.011) 0.288 (0.907) 2.03e-14 (2.02e-13) 6.37e-08 (6.37e-07)
100 100 2.1 (3) 97.9 (151) 0.014 (0.019) 0.717 (1.096) 0 (0) 5.51e-33 (3.85e-32)
100 200 2.0 (2) 186.2 (329) 0.025 (0.025) 2.655 (4.656) 9.68e-15 (9.68e-14) 2.17e-08 (2.17e-07)
100 500 2.0 (2) 284.2 (372) 0.059 (0.060) 9.968 (12.989) 0 (0) 2.70e-07 (9.51e-07)
100 1000 2.0 (2) 383.0 (507) 0.118 (0.119) 26.656 (35.120) 0 (0) 4.30e-07 (9.42e-07)
100 1100 2.0 (2) 380.7 (471) 0.129 (0.130) 29.160 (36.001) 0 (0) 8.35e-07 (1.79e-06)
100 1200 2.0 (2) 372.3 (537) 0.141 (0.144) 31.140 (44.886) 0 (0) 8.08e-07 (1.79e-06)
100 1500 2.0 (2) 466.0 (631) 0.178 (0.181) 49.282 (66.533) 0 (0) 5.38e-05 (5.34e-04)
100 2000 2.0 (2) 529.3 (725) 0.232 (0.234) 74.878 (102.148) 9.31e-19 (5.29e-18) 4.79e-06 (4.00e-05)

1000 10 15.0 (16) 12.4 (26) 0.024 (0.026) 0.023 (0.048) 2.12e-19 (2.12e-18) 1.24e-32 (3.34e-32)
1000 20 8.2 (9) 20.4 (71) 0.024 (0.027) 0.069 (0.237) 0 (0) 3.02e-32 (6.98e-32)
1000 50 4.3 (5) 38.8 (112) 0.028 (0.031) 0.311 (0.884) 2.67e-19 (2.67e-18) 1.24e-31 (5.29e-31)
1000 100 3.3 (4) 80.8 (222) 0.037 (0.042) 1.260 (3.436) 0 (0) 2.15e-31 (6.84e-31)
1000 200 2.4 (3) 138.5 (270) 0.048 (0.058) 4.730 (9.446) 0 (0) 6.50e-31 (2.52e-30)
1000 500 2.0 (2) 201.3 (313) 0.085 (0.086) 20.356 (31.166) 3.90e-20 (3.90e-19) 2.10e-30 (6.11e-30)
1000 1000 2.0 (2) 348.8 (518) 0.162 (0.164) 73.420 (108.493) 0 (0) 1.36e-06 (1.20e-05)
1000 1100 2.1 (3) 334.4 (550) 0.183 (0.260) 77.174 (126.896) 0 (0) 1.10e-07 (7.62e-07)
1000 1200 2.0 (2) 353.8 (518) 0.190 (0.193) 89.153 (128.683) 0 (0) 1.74e-07 (9.63e-07)
1000 1500 2.1 (3) 403.9 (607) 0.245 (0.346) 126.707 (189.011) 1.33e-19 (1.33e-18) 3.17e-07 (8.94e-07)
1000 2000 2.0 (2) 487.0 (593) 0.307 (0.312) 239.210 (374.390) 0 (0) 3.58e-07 (1.11e-06)
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Table 2. Mean (Max) results for N ball constraints in Rn with ε = 10−6.

n N
Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 4.7 (6) 22.9 (45) 0.005 (0.005) 0.023 (0.044) 0 (0) 7.91e-34 (1.65e-33)
100 20 3.6 (5) 42.4 (113) 0.006 (0.008) 0.077 (0.199) 0 (0) 1.59e-33 (6.11e-33)
100 50 2.6 (4) 77.4 (262) 0.010 (0.014) 0.320 (1.068) 0 (0) 1.24e-32 (5.96e-32)
100 100 2.1 (3) 97.9 (151) 0.015 (0.020) 0.781 (1.195) 0 (0) 5.51e-33 (3.85e-32)
100 200 2.3 (3) 187.1 (329) 0.029 (0.038) 2.909 (5.077) 0 (0) 5.89e-33 (2.30e-32)
100 500 2.3 (3) 329.6 (661) 0.071 (0.093) 12.554 (24.975) 0 (0) 1.81e-32 (6.37e-32)
100 1000 2.3 (3) 427.4 (635) 0.141 (0.184) 32.431 (47.903) 0 (0) 2.21e-32 (8.10e-32)
100 1100 2.3 (3) 467.4 (714) 0.153 (0.199) 38.936 (59.259) 0 (0) 3.92e-32 (3.17e-31)
100 1200 2.1 (3) 451.8 (698) 0.154 (0.218) 41.059 (63.259) 0 (0) 1.12e-31 (8.08e-31)
100 1500 2.1 (3) 507.2 (712) 0.193 (0.277) 58.578 (81.907) 0 (0) 2.66e-31 (8.15e-31)
100 2000 2.3 (3) 627.8 (808) 0.276 (0.361) 96.554 (124.880) 0 (0) 1.50e-31 (7.53e-31)

1000 10 15.1 (17) 12.4 (26) 0.024 (0.027) 0.030 (0.063) 0 (0) 1.24e-32 (3.34e-32)
1000 20 8.2 (9) 20.4 (71) 0.025 (0.027) 0.095 (0.330) 0 (0) 3.02e-32 (6.98e-32)
1000 50 4.5 (6) 38.8 (112) 0.029 (0.035) 0.434 (1.249) 0 (0) 1.24e-31 (5.29e-31)
1000 100 3.3 (4) 80.8 (222) 0.038 (0.043) 1.761 (4.730) 0 (0) 2.15e-31 (6.84e-31)
1000 200 2.5 (3) 138.5 (270) 0.051 (0.059) 6.224 (12.089) 0 (0) 6.50e-31 (2.52e-30)
1000 500 2.3 (3) 201.3 (313) 0.099 (0.125) 26.108 (40.534) 0 (0) 2.10e-30 (6.11e-30)
1000 1000 2.1 (3) 388.7 (905) 0.174 (0.241) 103.839 (243.085) 0 (0) 2.17e-30 (1.79e-29)
1000 1100 2.3 (3) 354.4 (660) 0.205 (0.264) 120.706 (220.612) 0 (0) 2.26e-30 (9.82e-30)
1000 1200 2.3 (3) 376.3 (620) 0.223 (0.288) 161.133 (260.857) 0 (0) 1.61e-30 (1.26e-29)
1000 1500 2.2 (3) 526.0 (1000) 0.265 (0.358) 276.095 (541.502) 2.68e-22 (2.68e-21) 1.08e-09 (5.98e-09)
1000 2000 2.1 (3) 595.0 (894) 0.332 (0.469) 427.933 (646.182) 0 (0) 4.48e-31 (1.97e-30)
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Interactive Geometry and Visualisations

Figure 1. Two circle constraints in
R2, drawn in Cinderella.

Figure 2. Three ball constraints in
R3, drawn in Sage.
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Future Work and Open Questions

What happens in the infeasible case? i.e. C1 ∩ C2 = ∅.

We
conjecture the following, known to be true if x0 ∈ C1.

Conjecture

Let C1,C2 ∈ H be closed and convex with empty intersection. Suppose
best approximation pairs relative to (C1,C2) exists. Then the cyclic
Douglas–Rachford scheme converges weakly to a point x such that
(PC1x ,PC2x) is a best approximation pair relative to (C1,C2).

In comparison, applied to infeasible problems, classical
Douglas–Rachford iterations are unbounded. i.e. ‖xn‖ → ∞.
What can be said for three or more sets? For cyclic projections, the
limit cycles can not be characterised in terms of minimising a
potential functional. (Baillon–Combettes–Cominetti, 2012).

Can the scheme be applied to the non-convex framework of
Borwein–Sims? i.e. A Euclidean sphere and a line.

Further numerical experiments. e.g. arbitrary ellipsoids.
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