Convex Feasibility Problems

Laureate Prof. Jonathan Borwein with Matthew Tam <http://carma.newcastle.edu.au/DRmethods/paseky.html>

Spring School on Variational Analysis VI Paseky nad Jizerou, April 19–25, 2015

Last Revised: May 6, 2016

 $\mathcal{A} \oplus \mathcal{B}$) and $\mathcal{B} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

 Ω

Techniques of Variational Analysis

This lecture is based on Chapter 4.5: Convex Feasibility Problems

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 Ω

Jonathan Borwein (CARMA, University of Newcastle) [Convex Feasibility Problems](#page-0-0)

Abstract

Let X be a Hilbert space and let C_n , $n = 1, \ldots, N$ be convex closed subsets of X . The convex feasibility problem is to find some point

> $x \in \bigcap^N$ $n=1$ C_n

when this intersection is non-empty.

In this talk we discuss projection algorithms for finding such a feasibility point. These algorithms have wide ranging applications including:

メ御 メメ きょくきょう

 \equiv

 QQ

- solutions to convex inequalities,
- minimization of convex nonsmooth functions,
- medical imaging,
- **•** computerized tomography, and
- electron microscopy

Abstract

Let X be a Hilbert space and let C_n , $n = 1, \ldots, N$ be convex closed subsets of X . The convex feasibility problem is to find some point

$$
x\in \bigcap_{n=1}^N C_n,
$$

when this intersection is non-empty.

In this talk we discuss projection algorithms for finding such a feasibility point. These algorithms have wide ranging applications including:

- solutions to convex inequalities,
- **•** minimization of convex nonsmooth functions.
- medical imaging,
- **•** computerized tomography, and
- electron microscopy

We start by defining projection to a closed convex set and its basic properties. This is based on the following theorem.

Theorem 4.5.1 (Existence and Uniqueness of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X. Then for any $x \in X$, there exists a unique element $\bar{x} \in C$ such that

 $||x - \bar{x}|| = d(C; x).$

Proof. If $x \in C$ then $\bar{x} = x$ satisfies the conclusion. Suppose that $x \notin C$. Then there exists a sequence $x_i \in C$ such that $d(C; x) = \lim_{i \to \infty} ||x - x_i||$. Clearly, x_i is bounded and therefore has a subsequence weakly converging to some $\bar{x} \in X$.

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 »

 QQ

We start by defining projection to a closed convex set and its basic properties. This is based on the following theorem.

Theorem 4.5.1 (Existence and Uniqueness of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X. Then for any $x \in X$, there exists a unique element $\bar{x} \in C$ such that

 $||x - \bar{x}|| = d(C; x).$

Proof. If $x \in C$ then $\bar{x} = x$ satisfies the conclusion. Suppose that $x \notin C$. Then there exists a sequence $x_i \in C$ such that $d(C; x) = \lim_{i \to \infty} ||x - x_i||$. Clearly, x_i is bounded and therefore has a subsequence weakly converging to some $\bar{x} \in X$.

KED KARD KED KED E VOQO

Since a closed convex set is weakly closed (Mazur's Theorem), we have $\bar{x} \in C$ and $d(C; x) = ||x - \bar{x}||$. We show such \bar{x} is unique. Suppose that $z \in C$ also has the property that $d(C; x) = ||x - z||$. Then for any $t \in [0, 1]$ we have $t\overline{x} + (1 - t)z \in C$. It follows that

$$
d(C; x) \leq ||x - (t\overline{x} + (1-t)z)|| = ||t(x - \overline{x}) + (1-t)(x - z)||
$$

$$
\leq t||x - \overline{x}|| + (1-t)||x - z|| = d(C; x).
$$

That is to say

$$
t \to ||x - z - t(\bar{x} - z)||^2 = ||x - z||^2 - 2t\langle x - z, \bar{x} - z \rangle + t^2 ||\bar{x} - z||^2
$$

桐 レステレステレ

 209

is a constant mapping, which implies $\bar{x} = z$.

The nearest point can be characterized by the normal cone as follows.

Theorem 4.5.2 (Normal Cone Characterization of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X. Then for any $x \in X$, $\bar{x} \in C$ is a nearest point to x if and only if

 $x - \overline{x} \in N(C; \overline{x}).$

Proof. Noting that the convex function $f(y) = ||y - x||^2/2$ attains a minimum at \bar{x} over set C, this directly follows from the Pshenichnii–Rockafellar condition (Theorem 4.3.6):

 $0 \in \partial f(\overline{x}) + N(C; \overline{x}).$

•

目

 Ω

メ御き メミメ メミメー

The nearest point can be characterized by the normal cone as follows.

Theorem 4.5.2 (Normal Cone Characterization of Nearest Point)

Let X be a Hilbert space and let C be a closed convex subset of X. Then for any $x \in X$, $\bar{x} \in C$ is a nearest point to x if and only if

 $x - \overline{x} \in N(C; \overline{x}).$

Proof. Noting that the convex function $f(y) = ||y - x||^2/2$ attains a minimum at \bar{x} over set C, this directly follows from the Pshenichnii–Rockafellar condition (Theorem 4.3.6):

 $0 \in \partial f(\overline{x}) + N(C;\overline{x}).$

•

目

 Ω

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\}$

Projections

Geometrically, the normal cone characterization is:

 $x - \bar{x} \in N(C; \bar{x}) \Longleftrightarrow \langle x - \bar{x}, c - \bar{x} \rangle \leq 0$ for all $c \in C$.

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ めぬ⊙

Projections

Geometrically, the normal cone characterization is:

 $x - \bar{x} \in N(C; \bar{x}) \Longleftrightarrow \langle x - \bar{x}, c - \bar{x} \rangle \leq 0$ for all $c \in C$.

メ 御 メ メ 君 メ メ 君 メート

4. 17. 6.

障害 299

Definition 4.5.3 (Projection)

Let X be a Hilbert space and let C be a closed convex subset of X . For any $x \in X$ the unique nearest point $y \in C$ is called the projection of x on C and we define the projection mapping P_C by $P_C x = y$.

We summarize some useful properties of the projection mapping in the next proposition whose elementary proof is left as an exercise.

Let X be a Hilbert space and let C be a closed convex subset of X. Then the projection mapping P_C has the following properties.

メロメ メ都 メメ きょうくぼ メー

 209

```
(i) for any x \in C, P_C x = x;
```
- (ii) $P_C^2 = P_C;$
- (iii) for any $x, y \in X$, $||P_C y P_C x|| < ||y x||$.

Definition 4.5.3 (Projection)

Let X be a Hilbert space and let C be a closed convex subset of X . For any $x \in X$ the unique nearest point $y \in C$ is called the projection of x on C and we define the projection mapping P_C by $P_C x = y$.

We summarize some useful properties of the projection mapping in the next proposition whose elementary proof is left as an exercise.

Proposition 4.5.4 (Properties of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X. Then the projection mapping P_c has the following properties.

イロト イ押 トイヨ トイヨ トー

 Ω

```
(i) for any x \in C, P_C x = x;
```
(ii)
$$
P_C^2 = P_C;
$$

(iii) for any $x, y \in X$, $||P_C y - P_C x|| \le ||y - x||$.

Theorem 4.5.5 (Potential Function of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X . Define

$$
f(x)=\sup\Big\{\langle x,y\rangle-\frac{\|y\|^2}{2}\Big\vert y\in C\Big\}.
$$

Then f is convex, $P_C(x) = f'(x)$, and therefore P_C is a monotone operator.

Proof. It is easy to check that f is convex and

$$
f(x) = \frac{1}{2}(\|x\|^2 - \|x - P_C(x)\|^2).
$$

メラト メミト メミト

G.

 QQ

We need only show $P_C(x) = f'(x)$.

Theorem 4.5.5 (Potential Function of Projection)

Let X be a Hilbert space and let C be a closed convex subset of X . Define

$$
f(x)=\sup\Big\{\langle x,y\rangle-\frac{\|y\|^2}{2}\Big\vert y\in C\Big\}.
$$

Then f is convex, $P_C(x) = f'(x)$, and therefore P_C is a monotone operator.

Proof. It is easy to check that f is convex and

$$
f(x) = \frac{1}{2}(\|x\|^2 - \|x - P_C(x)\|^2).
$$

→ 伊 → → モ → → モ → ニ ヨ → つんぐ

We need only show $P_C(x) = f'(x)$.

Fix $x \in X$. For any $y \in X$ we have

$$
||(x+y)-P_C(x+y)|| \leq ||(x+y)-P_C(x)||,
$$

so

$$
||(x + y) - P_c(x + y)||^2 \le ||x + y||^2 - 2\langle x + y, P_c(x) \rangle + ||P_c(x)||^2
$$

= $||x + y||^2 + ||x - P_c(x)||^2 - ||x||^2$
- $2\langle y, P_c(x) \rangle$,

hence $f(x + y) - f(x) - \langle P_C(x), y \rangle \ge 0$. On the other hand, since $||x - P_C(x)|| \le ||x - P_C(x + y)||$ we get

$$
f(x+y) - f(x) - \langle P_C(x), y \rangle \leq \langle y, P_C(x+y) - P_C(x) \rangle
$$

\n
$$
\leq ||y|| \times ||P_C(x+y) - P_C(x)||
$$

\n
$$
\leq ||y||^2,
$$

 -10.5

which implies $P_C(x) = f'$ (x) .

We start with the simple case of the intersection of two convex sets. Let X be a Hilbert space and let C and D be two closed convex subsets of X. Suppose that $C \cap D \neq \emptyset$. Define a function

$$
f(c,d):=\frac{1}{2}\|c-d\|^2+\iota_C(c)+\iota_D(d).
$$

We see that f attains a minimum at (\bar{c}, \bar{d}) if and only if $\bar{c} = \bar{d} \in C \cap D$. Thus, the problem of finding a point in $C \cap D$ becomes one of minimizing function f .

We consider a natural descending process for f by alternately minimizing f with respect to its two variables. More concretely, start with any $x_0 \in D$. Let x_1 be the solution of minimizing

 $x \to f(x, x_0)$.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\}$

 Ω

We start with the simple case of the intersection of two convex sets. Let X be a Hilbert space and let C and D be two closed convex subsets of X. Suppose that $C \cap D \neq \emptyset$. Define a function

$$
f(c,d) := \frac{1}{2} ||c - d||^2 + \iota_C(c) + \iota_D(d).
$$

We see that f attains a minimum at (\bar{c}, \bar{d}) if and only if $\bar{c} = \bar{d} \in C \cap D$. Thus, the problem of finding a point in $C \cap D$ becomes one of minimizing function f .

We consider a natural descending process for f by alternately minimizing f with respect to its two variables. More concretely, start with any $x_0 \in D$. Let x_1 be the solution of minimizing

 $x \rightarrow f(x, x_0)$.

→ 御き メモ メメモ メーモ

 Ω

We start with the simple case of the intersection of two convex sets. Let X be a Hilbert space and let C and D be two closed convex subsets of X. Suppose that $C \cap D \neq \emptyset$. Define a function

$$
f(c,d) := \frac{1}{2} ||c - d||^2 + \iota_C(c) + \iota_D(d).
$$

We see that f attains a minimum at (\bar{c}, \bar{d}) if and only if $\bar{c} = \bar{d} \in C \cap D$. Thus, the problem of finding a point in $C \cap D$ becomes one of minimizing function f .

We consider a natural descending process for f by alternately minimizing f with respect to its two variables. More concretely, start with any $x_0 \in D$. Let x_1 be the solution of minimizing

 $x \rightarrow f(x, x_0)$.

 $\mathbf{A} \oplus \mathbf{B}$, $\mathbf{A} \oplus \mathbf{B}$, $\mathbf{A} \oplus \mathbf{B}$

 QQ

It follows from Theorem [4.5.2.](#page-0-1) that

 $x_0 - x_1 \in N(C; x_1)$.

That is to say $x_1 = P_C x_0$. We then let x_2 be the solution of minimizing

 $x \rightarrow f(x_1, x)$.

Similarly, $x_2 = P_D x_1$. In general, we define

 $x_{i+1} =$ $\int P_C x_i$ *i* is even, $P_D x_i$ *i* is odd. (1)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

This algorithm is a generalization of the classical von Neumann projection algorithm for finding points in the intersection of two subspaces. We will show that in general x_i weakly converge to a point in $C \cap D$ and when $int(C \cap D) \neq \emptyset$ we have norm convergence.

Attracting Mappings and Fejer Sequences

We discuss two useful tools for proving the convergence.

Definition 4.5.6 (Nonexpansive Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X and let $T: C \rightarrow X$. We say that T is nonexpansive provided that $||Tx - Ty|| < ||x - y||.$

Let X be a Hilbert space, let C be a closed convex nonempty subset of X and let $T: C \rightarrow C$ be a nonexpansive mapping. Suppose that D is a closed nonempty subset of C. We say that T is attracting with respect to D if for

$$
||Tx - y|| \leq ||x - y||.
$$

We say that T is k-attracting with respect to D if for every $x \in C \ D$ and

 $||x - \mathcal{T}x||^2 \le ||x - y||^2 - ||\mathcal{T}x - y||^2.$

Attracting Mappings and Fejér Sequences

We discuss two useful tools for proving the convergence.

Definition 4.5.6 (Nonexpansive Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X and let $T: C \rightarrow X$. We say that T is nonexpansive provided that $\|Tx - Ty\| \leq \|x - y\|.$

Definition 4.5.7 (Attracting Mapping)

Let X be a Hilbert space, let C be a closed convex nonempty subset of X and let $T: C \rightarrow C$ be a nonexpansive mapping. Suppose that D is a closed nonempty subset of C. We say that T is attracting with respect to D if for every $x \in C \backslash D$ and $y \in D$,

$$
||Tx - y|| \leq ||x - y||.
$$

We say that T is k-attracting with respect to D if for every $x \in C \backslash D$ and $y \in D$,

$$
k||x-Tx||^{2} \leq ||x-y||^{2} - ||Tx-y||^{2}.
$$

 \circ

Attracting Mappings and Fejér Sequences

Lemma 4.5.8 (Attractive Property of Projection)

Let X be a Hilbert space and let C be a convex closed subset of X. Then $P_C: X \to X$ is 1-attracting with respect to C.

Proof. Let $y \in C$. We have

$$
||x - y||^2 - ||P_Cx - y||^2 = \langle x - P_Cx, x + P_Cx - 2y \rangle
$$

= $\langle x - P_Cx, x - P_Cx + 2(P_Cx - y) \rangle$
= $||x - P_Cx||^2 + 2\langle x - P_Cx, P_Cx - y \rangle$
 $\ge ||x - P_Cx||^2$.

•

 Ω

イロン イ団ン イヨン イヨン 一店

Note that if T is attracting (*k*-attracting) with respect to a set D , then it is attracting $(k\text{-}attracting)$ with respect to any subset of D.

Lemma 4.5.8 (Attractive Property of Projection)

Let X be a Hilbert space and let C be a convex closed subset of X. Then $P_C: X \to X$ is 1-attracting with respect to C.

Proof. Let $y \in C$. We have

$$
||x - y||^2 - ||P_Cx - y||^2 = \langle x - P_Cx, x + P_Cx - 2y \rangle
$$

= $\langle x - P_Cx, x - P_Cx + 2(P_Cx - y) \rangle$
= $||x - P_Cx||^2 + 2\langle x - P_Cx, P_Cx - y \rangle$
 $\ge ||x - P_Cx||^2$.

•

 QQ

メロト メ都 トメ き トメ き トー き

Note that if T is attracting (*k*-attracting) with respect to a set D , then it is attracting $(k\text{-}attracting)$ with respect to any subset of D.

Lemma 4.5.8 (Attractive Property of Projection)

Let X be a Hilbert space and let C be a convex closed subset of X. Then $P_C: X \to X$ is 1-attracting with respect to C.

Proof. Let $y \in C$. We have

$$
||x - y||^2 - ||P_Cx - y||^2 = \langle x - P_Cx, x + P_Cx - 2y \rangle
$$

= $\langle x - P_Cx, x - P_Cx + 2(P_Cx - y) \rangle$
= $||x - P_Cx||^2 + 2\langle x - P_Cx, P_Cx - y \rangle$
 $\ge ||x - P_Cx||^2$.

•

 QQ

イロン イ何ン イヨン イヨン・ヨー

Note that if T is attracting (*k*-attracting) with respect to a set D , then it is attracting $(k$ -attracting) with respect to any subset of D .

Attracting Mappings and Fejér Sequences

Definition 4.5.9 (Fejér Monotone Sequence)

Let X be a Hilbert space, let C be closed convex set and let (x_i) be a sequence in X. We say that (x_i) is Fejér monotone with respect to C if $||x_{i+1} - c|| \le ||x_i - c||$, for all $c \in C$ and $i = 1, 2, ...$

Next we summarize properties of Fejér monotone sequences.

Let X be a Hilbert space, let C be a closed convex set and let (x_i) be a Fejér monotone sequence with respect to C . Then

メロメ メ御 メメ きょくきょう

 Ω

-
- (ii) (x_i) has at most one weak cluster point in C.
- (iii) If the interior of C is nonempty then (x_i) converges in norm.

(iv) $(P_{C}x_i)$ converges in norm.

Attracting Mappings and Fejer Sequences

Definition 4.5.9 (Fejér Monotone Sequence)

Let X be a Hilbert space, let C be closed convex set and let (x_i) be a sequence in X. We say that (x_i) is Fejér monotone with respect to C if $||x_{i+1} - c|| \le ||x_i - c||$, for all $c \in C$ and $i = 1, 2, ...$

Next we summarize properties of Fejér monotone sequences.

Theorem 4.5.10 (Properties of Fejér Monotone Sequences)

Let X be a Hilbert space, let C be a closed convex set and let (x_i) be a Fejér monotone sequence with respect to C . Then

K ロメ K 御 X K 君 X K 君 X

 QQ

- (i) (x_i) is bounded and $d(C; x_{i+1}) \leq d(C; x_i)$.
- (ii) (x_i) has at most one weak cluster point in C.
- (iii) If the interior of C is nonempty then (x_i) converges in norm.

(iv) $(P_C x_i)$ converges in norm.

Proof. (i) is obvious.

Observe that, for any $c \in C$ the sequence $(\|x_i - c\|^2)$ converges and so does

$$
(\|x_i\|^2 - 2\langle x_i, c \rangle). \tag{2}
$$

 \sqrt{m}) \sqrt{m}) \sqrt{m}) \sqrt{m}

 \equiv

 Ω

Now suppose $c_1, c_2 \in C$ are two weak cluster points of (x_i) . Letting c in [\(2\)](#page-27-0) be c_1 and c_2 , respectively, and taking limits of the difference, yields $\langle c_1, c_1 - c_2 \rangle = \langle c_2, c_1 - c_2 \rangle$ so that $c_1 = c_2$, which proves (ii). To prove (iii) suppose that $B_r(\epsilon)\subset \mathcal{C}.$ For any $x_{i+1}\neq x_i,$ simplifying

$$
||x_{i+1} - (c - h \frac{x_{i+1} - x_i}{||x_{i+1} - x_i||})||^2 \le ||x_i - (c - h \frac{x_{i+1} - x_i}{||x_{i+1} - x_i||})||^2
$$

$$
2h||x_{i+1}-x_i|| \leq ||x_i-c||^2 - ||x_{i+1}-c||^2.
$$

Proof. (i) is obvious. Observe that, for any $c \in \mathcal{C}$ the sequence $(\|x_i - c\|^2)$ converges and so does

$$
(\|x_i\|^2 - 2\langle x_i, c\rangle). \tag{2}
$$

マイ マンチ スキャン こうし

 Ω

Now suppose $c_1, c_2 \in C$ are two weak cluster points of (x_i) . Letting c in [\(2\)](#page-27-0) be c_1 and c_2 , respectively, and taking limits of the difference, yields $\langle c_1, c_1 - c_2 \rangle = \langle c_2, c_1 - c_2 \rangle$ so that $c_1 = c_2$, which proves (ii). To prove (iii) suppose that $B_r(\epsilon)\subset \mathcal{C}.$ For any $x_{i+1}\neq x_i,$ simplifying

$$
||x_{i+1} - (c - h \frac{x_{i+1} - x_i}{||x_{i+1} - x_i||})||^2 \le ||x_i - (c - h \frac{x_{i+1} - x_i}{||x_{i+1} - x_i||})||^2
$$

$$
2h||x_{i+1}-x_i|| \leq ||x_i-c||^2 - ||x_{i+1}-c||^2.
$$

Proof. (i) is obvious. Observe that, for any $c \in \mathcal{C}$ the sequence $(\|x_i - c\|^2)$ converges and so does

$$
(\|x_i\|^2 - 2\langle x_i, c\rangle). \tag{2}
$$

→ イラン イヨン イヨン ニヨー

 Ω

Now suppose $c_1, c_2 \in C$ are two weak cluster points of (x_i) . Letting c in [\(2\)](#page-27-0) be c_1 and c_2 , respectively, and taking limits of the difference, yields $\langle c_1, c_1 - c_2 \rangle = \langle c_2, c_1 - c_2 \rangle$ so that $c_1 = c_2$, which proves (ii). To prove (iii) suppose that $B_r(c) \subset \mathcal{C}.$ For any $\mathsf{x}_{i+1} \neq \mathsf{x}_i,$ simplifying

$$
||x_{i+1} - (c - h \frac{x_{i+1} - x_i}{||x_{i+1} - x_i||})||^2 \le ||x_i - (c - h \frac{x_{i+1} - x_i}{||x_{i+1} - x_i||})||^2
$$

we have

$$
2h||x_{i+1}-x_i|| \leq ||x_i-c||^2 - ||x_{i+1}-c||^2.
$$

For any $j > i$, adding the above inequality from i to $j - 1$ yields

$$
2h||x_j-x_i|| \leq ||x_i-c||^2 - ||x_j-c||^2.
$$

Since $(\|x_i-c\|^2)$ is a convergent sequence we conclude that (x_i) is a Cauchy sequence.

Finally, for natural numbers *i*, *j* with $j > i$, apply the parallelogram law $||a-b||^2 = 2||a||^2 + 2||b||^2 - ||a+b||^2$ to $a := P_C x_j - x_j$ and $b := P_C x_i - x_i$ we obtain

$$
||P_{C}x_{j} - P_{C}x_{i}||^{2} = 2||P_{C}x_{j} - x_{j}||^{2} + 2||P_{C}x_{i} - x_{j}||^{2}
$$

\n
$$
-4||\frac{P_{C}x_{j} + P_{C}x_{i}}{2} - x_{j}||^{2}
$$

\n
$$
\leq 2||P_{C}x_{j} - x_{j}||^{2} + 2||P_{C}x_{i} - x_{j}||^{2}
$$

\n
$$
-4||P_{C}x_{j} - x_{j}||^{2}
$$

\n
$$
\leq 2||P_{C}x_{i} - x_{j}||^{2} - 2||P_{C}x_{j} - x_{j}||^{2}
$$

\n
$$
\leq 2||P_{C}x_{i} - x_{j}||^{2} - 2||P_{C}x_{j} - x_{j}||^{2}
$$

メ御 メメ きょうほう

 209

We identify $(P_C x_i)$ as a Cauchy sequence, because $(\|x_i - P_C x_i\|)$ converges by (i).

Attracting Mappings and Fejér Sequences

The following example shows the first few terms of a sequence $\{x_n\}$ which is Fejér monotone with respect to $C = C_1 \cap C_2$.

 2990

目

Convergence of Projection Algorithms

Let X be a Hilbert space. We say a sequence (x_i) in X is asymptotically regular if

 $\lim_{i \to \infty} ||x_i - x_{i+1}|| = 0.$

Let X be a Hilbert space and let C and D be closed convex subsets of X . Suppose $C \cap D \neq \emptyset$. Then the sequence (x_i) defined by the projection algorithm

→ 御き メモ メメモ メーモ

 2990

 $x_{i+1} =$ $\int P_C x_i$ *i* is even,

is asymptotically regular.

Convergence of Projection Algorithms

Let X be a Hilbert space. We say a sequence (x_i) in X is asymptotically regular if

 $\lim_{i \to \infty} ||x_i - x_{i+1}|| = 0.$

Lemma 4.5.11 (Asymptotical Regularity of Projection Algorithm)

Let X be a Hilbert space and let C and D be closed convex subsets of X . Suppose $C \cap D \neq \emptyset$. Then the sequence (x_i) defined by the projection algorithm

K ロ > K 何 > K 君 > K 君 > 「君」 の Q Q

 $x_{i+1} =$ $\int P_C x_i$ *i* is even, P_Dx_i *i* is odd.

is asymptotically regular.

Proof. By Lemma [4.5.8](#page-20-0) both P_C and P_D are 1-attracting with respect to $C \cap D$. Let $y \in C \cap D$. Since x_{i+1} is either $P_C x_i$ or $P_D x_i$ it follows that

 $||x_{i+1} - x_i||^2 \le ||x_i - y||^2 - ||x_{i+1} - y||^2.$

Since $(\|x_i - y\|^2)$ is a monotone decreasing sequence, therefore the right-hand side of the inequality converges to 0 and the result follows.

 $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R} \mid x_i \in \mathbb{R} \right\}$, $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R} \right\}$

Now, we are ready to prove the convergence of the projection algorithm.

Theorem 4.5.12 (Convergence for Two Sets)

Let X be a Hilbert space and let C and D be closed convex subsets of X . Suppose $C \cap D \neq \emptyset$ (int($C \cap D$) $\neq \emptyset$). Then the projection algorithm

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

 Ω

 $x_{i+1} =$ $\int P_C x_i$ *i* is even, P_Dx_i *i* is odd.

converges weakly (in norm) to a point in $C \cap D$.

Proof. Let $y \in C \cap D$. Then, for any $x \in X$, we have

$$
||P_Cx - y|| = ||P_Cx - P_Cy|| \le ||x - y||, \text{ and}
$$

$$
||P_Dx - y|| = ||P_Dx - P_Dy|| \le ||x - y||.
$$

Since x_{i+1} is either $P_C x_i$ or $P_D x_i$ we have that

 $||x_{i+1} - y|| \le ||x_i - y||.$

That is to say (x_i) is a Fejér monotone sequence with respect to $C \cap D$. By item (i) of Theorem [4.5.10](#page-25-0) the sequence (x_i) is bounded, and therefore has a weakly convergent subsequence. We show that all weak cluster points of (x_i) belong to $C\cap D.$ In fact, let (x_{i_k}) be a subsequence of (x_i) converging to x weakly.

 Ω

Taking a subsequence again if necessary we may assume that $\left(x_{i_{k}} \right)$ is a subset of either C or D . For the sake of argument let us assume that it is a subset of C and, thus, the weak limit x is also in C. On the other hand by the asymptotical regularity of (x_i) in Lemma [4.5.11](#page-32-0) $(P_Dx_{i_k}) = (x_{i_k+1})$ also weakly converges to $x.$ Since $(P_D x_{i_k})$ is a subset of D we conclude that $x \in D$, and therefore $x \in C \cap D$. By item (ii) of Theorem [4.5.10](#page-25-0) (x_i) has at most one weak cluster point in $C \cap D$, and we conclude that (x_i) weakly converges to a point in $C \cap D$. When $int(C \cap D) \neq \emptyset$ it follows from item (iii) of Theorem [4.5.10](#page-25-0) that (x_i) converges in norm.

∢ 何 ▶ 《 手 》 《 手 》 …

 209

Convergence of Projection Algorithms

Whether the alternating projection algorithm converged in norm without the assumption that

 $int(C \cap D) \neq \emptyset$,

or more generally of metric regularity, was a long-standing open problem.

Recently Hundal constructed an example showing that the answer is negative [\[5\]](#page-53-1).

The proof of Hundal's example is self-contained and elementary. However, it is quite long and delicate, therefore we will be satisfied in stating the example.

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ○君

 Ω

Whether the alternating projection algorithm converged in norm without the assumption that

```
int(C \cap D) \neq \emptyset,
```
or more generally of metric regularity, was a long-standing open problem.

Recently Hundal constructed an example showing that the answer is negative $[5]$.

The proof of Hundal's example is self-contained and elementary. However, it is quite long and delicate, therefore we will be satisfied in stating the example.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

Example 4.5.13 (Hundal)

Let $X = \ell_2$ and let $\{e_i \mid i = 1, 2, \dots\}$ be the standard basis of $X.$ Define $v: [0, +\infty) \to X$ by

 $v(r) := \exp(-100r^3)e_1 + \cos((r - [r])\pi/2)e_{[r]+2} + \sin((r - [r])\pi/2)e_{[r]+3},$

where $[r]$ signifies the integer part of r and further define

 $C = \{e_1\}^{\perp}$ and $D = \text{conv}\{v(r) | r \ge 0\}.$

Then the hyperplane C and cone D satisfies $C \cap D = \{0\}$. However, Hundal's sequence of alternating projections x_i given by

 $x_{i+1} = P_D P_C x_i$

starting from $x_0 = v(1)$ (necessarily) converges weakly to 0, but not in norm.

イロメ イ母メ イヨメ イヨメーヨー

 Ω

Convergence of Projection Algorithms

A related useful example is the moment problem.

Example 4.5.14 (Moment Problem)

Let X be a Hilbert lattice 1 with lattice cone $D=X^+$. Consider a linear continuous mapping A from X onto $\mathbb{R}^N.$ The moment problem seeks the solution of $A(x) = y \in \mathbb{R}^N, x \in D$.

Define $C = A^{-1}(y)$. Then the moment problem is feasible iff

$C \cap D \neq \emptyset$.

A natural question is whether the projection algorithm converges in norm.

This problem is answered affirmatively in [\[1\]](#page-53-2) for $N = 1$ yet remains open in general when $N > 1$.

¹All Hilbert lattices are realized as $L_2(\Omega, \mu)$ in the natural ordering for some → 伊 → → モ → → モ → ニ ヨー つんぐ measure space.

We now turn to the general problem of finding some points in

 $n=1$ where C_n , $n = 1, ..., N$ are closed convex sets in a Hilbert space X.

 \bigcap^N

 C_n

Let a_n , $n = 1, \ldots, N$ be positive numbers. Denote

 $X^N := \{x = (x_1, x_2, \ldots, x_N) \mid x_n \in X, n = 1, \ldots, N\}$

the product space of N copies of X with inner product

$$
\langle x,y\rangle=\sum_{n=1}^N a_n\langle x_n,y_n\rangle.
$$

KORK EXTERNS OR A BY A GRA

Then X^N is a Hilbert space.

Define

$$
C := C_1 \times C_2 \times \cdots \times C_N, \text{ and}
$$

$$
D := \{(x_1, \ldots, x_N) \in X^N : x_1 = x_2 = \cdots = x_N\}.
$$

Then C and D are closed convex sets in X^N and

$$
x\in \bigcap_{n=1}^N C_n \iff (x,x,\ldots,x)\in C\cap D.
$$

Applying the projection algorithm (1) to the convex sets C and D defined above we have the following generalized projection algorithm for finding some points in

 $\left\{ \left(\left| \mathbf{P} \right| \right) \in \mathbb{R} \right\} \times \left\{ \left| \mathbf{P} \right| \right\} \times \left\{ \left| \mathbf{P} \right| \right\}$

 209

as we shall now explain.

Define

$$
C := C_1 \times C_2 \times \cdots \times C_N, \text{ and}
$$

\n
$$
D := \{(x_1, \ldots, x_N) \in X^N : x_1 = x_2 = \cdots = x_N\}.
$$

Then C and D are closed convex sets in X^N and

$$
x\in \bigcap_{n=1}^N C_n \iff (x,x,\ldots,x)\in C\cap D.
$$

Applying the projection algorithm (1) to the convex sets C and D defined above we have the following generalized projection algorithm for finding some points in

◆ 何 ▶ → 王 ▶ → 王 ▶ →

G.

 Ω

 \bigcap^N $n=1$ C_n

as we shall now explain.

Denote $P_n = P_{C_n}$. The algorithm can be expressed by

$$
x_{i+1} = \left(\sum_{n=1}^{N} \lambda_n P_n\right) x_i,
$$
 (3)

 $\left\{ \left\{ \bigcap_{i=1}^{n} \left| \mathbb{A}_{i} \right| \in \mathbb{R} \right\} \right\} \subset \left\{ \left\{ \bigcap_{i=1}^{n} \left| \mathbb{A}_{i} \right| \geq \left\{ \$

 209

where $\lambda_n = a_n / \sum_{m=1}^{N} a_m$.

In other words, each new approximation is the convex combination of the projections of the previous step to all the sets C_n , $n = 1, \ldots, N$. It follows from the convergence theorem in the previous subsection that the algorithm [\(3\)](#page-45-0) converges weakly to some point in $\bigcap_{n=1}^N C_n$ when this intersection is nonempty.

Denote $P_n = P_{C_n}$. The algorithm can be expressed by

$$
x_{i+1} = \left(\sum_{n=1}^{N} \lambda_n P_n\right) x_i,
$$
 (3)

イロメ イ母メ イヨメ イヨメーヨー

 Ω

where $\lambda_n = a_n / \sum_{m=1}^{N} a_m$.

In other words, each new approximation is the convex combination of the projections of the previous step to all the sets C_n , $n = 1, \ldots, N$. It follows from the convergence theorem in the previous subsection that the algorithm [\(3\)](#page-45-0) converges weakly to some point in $\bigcap_{n=1}^N C_n$ when this intersection is nonempty.

Theorem 4.5.15 (Weak Convergence for N Sets)

Let X be a Hilbert space and let C_n , $n = 1, ..., N$ be closed convex subsets of X. Suppose that $\bigcap_{n=1}^{N} C_n \neq \emptyset$ and $\lambda_n \geq 0$ satisfies $\sum_{n=1}^{N} \lambda_n = 1$. Then the projection algorithm

$$
x_{i+1} = \left(\sum_{n=1}^N \lambda_n P_n\right) x_i,
$$

converges weakly to a point in $\bigcap_{n=1}^N C_n$.

Proof. This follows directly from Theorem [4.5.12.](#page-35-0)

K @ ▶ K 결 ▶ K 결 ▶ / [결 ...

 Ω

When the interior of $\bigcap_{n=1}^{N} C_n$ is nonempty we also have that the algorithm (3) converges in norm. However, since D does not have interior this conclusion cannot be derived from Theorem [4.5.12.](#page-35-0) Rather it has to be proved by directly showing that the approximation sequence is Fejér monotone w.r.t. $\bigcap_{n=1}^{N} C_n$.

Let X be a Hilbert space and let C_n , $n = 1, \ldots, N$ be closed convex subsets of X. Suppose that int $\bigcap_{n=1}^{N} C_n \neq \emptyset$ and $\lambda_n \geq 0$ satisfies $\sum_{n=1}^N \lambda_n = 1$. Then the projection algorithm

$$
x_{i+1} = \Big(\sum_{n=1}^N \lambda_n P_n\Big) x_i,
$$

メタメメ きょくきょうき

 209

converges to a point in $\bigcap_{n=1}^N C_n$ in norm.

When the interior of $\bigcap_{n=1}^{N} C_n$ is nonempty we also have that the algorithm (3) converges in norm. However, since D does not have interior this conclusion cannot be derived from Theorem [4.5.12.](#page-35-0) Rather it has to be proved by directly showing that the approximation sequence is Fejér monotone w.r.t. $\bigcap_{n=1}^{N} C_n$.

Theorem 4.5.16 (Strong Convergence for N Sets)

Let X be a Hilbert space and let C_n , $n = 1, \ldots, N$ be closed convex subsets of X. Suppose that $\mathsf{int} \bigcap_{n=1}^N C_n \neq \emptyset$ and $\lambda_n \geq 0$ satisfies $\sum_{n=1}^{N} \lambda_n = 1$. Then the projection algorithm

$$
x_{i+1} = \left(\sum_{n=1}^N \lambda_n P_n\right) x_i,
$$

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right\rangle & \rightarrow & \left\langle \bigoplus \right\rangle & \rightarrow & \left\langle \bigoplus \right\rangle & \rightarrow & \square \end{array} \right.$

 209

converges to a point in $\bigcap_{n=1}^N C_n$ in norm.

Proof. Let $y \in \bigcap_{n=1}^{N} C_n$. Then

$$
||x_{i+1} - y|| = ||\left(\sum_{n=1}^{N} \lambda_n P_n\right) x_i - y|| = ||\sum_{n=1}^{N} \lambda_n (P_n x_i - P_n y)||
$$

$$
\leq \sum_{n=1}^{N} \lambda_n ||P_n x_i - P_n y|| \leq \sum_{n=1}^{N} \lambda_n ||x_i - y|| = ||x_i - y||.
$$

That is to say (x_i) is a Fejér monotone sequence with respect to $\bigcap_{n=1}^{\mathcal{N}} \mathcal{C}_n.$ The norm convergence of (x_i) then follows directly from Theorems $4.5.10$ and $4.5.15$.

←何 ▶ → ヨ ▶ → ヨ ▶ →

G.

 QQ

Commentary and Open Questions

- We have proven convergence of the projection algorithm. It can be traced to von Neumann, Weiner and before, and has been studied extensively.
- We emphasize the relationship between the projection algorithm and variational methods in Hilbert spaces:
	- While projection operators can be defined outside of the setting of Hilbert space, they are not necessarily non-expansive.
	- In fact, non-expansivity of the projection operator characterizes Hilbert space in two more dimensions.
- The Hundal example clarifies many other related problems regarding convergence. Simplifications of the example have since been published.
	- What happens if we only allow "nice" cones?
- Bregman distance provides an alternative perspective into many generalizations of the projection algorithm.

K ロ X K @ X K 할 X K 할 X (할

 QQ

Exercises

- **1** Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive and let $\alpha \in [-, 1, 1]$. Show that $(I + \alpha T)$ is a *maximally monotone* continuous operator.
- ² (Common projections) Prove formula for the projection onto each of the following sets:
	- **0** Half-space: $H := \{x \in \mathcal{H} : \langle a, x \rangle = b\}, 0 \neq a \in \mathcal{H}, b \in \mathbb{R}.$ **2** Line: $L := x + \mathbb{R}y$ where $x, y \in \mathcal{H}$. **3** Ball: $B := \{x \in \mathcal{H} : ||x|| < r\}$ where $r > 0$. **D** Ellipse in \mathbb{R}^2 : $E := \{(x, y) \in \mathbb{R}^2 : x^2/a^2 + y^2/b^2 = 1\}.$ *Hint:* $P_E(u, v) = \left(\frac{a^2u}{a^2-t}, \frac{b^2v}{b^2-t}\right)$ where t solves

$$
\frac{a^2u^2}{(a^2-t)^2}+\frac{b^2v^2}{(b^2-t)^2}=1.
$$

K □ ▶ K @ ▶ K 끝 ▶ K 끝 ▶ │ 말 │ ◆) Q (^

3 (Non-existence of best approximations) Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of an infinite dimensional Hilbert space. Define the set $A := \{e_1/n + e_n : n \in \mathbb{N}\}\.$ Show that A is norm closed and bounded but $d_A(0) = 1$ is not attained. Is A weakly closed?

References

E. H.H. Bauschke & and J.M. Borwein. On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Analysis 1(2):185–212 (1993).

S J.M. Borwein & Q.J. Zhu. Techniques of Variational Analysis. Springer (2013).

- **N** Y. Censor & A. Cegielski. Projection methods: an annotated bibliography of books and reviews. Optimization, accepted for publication. [Preprint PDF.](http://math.haifa.ac.il/yair/revised-proj-meth-annotated-050914.pdf)
-
- R. Escalante & M. Raydan, Alternating projection methods. SIAM Fundamentals of Algorithms (2011)
- **H.S. Hundal. An alternating projection that does not converge** in norm. Nonlinear Analysis: Theory, Methods & Applications 57(1):35–61 (2004).

Many resources (and definitions) available at:

<http://www.carma.newcastle.edu.au/jon/ToVA/>