The Douglas Rachford Reflection Method and Generalizations

Laureate Prof. Jonathan Borwein with Matthew Tam http://carma.newcastle.edu.au/DRmethods/paseky.html

Spring School on Variational Analysis VI Paseky nad Jizerou, April 19–25, 2015

Last Revised: May 6, 2016

Feasibility Problem

Given closed sets $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ the feasibility problem asks

find $x \in \bigcap_{j=1}^{N} C_j$.

Many problems can be cast is this form. Three examples:

- Linear systems "Ax = b": $C_j = \{x : \langle a_j, x \rangle = b_j\}$.
- **(a)** Phase retrieval: $C_1 = \{f : |\hat{f}| = m \text{ a.e.}\}$ and $C_2 = \{f : f = 0 \text{ on } D\}$.

Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility problems. They work on the following principle:

- While the intersection might be difficult to deal with directly, the individual constraint sets are sufficiently "simple".
- Simple means we can efficiently compute nearest points.
- Use an iterative scheme which employs nearest points to individual constraint sets at each stage, and obtain a solution in the limit.

Feasibility Problem

Given closed sets $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ the feasibility problem asks

find
$$x \in \bigcap_{j=1}^{N} C_j$$
.

Many problems can be cast is this form. Three examples:

- Linear systems "Ax = b": $C_j = \{x : \langle a_j, x \rangle = b_j\}$.
- **2** Phase retrieval: $C_1 = \{f : |\hat{f}| = m \text{ a.e.}\}$ and $C_2 = \{f : f = 0 \text{ on } D\}$.

Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility problems. They work on the following principle:

- While the intersection might be difficult to deal with directly, the individual constraint sets are sufficiently "simple".
- (2) "Simple" means we can efficiently compute nearest points.

Use an iterative scheme which employs nearest points to individual constraint sets at each stage, and obtain a solution in the limit.

Feasibility Problem

Given closed sets $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ the feasibility problem asks

find
$$x \in \bigcap_{j=1}^N C_j$$
.

Many problems can be cast is this form. Three examples:

- Linear systems "Ax = b": $C_j = \{x : \langle a_j, x \rangle = b_j\}$.
- **2** Phase retrieval: $C_1 = \{f : |\hat{f}| = m \text{ a.e.}\}$ and $C_2 = \{f : f = 0 \text{ on } D\}$.

Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility problems. They work on the following principle:

- While the intersection might be difficult to deal with directly, the individual constraint sets are sufficiently "simple".
- (2) "Simple" means we can efficiently compute nearest points.
- Use an iterative scheme which employs nearest points to individual constraint sets at each stage, and obtain a solution in the limit.

Douglas, Rachford & Peaceman

Jim Douglas Jnr (1927 –)

Donald Peaceman

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \leq \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

 $P_S(x) = p \iff \langle x - p, s - p \rangle \le 0$ for all $s \in S$.

The reflection w.r.t. S is the (set-valued) mapping,

 $R_S := 2P_S - I.$

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \leq \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

$$P_S(x) = p \iff \langle x - p, s - p \rangle \le 0$$
 for all $s \in S$.

The reflection w.r.t. S is the (set-valued) mapping,

$$R_S := 2P_S - I.$$

Jonathan Borwein (CARMA, University of Newcastle) The Douglas Rachford Reflection Method and Generalizations

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \leq \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

 $P_S(x) = p \iff \langle x - p, s - p \rangle \le 0$ for all $s \in S$.

The reflection w.r.t. S is the (set-valued) mapping,

 $R_S := 2P_S - I.$

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \leq \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

 $P_S(x) = p \iff \langle x - p, s - p \rangle \le 0$ for all $s \in S$.

The reflection w.r.t. S is the (set-valued) mapping,

 $R_S := 2P_S - I.$

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \leq \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

 $P_S(x) = p \iff \langle x - p, s - p \rangle \le 0 \text{ for all } s \in S.$

The reflection w.r.t. S is the (set-valued) mapping,

 $R_S := 2P_S - I.$

Jonathan Borwein (CARMA, University of Newcastle) The Douglas Rachford Reflection Method and Generalizations

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{Id + R_{C_2} R_{C_1}}{2}$.

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{Id + R_{C_2} R_{C_1}}{2}$.

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1,C_2} x_n$$
 where $T_{C_1,C_2} := \frac{Id + R_{C_2} R_{C_1}}{2}$.

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1,C_2} x_n$$
 where $T_{C_1,C_2} := \frac{Id + R_{C_2} R_{C_1}}{2}$.

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{Id + R_{C_2} R_{C_1}}{2}$.

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \quad \iff \quad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \qquad \Longleftrightarrow \qquad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$
$$\iff \qquad x = R_{C_2} R_{C_1} x$$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \quad \iff \quad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$
$$\iff \quad x = R_{C_2} R_{C_1} x$$
$$\iff \quad x = 2P_{C_2} R_{C_1} x - R_{C_1} x$$

The same argument for the set-valued case yields:

• If $x \in T_{C_1,C_2}x$ then there is an element of $P_{C_1}x$ contained in $C_1 \cap C_2$.

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \quad \iff \quad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$
$$\iff \quad x = R_{C_2} R_{C_1} x$$
$$\iff \quad x = 2P_{C_2} R_{C_1} x - R_{C_1} x$$
$$\iff \quad x = 2P_{C_2} R_{C_1} x - 2P_{C_1} x + x$$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \qquad \Longleftrightarrow \qquad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$
$$\Leftrightarrow \qquad x = R_{C_2} R_{C_1} x$$
$$\Leftrightarrow \qquad x = 2P_{C_2} R_{C_1} x - R_{C_1} x$$
$$\Leftrightarrow \qquad x = 2P_{C_2} R_{C_1} x - 2P_{C_1} x + x$$
$$\Leftrightarrow \qquad P_{C_1} x = P_{C_2} R_{C_1} x$$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \quad \iff \quad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$
$$\iff \quad x = R_{C_2} R_{C_1} x$$
$$\iff \quad x = 2P_{C_2} R_{C_1} x - R_{C_1} x$$
$$\iff \quad x = 2P_{C_2} R_{C_1} x - 2P_{C_1} x + x$$
$$\iff \quad P_{C_1} x = P_{C_2} R_{C_1} x$$
$$\implies \quad P_{C_1} x \in C_1 \cap C_2.$$

The same argument for the set-valued case yields:

Tools from Nonexpansive Mapping Theory

- Let $T : \mathcal{H} \to \mathcal{H}$. Then T is:
 - nonexpansive if

$$\|Tx - Ty\| \le \|x - y\|, \quad \forall x, y \in \mathcal{H}.$$

• firmly nonexpansive if

 $||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2, \quad \forall x, y \in \mathcal{H}.$

Tools from Nonexpansive Mapping Theory

- Let $T : \mathcal{H} \to \mathcal{H}$. Then T is:
 - nonexpansive if

$$\|Tx - Ty\| \le \|x - y\|, \quad \forall x, y \in \mathcal{H}.$$

• firmly nonexpansive if

 $||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2, \quad \forall x, y \in \mathcal{H}.$

Proposition (Nonexpansive properties)

The following are equivalent.

- T is firmly nonexpansive.
- I T is firmly nonexpansive.
- 2T I is nonexpansive.
- $T = \alpha I + (1 \alpha)R$, for $\alpha \in (0, 1/2]$ and some nonexpansive R.
- $\langle x y, Tx Ty \rangle \ge ||Tx Ty||^2$ for all $x, y \in \mathcal{H}$.
- Other characterisations.

Tools from Nonexpansive Mapping Theory

- Let $T : \mathcal{H} \to \mathcal{H}$. Then T is:
 - nonexpansive if

$$\|Tx - Ty\| \le \|x - y\|, \quad \forall x, y \in \mathcal{H}.$$

• firmly nonexpansive if

 $||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2, \quad \forall x, y \in \mathcal{H}.$

Nonexpansive properties of projections

Let $C_1, C_2 \subseteq \mathcal{H}$ be closed and convex. Then

- $P_{C_1} := \arg \min_{c \in C_1} \| \cdot c \|$ is firmly nonexpansive.
- $R_{C_1} := 2P_{C_1} I$ is nonexpansive.
- $T_{C_1,C_2} := \frac{1}{2}(I + R_{C_2}R_{C_1})$ is firmly nonexpansive.

Nonexpansive maps are closed under composition, convex combinations, etc. Firmly nonexpansive maps need not be. E.g., Composition of two projections onto subspace in \mathbb{R}^2 (Bauschke–Borwein–Lewis, 1997).

Tools from Nonexpansive Mapping Theory (cont.)

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$\|T^{n+1}x-T^nx\|\to 0.$$

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

Proof. Let $z \in \text{Fix } T$ then, for any $x \in \mathcal{H}$, we have $\|\mathcal{T}^{n+1}x - z\|^2 + \|(I - T)(\mathcal{T}^n x)\|^2$ $= \|\mathcal{T}(\mathcal{T}^n x) - \mathcal{T}z\|^2 + \|(I - T)(\mathcal{T}^n x) - (I - T)z\|^2 \le \|\mathcal{T}^n x - z\|^2.$ Hence $\lim_{n \to \infty} \|\mathcal{T}^n x - z\|$ exists, and thus $\|(I - T)(\mathcal{T}^n x)\| \to 0.$

A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive and asymptotically regular with Fix $T \neq \emptyset$. Set $x_{n+1} = Tx_n$. Then $x_n \stackrel{w_k}{\longrightarrow} x$ such that $x \in \text{Fix } T$.

 \rightarrow Design a non-expansive operator with a useful fixed point set z_{2} , z_{3} , z_{3} , z_{4}

Tools from Nonexpansive Mapping Theory (cont.)

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$\|T^{n+1}x-T^nx\|\to 0.$$

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

Proof. Let *z* ∈ Fix *T* then, for any *x* ∈ *H*, we have $\|T^{n+1}x - z\|^2 + \|(I - T)(T^n x)\|^2$ $= \|T(T^n x) - Tz\|^2 + \|(I - T)(T^n x) - (I - T)z\|^2 \le \|T^n x - z\|^2.$ Hence $\lim_{n \to \infty} \|T^n x - z\|$ exists, and thus $\|(I - T)(T^n x)\| \to 0.$

A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive and asymptotically regular with Fix $T \neq \emptyset$. Set $x_{n+1} = Tx_n$. Then $x_n \stackrel{w_i}{\longrightarrow} x$ such that $x \in \text{Fix } T$.

 \rightarrow Design a non-expansive operator with a useful fixed point set z_{2} , z_{3} , z_{3}

Tools from Nonexpansive Mapping Theory (cont.)

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$\|T^{n+1}x-T^nx\|\to 0.$$

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

Proof. Let $z \in \text{Fix } T$ then, for any $x \in \mathcal{H}$, we have $\|T^{n+1}x - z\|^2 + \|(I - T)(T^n x)\|^2$ $= \|T(T^n x) - Tz\|^2 + \|(I - T)(T^n x) - (I - T)z\|^2 \le \|T^n x - z\|^2.$ Hence $\lim_{n \to \infty} \|T^n x - z\|$ exists, and thus $\|(I - T)(T^n x)\| \to 0.$

A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive and asymptotically regular with Fix $T \neq \emptyset$. Set $x_{n+1} = Tx_n$. Then $x_n \stackrel{w_n}{\longrightarrow} x$ such that $x \in \text{Fix } T$.

 \rightarrow Design a non-expansive operator with a useful fixed point set.

Lemma (Demiclosedness)

Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive and denote $x_n := T^n x_0$ for some initial point $x_0 \in \mathcal{H}$. Suppose $x_n \stackrel{W_*}{\longrightarrow} x$ and $x_n - Tx_n \to 0$. Then $x \in Fix T$.

Proof. Since T is nonexpansive,

$$\begin{aligned} \|x - Tx\|^{2} &= \|x_{n} - Tx\|^{2} - \|x_{n} - x\|^{2} - 2\langle x_{n} - x, x - Tx \rangle \\ &= \|x_{n} - Tx_{n}\|^{2} + 2\langle x_{n} - Tx_{n}, Tx_{n} - Tx \rangle + \|Tx_{n} - Tx\|^{2} \\ &- \|x_{n} - x\|^{2} - 2\langle x_{n} - x, x - Tx \rangle \\ &\leq \|x_{n} - Tx_{n}\|^{2} + 2\langle x_{n} - Tx_{n}, \underbrace{Tx_{n}}_{x_{n+1}} - Tx \rangle - 2\langle x_{n} - x, x - Tx \rangle. \end{aligned}$$

Since $x_n \stackrel{w_1}{\longrightarrow} x$ and $x_n - Tx_n \to 0$, it follows that each term tends to 0.

Lemma (Demiclosedness)

Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive and denote $x_n := T^n x_0$ for some initial point $x_0 \in \mathcal{H}$. Suppose $x_n \stackrel{W_*}{\longrightarrow} x$ and $x_n - Tx_n \to 0$. Then $x \in Fix T$.

Proof. Since *T* is nonexpansive,

$$\begin{aligned} \|x - Tx\|^{2} &= \|x_{n} - Tx\|^{2} - \|x_{n} - x\|^{2} - 2\langle x_{n} - x, x - Tx \rangle \\ &= \|x_{n} - Tx_{n}\|^{2} + 2\langle x_{n} - Tx_{n}, Tx_{n} - Tx \rangle + \|Tx_{n} - Tx\|^{2} \\ &- \|x_{n} - x\|^{2} - 2\langle x_{n} - x, x - Tx \rangle \\ &\leq \|x_{n} - Tx_{n}\|^{2} + 2\langle x_{n} - Tx_{n}, \underbrace{Tx_{n}}_{x_{n+1}} - Tx \rangle - 2\langle x_{n} - x, x - Tx \rangle. \end{aligned}$$

Since $x_n \stackrel{w_i}{\rightharpoonup} x$ and $x_n - Tx_n \to 0$, it follows that each term tends to 0.

Proof of Opial's Theorem

Proof (Opial's Theorem). Since T is non-expansive, for any $y \in Fix T$, we have

$||T^{n+1}x - y|| \le ||T^nx - y|| \le \cdots \le ||x - y||.$

Whence the sequence $\{x_n\}_{n \in \mathbb{N}}$ is Fejér monotone w.r.t the closed convex set Fix *T*. By Th. 4.5.10(iii) of Lect. I (Properties of Fejér monotone sequences) the sequence $\{x_n\}_{n \in \mathbb{N}}$ has at most one weak cluster point in Fix *T*. To complete the proof it suffices to show: (i) $\{x_n\}_{n \in \mathbb{N}}$ has at least one cluster point; and (ii) that every cluster point of $\{x_n\}_{n \in \mathbb{N}}$ is contained in Fix *T*.

Indeed, as $\{x_n\}$ is bounded, it contains at least one weak cluster point. Let z be any weak cluster point and denote by $\{x_{n_k}\}_{k\in\mathbb{N}}$ a subsequence weakly convergent to z. Since T is asymptotically regular,

 $\|x_{n_k}-Tx_{n_k}\|\to 0.$

By the Demiclosedness Lemma, $z \in Fix T$. This completes the proof.

イロト イポト イラト イラト

Proof of Opial's Theorem

Proof (Opial's Theorem). Since T is non-expansive, for any $y \in Fix T$, we have

$$||T^{n+1}x - y|| \le ||T^nx - y|| \le \cdots \le ||x - y||.$$

Whence the sequence $\{x_n\}_{n\in\mathbb{N}}$ is Fejér monotone w.r.t the closed convex set Fix *T*. By Th. 4.5.10(iii) of Lect. I (Properties of Fejér monotone sequences) the sequence $\{x_n\}_{n\in\mathbb{N}}$ has at most one weak cluster point in Fix *T*. To complete the proof it suffices to show: (i) $\{x_n\}_{n\in\mathbb{N}}$ has at least one cluster point; and (ii) that every cluster point of $\{x_n\}_{n\in\mathbb{N}}$ is contained in Fix *T*.

Indeed, as $\{x_n\}$ is bounded, it contains at least one weak cluster point. Let z be any weak cluster point and denote by $\{x_{n_k}\}_{k\in\mathbb{N}}$ a subsequence weakly convergent to z. Since T is asymptotically regular,

 $\|x_{n_k}-Tx_{n_k}\|\to 0.$

By the Demiclosedness Lemma, $z \in Fix T$. This completes the proof.

(人間) システン イラン

Proof of Opial's Theorem

Proof (Opial's Theorem). Since T is non-expansive, for any $y \in Fix T$, we have

$$||T^{n+1}x - y|| \le ||T^nx - y|| \le \cdots \le ||x - y||.$$

Whence the sequence $\{x_n\}_{n\in\mathbb{N}}$ is Fejér monotone w.r.t the closed convex set Fix *T*. By Th. 4.5.10(iii) of Lect. I (Properties of Fejér monotone sequences) the sequence $\{x_n\}_{n\in\mathbb{N}}$ has at most one weak cluster point in Fix *T*. To complete the proof it suffices to show: (i) $\{x_n\}_{n\in\mathbb{N}}$ has at least one cluster point; and (ii) that every cluster point of $\{x_n\}_{n\in\mathbb{N}}$ is contained in Fix *T*.

Indeed, as $\{x_n\}$ is bounded, it contains at least one weak cluster point. Let z be any weak cluster point and denote by $\{x_{n_k}\}_{k\in\mathbb{N}}$ a subsequence weakly convergent to z. Since T is asymptotically regular,

 $\|x_{n_k}-Tx_{n_k}\|\to 0.$

By the Demiclosedness Lemma, $z \in Fix T$. This completes the proof.

The basic result which we have proven is the following.

Theorem (Douglas–Rachford '56, Lions–Mercier '79, Eckstein–Bertsekas '92, ...)

Suppose $C_1,C_2\subseteq \mathcal{H}$ are closed and convex with non-empty intersection. Given $x_0\in \mathcal{H}$ define

$$x_{n+1} := T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{I + R_{C_2} R_{C_1}}{2}$.

Then (x_n) converges weakly to some $x \in \text{Fix } T_{C_1,C_2}$ with $P_{C_1}x \in C_1 \cap C_2$.

Proof. Since $C_1 \cap C_2 \subseteq$ Fix T_{C_1,C_2} , the latter is non-empty. Thus T_{C_1,C_2} is (firmly) nonexpansive with a fixed point, hence asymptotically regular by the previous lemma. The result follows from Opial's Theorem.

- If the intersection is empty the iterates diverge: $||x_n|| \to \infty$.
- Bauschke–Combettes–Luke (2004): Thorough analysis of convex case.
- Hesse et al. & Bauschke et al. (2014): Convergence is strong for subspaces, and the rate is linear whenever their sum is closed.
- Phan (arXiv:1401.6509v3): If dim H < ∞ and ri C₁ ∩ ri C₂ ≠ Ø then convergence in linear.

The basic result which we have proven is the following.

Theorem (Douglas–Rachford '56, Lions–Mercier '79, Eckstein–Bertsekas '92, ...)

Suppose $C_1,C_2\subseteq \mathcal{H}$ are closed and convex with non-empty intersection. Given $x_0\in \mathcal{H}$ define

$$x_{n+1} := T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{I + R_{C_2} R_{C_1}}{2}$.

Then (x_n) converges weakly to some $x \in \text{Fix } T_{C_1, C_2}$ with $P_{C_1} x \in C_1 \cap C_2$.

Proof. Since $C_1 \cap C_2 \subseteq \text{Fix } T_{C_1,C_2}$, the latter is non-empty. Thus T_{C_1,C_2} is (firmly) nonexpansive with a fixed point, hence asymptotically regular by the previous lemma. The result follows from Opial's Theorem.

- If the intersection is empty the iterates diverge: $||x_n|| \to \infty$.
- Bauschke–Combettes–Luke (2004): Thorough analysis of convex case.
- Hesse et al. & Bauschke et al. (2014): Convergence is strong for subspaces, and the rate is linear whenever their sum is closed.
- Phan (arXiv:1401.6509v3): If dim H < ∞ and ri C₁ ∩ ri C₂ ≠ Ø then convergence in linear.

The basic result which we have proven is the following.

Theorem (Douglas–Rachford '56, Lions–Mercier '79, Eckstein–Bertsekas '92, ...)

Suppose $C_1,C_2\subseteq \mathcal{H}$ are closed and convex with non-empty intersection. Given $x_0\in \mathcal{H}$ define

$$x_{n+1} := T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{I + R_{C_2} R_{C_1}}{2}$.

Then (x_n) converges weakly to some $x \in \text{Fix } T_{C_1, C_2}$ with $P_{C_1} x \in C_1 \cap C_2$.

Proof. Since $C_1 \cap C_2 \subseteq \text{Fix } T_{C_1,C_2}$, the latter is non-empty. Thus T_{C_1,C_2} is (firmly) nonexpansive with a fixed point, hence asymptotically regular by the previous lemma. The result follows from Opial's Theorem.

- If the intersection is empty the iterates diverge: $||x_n|| \to \infty$.
- Bauschke-Combettes-Luke (2004): Thorough analysis of convex case.
- Hesse et al. & Bauschke et al. (2014): Convergence is strong for subspaces, and the rate is linear whenever their sum is closed.
- Phan (arXiv:1401.6509v3): If dim H < ∞ and ri C₁ ∩ ri C₂ ≠ Ø then convergence in linear.

The following generalization include potentially empty intersections. Let

$$V:=\overline{C_1-C_2}, \qquad v:=P_V(0), \qquad F:=C_1\cap (C_2+v).$$

Theorem (Bauschke–Combettes–Luke 2004)

Suppose $C_1, C_2 \subseteq \mathcal{H}$ are closed and convex. Given $x_0 \in \mathcal{H}$ define $x_{n+1} := T_{C_2, C_1} x_n$. Then the following hold. (a) $x_n - x_{n+1} = P_{C_1} x_n - P_{C_2} R_{C_1} \rightarrow v$ and $P_{C_1} x_n - P_{C_2} P_{C_1} \rightarrow v$. (b) If $C_1 \cap C_2 \neq \emptyset$ then (x_n) converges weakly to a point in

Fix $T_{C_1,C_2} = C_1 \cap C_2 + N_V(0);$

otherwise, $||x_n|| \to +\infty$.

(c) Exactly one of the following alternatives holds:

(i) $F = \emptyset$, $||P_{C_1}x_n|| \to +\infty$ and $||P_{C_2}P_{C_1}x_n|| \to +\infty$.

(ii) $F \neq \emptyset$, the sequence $(P_{C_1}x_n)$ and $(P_{C_2}P_{C_1}x_n)$ are bounded and their weak cluster points are best approximation pairs relative to (C_1, C_2) .

The Douglas-Rachford Algorithm: Moment Problem

Recall the moment problem from Lecture I for linear map $A : X \to \mathbb{R}^M$ and a point $y \in \mathbb{R}^M$ has constraints:

 $C_1 := \mathcal{H}^+, \qquad C_2 := \{x \in \mathcal{H} : A(x) = y\}.$

The following theorem gives conditions for norm convergence.

Theorem (Borwein–Sims–Tam 2015)

Let \mathcal{H} be a Hilbert lattice, $C_1 := \mathcal{H}^+$, C_2 be a closed affine subspace with finite codimensions, and $C_1 \cap C_2 \neq \emptyset$. For $x_0 \in \mathcal{H}$ define $x_{n+1} = T_{C_1, C_2} x_n$. Let Q denote the projection onto the subspace parallel to C_2 . Then (x_n) converges in norm whenever:

(a) $C_1 \cap \operatorname{range}(Q) = \{0\},\$

(b) $Q(C_2-C_1)\subseteq C_1\cup (-C_1)$ and $Q(C_1)\subseteq C_1.$

(c) C_2 has codimension 1

For codimension greater than 1?

The Douglas-Rachford Algorithm: Moment Problem

Recall the moment problem from Lecture I for linear map $A : X \to \mathbb{R}^M$ and a point $y \in \mathbb{R}^M$ has constraints:

 $C_1 := \mathcal{H}^+, \qquad C_2 := \{x \in \mathcal{H} : A(x) = y\}.$

The following theorem gives conditions for norm convergence.

Theorem (Borwein-Sims-Tam 2015)

Let \mathcal{H} be a Hilbert lattice, $C_1 := \mathcal{H}^+$, C_2 be a closed affine subspace with finite codimensions, and $C_1 \cap C_2 \neq \emptyset$. For $x_0 \in \mathcal{H}$ define $x_{n+1} = \mathcal{T}_{C_1, C_2} x_n$. Let Q denote the projection onto the subspace parallel to C_2 . Then (x_n) converges in norm whenever:

(a) $C_1 \cap \operatorname{range}(Q) = \{0\},\$

(b)
$$Q(C_2-C_1)\subseteq C_1\cup (-C_1)$$
 and $Q(C_1)\subseteq C_1$.

(c) C_2 has codimension 1.

For codimension greater than 1?

Pierra's Product Space Reformulation

For our constraint sets $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ we define

$$\mathbf{D} := \{(x, x, \dots, x) \in \mathcal{H}^N : x \in \mathcal{H}\}, \quad \mathbf{C} := \prod_{j=1}^N C_j.$$

We now have an equivalent two set feasibility problem since

$$x \in \bigcap_{j=1}^{N} C_j \subseteq \mathcal{H} \iff (x, x, \dots, x) \in \mathbf{D} \cap \mathbf{C} \subseteq \mathcal{H}^N.$$

Moreover the projections onto the new sets can be computed whenever $P_{C_1}, P_{C_2}, \ldots, P_{C_N}$. Denote $\mathbf{x} = (x_1, x_2, \ldots, x_N)$ they are given by

$$P_{\mathsf{D}}\mathbf{x} = \left(\frac{1}{N}\sum_{j=1}^{N}x_{j}\right)^{N}$$
 and $P_{\mathsf{C}}\mathbf{x} = \prod_{j=1}^{N}P_{C_{j}}x_{j}$

Pierra's Product Space Reformulation

For our constraint sets $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ we define

$$\mathbf{D} := \{(x, x, \dots, x) \in \mathcal{H}^N : x \in \mathcal{H}\}, \quad \mathbf{C} := \prod_{j=1}^N C_j.$$

We now have an equivalent two set feasibility problem since

$$x \in igcap_{j=1}^{\mathsf{N}} C_j \subseteq \mathcal{H} \iff (x, x, \dots, x) \in \mathbf{D} \cap \mathbf{C} \subseteq \mathcal{H}^{\mathsf{N}}.$$

Moreover the projections onto the new sets can be computed whenever $P_{C_1}, P_{C_2}, \ldots, P_{C_N}$. Denote $\mathbf{x} = (x_1, x_2, \ldots, x_N)$ they are given by

$$P_{\mathbf{D}}\mathbf{x} = \left(\frac{1}{N}\sum_{j=1}^{N}x_{j}\right)^{N}$$
 and $P_{\mathbf{C}}\mathbf{x} = \prod_{j=1}^{N}P_{C_{j}}x_{j}.$

Is there a Douglas–Rachford variant which can be used to solve the problem in the original space? *i.e.*, Without recourse to a product space formulation?

An obvious candidate is the following: Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

- (x_n) converges weakly to a point $x \in \text{Fix } T_{A,B,C}$.
- Unfortunately, it is possible that $P_A x, P_B x, P_C x \notin A \cap B \cap C$.

Is there a Douglas–Rachford variant which can be used to solve the problem in the original space? *i.e.*, Without recourse to a product space formulation?

An obvious candidate is the following: Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

- (x_n) converges weakly to a point $x \in \text{Fix } T_{A,B,C}$.
- Unfortunately, it is possible that $P_A x, P_B x, P_C x \notin A \cap B \cap C$.

Is there a Douglas–Rachford variant which can be used to solve the problem in the original space? *i.e.*, Without recourse to a product space formulation?

An obvious candidate is the following: Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

- (x_n) converges weakly to a point $x \in \text{Fix } T_{A,B,C}$.
- Unfortunately, it is possible that $P_A x, P_B x, P_C x \notin A \cap B \cap C$.

Is there a Douglas–Rachford variant which can be used to solve the problem in the original space? *i.e.*, Without recourse to a product space formulation?

An obvious candidate is the following: Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

- (x_n) converges weakly to a point $x \in \text{Fix } T_{A,B,C}$.
- Unfortunately, it is possible that $P_A x$, $P_B x$, $P_C x \notin A \cap B \cap C$.

$$x_{n+1} = T_{A,B,C} x_n \quad \text{where} \quad T_{A,B,C} = \frac{I + R_C R_B R_A}{2}.$$

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$\begin{split} \boldsymbol{A} &:= \{\lambda(0,1) : |\lambda| \leq \alpha\},\\ \boldsymbol{B} &:= \{\lambda(\sqrt{3},1) : |\lambda| \leq \alpha\},\\ \boldsymbol{C} &:= \{\lambda(-\sqrt{3},1) : |\lambda| \leq \alpha\}. \end{split}$$

Then $A \cap B \cap C = \{0\}$.

We have $x_0 \in \operatorname{Fix} T_{A,B,C}$. However,

 $P_A x_0, P_B x_0, P_C x_0 \neq 0.$

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$\begin{split} \boldsymbol{A} &:= \{\lambda(0,1) : |\lambda| \leq \alpha\},\\ \boldsymbol{B} &:= \{\lambda(\sqrt{3},1) : |\lambda| \leq \alpha\},\\ \boldsymbol{C} &:= \{\lambda(-\sqrt{3},1) : |\lambda| \leq \alpha\}. \end{split}$$

Then $A \cap B \cap C = \{0\}$.

We have $x_0 \in \text{Fix } T_{A,B,C}$. However,

 $P_A x_0, P_B x_0, P_C x_0 \neq 0.$

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$\begin{split} \mathbf{A} &:= \{\lambda(\mathbf{0}, \mathbf{1}) : |\lambda| \le \alpha\},\\ \mathbf{B} &:= \{\lambda(\sqrt{3}, \mathbf{1}) : |\lambda| \le \alpha\},\\ \mathbf{C} &:= \{\lambda(-\sqrt{3}, \mathbf{1}) : |\lambda| \le \alpha\}. \end{split}$$

Then $A \cap B \cap C = \{0\}$.

We have $x_0 \in \text{Fix } T_{A,B,C}$. However, $P_A x_0, P_B x_0, P_C x_0 \neq 0.$

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$\begin{split} \boldsymbol{A} &:= \{\lambda(0,1) : |\lambda| \leq \alpha\},\\ \boldsymbol{B} &:= \{\lambda(\sqrt{3},1) : |\lambda| \leq \alpha\},\\ \boldsymbol{C} &:= \{\lambda(-\sqrt{3},1) : |\lambda| \leq \alpha\}. \end{split}$$

Then $A \cap B \cap C = \{0\}$.

We have $x_0 \in \operatorname{Fix} T_{A,B,C}$. However,

 $P_A x_0, P_B x_0, P_C x_0 \neq 0.$

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$\begin{split} \boldsymbol{A} &:= \{\lambda(0,1) : |\lambda| \leq \alpha\},\\ \boldsymbol{B} &:= \{\lambda(\sqrt{3},1) : |\lambda| \leq \alpha\},\\ \boldsymbol{C} &:= \{\lambda(-\sqrt{3},1) : |\lambda| \leq \alpha\}. \end{split}$$

Then $A \cap B \cap C = \{0\}$.

We have $x_0 \in \text{Fix } T_{A,B,C}$. However, $P_{A}x_0, P_{B}x_0, P_{C}x_0 \neq 0.$

RBRAX

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$\begin{split} \boldsymbol{A} &:= \{\lambda(0,1) : |\lambda| \leq \alpha\},\\ \boldsymbol{B} &:= \{\lambda(\sqrt{3},1) : |\lambda| \leq \alpha\},\\ \boldsymbol{C} &:= \{\lambda(-\sqrt{3},1) : |\lambda| \leq \alpha\}. \end{split}$$

Then $A \cap B \cap C = \{0\}$.

We have $x_0 \in \operatorname{Fix} T_{A,B,C}$. However,

 $P_A x_0, P_B x_0, P_C x_0 \neq 0.$

Jonathan Borwein (CARMA, University of Newcastle) The Douglas Rachford Reflection Method and Generalizations

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$\begin{split} \boldsymbol{A} &:= \{\lambda(0,1) : |\lambda| \leq \alpha\},\\ \boldsymbol{B} &:= \{\lambda(\sqrt{3},1) : |\lambda| \leq \alpha\},\\ \boldsymbol{C} &:= \{\lambda(-\sqrt{3},1) : |\lambda| \leq \alpha\}. \end{split}$$

Then $A \cap B \cap C = \{0\}$.

We have $x_0 \in \operatorname{Fix} T_{A,B,C}$. However,

 $P_A x_0, P_B x_0, P_C x_0 \neq 0.$

Theorem (Borwein–Tam 2013)

Let $C_1, \ldots, C_N \subseteq \mathcal{H}$ be closed convex sets with nonempty intersection, let $T_j : \mathcal{H} \to \mathcal{H}$ and denote $T := T_M \ldots T_2 T_1$. Suppose the following three properties hold.

(i) T is nonexpansive and asymptotically regular,

(ii) Fix $T = \bigcap_{i=1}^{M} \text{Fix } T_i \neq \emptyset$,

(iii) P_{C_j} Fix $T_j \subseteq C_{j+1}$ for each $j = 1, \ldots, N$.

Then, for any $x_0 \in \mathcal{H}$, the sequence $x_n := T^n x_0$ converges weakly to some x such that $P_{C_1} x = P_{C_2} x = \cdots = P_{C_N} x$. In particular, $P_{C_1} x \in \bigcap_{i=1}^N C_i$.

Proof sketch. Denote $C_{N+1} := C_1$.

- (i) + (ii) \implies (x_n) converges weakly to some $x \in \cap$ Fix T.
- (iii) + convex projection inequality yields

 $\langle x - P_{C_{j+1}}x, P_{C_j}x - P_{C_{j+1}}x \rangle \leq 0$ for all j

Theorem (Borwein–Tam 2013)

Let $C_1, \ldots, C_N \subseteq \mathcal{H}$ be closed convex sets with nonempty intersection, let $T_j : \mathcal{H} \to \mathcal{H}$ and denote $T := T_M \ldots T_2 T_1$. Suppose the following three properties hold.

(i) T is nonexpansive and asymptotically regular,

(ii) Fix
$$T = \bigcap_{j=1}^{M} \text{Fix } T_j \neq \emptyset$$
,

(iii) P_{C_j} Fix $T_j \subseteq C_{j+1}$ for each $j = 1, \ldots, N$.

Then, for any $x_0 \in \mathcal{H}$, the sequence $x_n := T^n x_0$ converges weakly to some x such that $P_{C_1} x = P_{C_2} x = \cdots = P_{C_N} x$. In particular, $P_{C_1} x \in \bigcap_{i=1}^N C_i$.

Proof sketch. Denote $C_{N+1} := C_1$.

- (i) + (ii) \implies (x_n) converges weakly to some $x \in \cap Fix T$.
- (iii) + convex projection inequality yields

$$\langle x - P_{C_{i+1}}x, P_{C_i}x - P_{C_{i+1}}x \rangle \leq 0$$
 for all j

A Common Framework

To complete the proof observe

$$\begin{split} \frac{1}{2} \sum_{j=1}^{N} \|P_{C_{j+1}}x - P_{C_{j}}x\|^{2} \\ &= \langle x, 0 \rangle + \frac{1}{2} \sum_{j=1}^{N} \left(\|P_{C_{j+1}}x\|^{2} - 2\langle P_{C_{j+1}}x, P_{C_{j}}x \rangle + \|P_{C_{j}}x\|^{2} \right) \\ &= \left\langle x, \sum_{j=1}^{N} (P_{C_{j}}x - P_{C_{j+1}}x) \right\rangle - \sum_{j=1}^{N} \langle P_{C_{j+1}}x, P_{C_{j}}x \rangle + \sum_{j=1}^{N} \|P_{C_{j+1}}x\|^{2} \\ &= \sum_{j=1}^{N} \left\langle x, (P_{C_{j}}x - P_{C_{j+1}}x) \right\rangle - \sum_{j=1}^{N} \langle P_{C_{j+1}}x, P_{C_{j}}x - P_{C_{j+1}}x \rangle \\ &= \sum_{j=1}^{N} \langle x - P_{C_{j+1}}x, P_{C_{j}}x - P_{C_{j+1}}x \rangle \le 0. \end{split}$$

We require one final theorem.

Theorem (Bauschke et al. 2012)

Suppose that each $T_i : \mathcal{H} \to \mathcal{H}$ is firmly nonexpansive and asymptotically regular. Then $T_m T_{m-1} \dots T_1$ is also asymptotically regular.

The proof can be found in:

H.H. Bauschke, V. Martin-Marquez, S.M. Moffat, and X. Wang. Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular, *Fixed Point Theory and Applications* 2012, 2012:53. We require one final theorem.

Theorem (Bauschke et al. 2012)

Suppose that each $T_i : \mathcal{H} \to \mathcal{H}$ is firmly nonexpansive and asymptotically regular. Then $T_m T_{m-1} \dots T_1$ is also asymptotically regular.

The proof can be found in:

H.H. Bauschke, V. Martin-Marquez, S.M. Moffat, and X. Wang. Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular, *Fixed Point Theory and Applications* 2012, 2012:53.

Cyclic Douglas-Rachford Method

Corollary (Borwein-Tam 2013)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \underbrace{(T_{C_N,C_1} T_{C_{N-1},C_N} \dots T_{C_2,C_3} T_{C_1,C_2})}_{=:T_{[12\dots N]}} x_n \text{ where } T_{C_j,C_{j+1}} = \frac{I + R_{C_{j+1}} R_{C_j}}{2}.$$

Then (x_n) converges weakly to a point x such that $P_{C_1}x = \cdots = P_{C_N}x$.

- Borwein–Tam (arXiv:1310.2195): Analysed behaviour for empty intersections.
- Using Hundal (2004): There exists a hyperplane and convex cone with nonempty intersection such that convergence is not strong.
- Bauschke–Noll–Phan (2014): If dim H < ∞ and ∩^N_{j=1} ri C_j ≠ Ø then convergence is linear.
- Bauschke–Noll–Phan (2014): If Fix $T_{[12...N]}$ is bounded linearly regular and $C_j + C_{j+1}$ is closed, for each j, then convergence is linear.

Three Methods: An Example

Consider the following examples with $C_2 := 0 \times \mathbb{R}$, and $C_1 := epi(exp(\cdot) + 1)$ or $epi((\cdot)^2 + 1)$.

Jonathan Borwein (CARMA, University of Newcastle) The Douglas Rachford Reflection Method and Generalizations

Averaged Douglas-Rachford Method

The following variant lends itself to parallel implementation.

Corollary (Borwein-Tam 2013)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \frac{1}{N} \left(\sum_{j=1}^{N} T_{C_j, C_{j+1}} \right) x_n \quad \text{where} \quad T_{C_j, C_{j+1}} = \frac{I + R_{C_{j+1}} R_{C_j}}{2}.$$

Then (x_n) converges weakly to a point x such that $P_{C_1}x = \cdots = P_{C_N}x$.

Proof sketch. For $x_0 \in \mathcal{H}$, set $\mathbf{x}_0 = (x_0, \dots, x_0) \in \mathcal{H}^N$. Apply the theorem to the product-space iteration

$$\mathbf{x}_{n+1} = P_D\left(\prod_{i=1}^N T_{C_i, C_{i+1}}\right) \mathbf{x}_n \in D \subseteq \mathcal{H}^N.$$

Averaged Douglas-Rachford Method

The following variant lends itself to parallel implementation.

Corollary (Borwein-Tam 2013)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \frac{1}{N} \left(\sum_{j=1}^{N} T_{C_j, C_{j+1}} \right) x_n \quad \text{where} \quad T_{C_j, C_{j+1}} = \frac{I + R_{C_{j+1}} R_{C_j}}{2}.$$

Then (x_n) converges weakly to a point x such that $P_{C_1}x = \cdots = P_{C_N}x$.

Proof sketch. For $x_0 \in \mathcal{H}$, set $\mathbf{x}_0 = (x_0, \dots, x_0) \in \mathcal{H}^N$. Apply the theorem to the product-space iteration

$$\mathbf{x}_{n+1} = P_D\left(\prod_{i=1}^N T_{C_i,C_{i+1}}\right) \mathbf{x}_n \in D \subseteq \mathcal{H}^N.$$

Cyclically Anchored Douglas-Rachford Method

Choose the first set C_1 to be the anchor set, and think of

$$\bigcap_{j=1}^{\mathsf{N}} C_j = C_1 \cap \left(\bigcap_{j=2}^{\mathsf{N}} C_j\right).$$

Theorem (Bauschke–Noll–Phan 2014)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \prod_{j=2}^{N} T_{C_1, C_j} x_n$$
 where $T_{C_1, C_j} = \frac{I + R_{C_j} R_{C_1}}{2}$.

Then (x_n) converges weakly to a point x such that $P_{C_1}x \in \bigcap_{i=1}^N C_i$.

- Bauschke–Noll–Phan (2014): If dim H < ∞ and ∩^N_{j=1} ri C_j ≠ Ø then convergence is linear.
- Bauschke–Noll–Phan (2014): For subspaces, if Fix T_{C_1,C_j} is bounded linearly regular and $C_1 + C_j$ is closed then convergence is linear.

Averaged Anchored Douglas-Rachford Method

The scheme also has a parallel counterpart:

Theorem

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \frac{1}{N-1} \left(\sum_{j=1}^{N} T_{C_1, C_j} \right) x_n \text{ where } T_{C_1, C_j} = \frac{I + R_{C_j} R_{C_j}}{2}.$$

Then (x_n) converges weakly to a point x such that $P_{C_1}x \in \bigcap_{j=1}^N C_j$.

Proof sketch. Use the product space (as we did for the averaged DR iteration) up the iteration:

$$\mathbf{x}_{n+1} = P_D\left(\prod_{i=1}^N T_{C_1,C_i}\right) \mathbf{x}_n \in D \subseteq \mathcal{H}^{N-1}.$$

Averaged Anchored Douglas-Rachford Method

The scheme also has a parallel counterpart:

Theorem

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \frac{1}{N-1} \left(\sum_{j=1}^{N} T_{C_1, C_j} \right) x_n$$
 where $T_{C_1, C_j} = \frac{I + R_{C_j} R_{C_j}}{2}$.

Then (x_n) converges weakly to a point x such that $P_{C_1}x \in \bigcap_{j=1}^N C_j$.

Proof sketch. Use the product space (as we did for the averaged DR iteration) up the iteration:

$$\mathbf{x}_{n+1} = P_D\left(\prod_{i=1}^N T_{C_1,C_i}\right) \mathbf{x}_n \in D \subseteq \mathcal{H}^{N-1}.$$

- The (classical) Douglas–Rachford method better than theory suggests performance on non-convex problems. Consequently many variants and extensions have recently been proposed.
- Even in the convex setting there are many subtleties and open questions.
 - Norm convergence for realistic moment problems with codimension greater than 1?
- Experimental comparison of the variants needed.

- Let $T_j : \mathcal{H} \to \mathcal{H}$ be firmly nonexpansive, for j = 1, ..., r, and define $T := T_r ... T_2 T_1$. If Fix $T \neq \emptyset$ show that T is asymptotically regular.
- Show that the cyclic DR method becomes MAP in certain cases. Hence find an example where convergence in cyclic DR is only weak.
- (Hard) Prove or disprove: The Douglas-Rachford algorithm converges in norm for the moment problem when the affine set has codimension 2.

References

H.H. Bauschke, P.L. Combettes & D.R. Luke. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127(2):178–192 (2004).

H.H. Bauschke, J.Y. Cruz, T.T.A. Nghia, H.M. Phan & W. Wang. The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 185:63–79 (2014).

H.H. Bauschke, D. Noll, H.M. Phan. Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. and Appl., 421(1):1–20 (2014).

- J.M. Borwein, B. Sims & M.K. Tam. Norm convergence of realistic projection and reflection methods. *Optim.*, 64(1):161–178 (2015).
- J.M. Borwein & M.K. Tam. A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl., 160(1):1–29 (2014). http://arxiv.org/abs/1303.1859.

J.M. Borwein & M.K. Tam. The cyclic Douglas–Rachford method for inconsistent feasibility problems. J. Nonlinear and Convex Anal., to appear. http://arxiv.org/abs/1310.2195.

- R. Hesse, D.R. Luke & P. Neumann. Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility. *IEEE Trans. Sign. Proc.*, 62(1):4868–4881 (2014).
- H.M. Phan. Linear convergence of the Douglas–Rachford method for two closed sets. arXiv:1401.6509.

Many resources available at:

http://carma.newcastle.edu.au/DRmethods