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Feasibility Problem

Given closed sets C1,C2, . . . ,CN ⊆ H the feasibility problem asks

find x ∈
N⋂
j=1

Cj .

Many problems can be cast is this form. Three examples:

1 Linear systems “Ax = b”: Cj = {x : 〈aj , x〉 = bj}.
2 Phase retrieval: C1 = {f : |f̂ | = m a.e.} and C2 = {f : f = 0 on D}.
3 Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility
problems. They work on the following principle:

1 While the intersection might be difficult to deal with directly, the
individual constraint sets are sufficiently “simple”.

2 “Simple” means we can efficiently compute nearest points.

3 Use an iterative scheme which employs nearest points to individual
constraint sets at each stage, and obtain a solution in the limit.
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Douglas, Rachford & Peaceman

Jim Douglas Jnr (1927 – ) Henry Rachford Donald Peaceman
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Algorithmic Building Blocks

Let S ⊆ H be non-empty. The (nearest point) projection onto S is the
(set-valued) mapping,

PSx :=

{
s ∈ S : ‖x − s‖ ≤ inf

s∈S
‖x − s‖

}
.

If S is closed and convex then projections exists uniquely with

PS(x) = p ⇐⇒ 〈x − p, s − p〉 ≤ 0 for all s ∈ S .

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .
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The Douglas–Rachford Algorithm

Given an initial point x0 ∈ H, the Douglas–Rachford method is the
fixed-point iteration given by

xn+1 ∈ TC1,C2xn where TC1,C2 :=
Id + RC2RC1

2
.

We hope that (xn) converges to a fixed point of of the operator TC1,C2 .

xn

RC1xn

RC2RC1xn

xn+1 = T1,2xn

C1

C2

C1 = {x ∈ H : ‖x‖ ≤ 1}, C2 = {x ∈ H : 〈a, x〉 = b}.
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Douglas–Rachford Fixed Points

Why FixTC1,C2 ? Assuming single-valueness of RC1 and RC2 we have:

x ∈ FixTC1,C2 ⇐⇒ x =
x + RC2RC1x

2

⇐⇒ x = RC2RC1x

⇐⇒ x = 2PC2RC1x − RC1x

⇐⇒ x = 2PC2RC1x − 2PC1x + x

⇐⇒ PC1x = PC2RC1x

=⇒ PC1x ∈ C1 ∩ C2.

The same argument for the set-valued case yields:

If x ∈ TC1,C2x then there is an element of PC1x contained in C1 ∩C2.
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Tools from Nonexpansive Mapping Theory

Let T : H → H. Then T is:
nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x , y ∈ H.

firmly nonexpansive if

‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, ∀x , y ∈ H.
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Proposition (Nonexpansive properties)

The following are equivalent.

T is firmly nonexpansive.

I − T is firmly nonexpansive.

2T − I is nonexpansive.

T = αI + (1− α)R, for α ∈ (0, 1/2] and some nonexpansive R.

〈x − y ,Tx − Ty〉 ≥ ‖Tx − Ty‖2 for all x , y ∈ H.

Other characterisations.
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firmly nonexpansive if

‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, ∀x , y ∈ H.

Nonexpansive properties of projections

Let C1,C2 ⊆ H be closed and convex. Then

PC1 := arg minc∈C1
‖ · −c‖ is firmly nonexpansive.

RC1 := 2PC1 − I is nonexpansive.

TC1,C2 := 1
2 (I + RC2RC1 ) is firmly nonexpansive.

Nonexpansive maps are closed under composition, convex combinations,
etc. Firmly nonexpansive maps need not be. E.g., Composition of two
projections onto subspace in R2 (Bauschke–Borwein–Lewis, 1997).

Jonathan Borwein (CARMA, University of Newcastle) The Douglas Rachford Reflection Method and Generalizations



Tools from Nonexpansive Mapping Theory (cont.)

asymptotically regular if, for all x ∈ H,

‖T n+1x − T nx‖ → 0.

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is
asymptotically regular.

Proof. Let z ∈ FixT then, for any x ∈ H, we have

‖T n+1x − z‖2 + ‖(I − T )(T nx)‖2

= ‖T (T nx)− Tz‖2 + ‖(I − T )(T nx)− (I − T )z‖2 ≤ ‖T nx − z‖2.

Hence limn→∞ ‖T nx − z‖ exists, and thus ‖(I − T )(T nx)‖ → 0. •
A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let T : H → H be nonexpansive and asymptotically regular with FixT 6= ∅.
Set xn+1 = Txn. Then xn

w.
⇀ x such that x ∈ FixT .

→ Design a non-expansive operator with a useful fixed point set.
Jonathan Borwein (CARMA, University of Newcastle) The Douglas Rachford Reflection Method and Generalizations
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Proof of Opial’s Theorem

Lemma (Demiclosedness)

Let T : H → H be nonexpansive and denote xn := T nx0 for some initial
point x0 ∈ H. Suppose xn

w .
⇀ x and xn − Txn → 0. Then x ∈ FixT .

Proof. Since T is nonexpansive,

‖x − Tx‖2 = ‖xn − Tx‖2 − ‖xn − x‖2 − 2〈xn − x , x − Tx〉
= ‖xn − Txn‖2 + 2〈xn − Txn,Txn − Tx〉+ ‖Txn − Tx‖2

− ‖xn − x‖2 − 2〈xn − x , x − Tx〉
≤ ‖xn − Txn‖2 + 2〈xn − Txn, Txn︸︷︷︸

xn+1

−Tx〉 − 2〈xn − x , x − Tx〉.

Since xn
w .
⇀ x and xn − Txn → 0, it follows that each term tends to 0. •
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Proof of Opial’s Theorem

Proof (Opial’s Theorem). Since T is non-expansive, for any y ∈ FixT ,
we have

‖T n+1x − y‖ ≤ ‖T nx − y‖ ≤ · · · ≤ ‖x − y‖.

Whence the sequence {xn}n∈N is Fejér monotone w.r.t the closed convex
set FixT . By Th. 4.5.10(iii) of Lect. I (Properties of Fejér monotone
sequences) the sequence {xn}n∈N has at most one weak cluster point in
FixT . To complete the proof it suffices to show: (i) {xn}n∈N has at least
one cluster point; and (ii) that every cluster point of {xn}n∈N is
contained in FixT .

Indeed, as {xn} is bounded, it contains at least one weak cluster point.
Let z be any weak cluster point and denote by {xnk}k∈N a subsequence
weakly convergent to z . Since T is asymptotically regular,

‖xnk − Txnk‖ → 0.

By the Demiclosedness Lemma, z ∈ FixT . This completes the proof. •
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The Douglas–Rachford Algorithm

The basic result which we have proven is the following.

Theorem (Douglas–Rachford ‘56, Lions–Mercier ‘79, Eckstein–Bertsekas ‘92, . . . )

Suppose C1,C2 ⊆ H are closed and convex with non-empty intersection. Given
x0 ∈ H define

xn+1 := TC1,C2xn where TC1,C2 :=
I + RC2RC1

2
.

Then (xn) converges weakly to some x ∈ FixTC1,C2 with PC1x ∈ C1 ∩ C2.

Proof. Since C1 ∩ C2 ⊆ FixTC1,C2 , the latter is non-empty. Thus TC1,C2 is
(firmly) nonexpansive with a fixed point, hence asymptotically regular by the
previous lemma. The result follows from Opial’s Theorem. •

If the intersection is empty the iterates diverge: ‖xn‖ → ∞.

Bauschke–Combettes–Luke (2004): Thorough analysis of convex case.

Hesse et al. & Bauschke et al. (2014): Convergence is strong for
subspaces, and the rate is linear whenever their sum is closed.

Phan (arXiv:1401.6509v3): If dimH <∞ and riC1 ∩ riC2 6= ∅ then
convergence in linear.
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The Douglas–Rachford Algorithm

The following generalization include potentially empty intersections. Let

V := C1 − C2, v := PV (0), F := C1 ∩ (C2 + v).

Theorem (Bauschke–Combettes–Luke 2004)

Suppose C1,C2 ⊆ H are closed and convex. Given x0 ∈ H define
xn+1 := TC2,C1xn. Then the following hold.

(a) xn − xn+1 = PC1xn − PC2RC1 → v and PC1xn − PC2PC1 → v .

(b) If C1 ∩ C2 6= ∅ then (xn) converges weakly to a point in

FixTC1,C2 = C1 ∩ C2 + NV (0);

otherwise, ‖xn‖ → +∞.

(c) Exactly one of the following alternatives holds:

(i) F = ∅, ‖PC1xn‖ → +∞ and ‖PC2PC1xn‖ → +∞.
(ii) F 6= ∅, the sequence (PC1xn) and (PC2PC1xn) are bounded and their

weak cluster points are best approximation pairs relative to (C1,C2).
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The Douglas–Rachford Algorithm: Moment Problem

Recall the moment problem from Lecture I for linear map A : X → RM

and a point y ∈ RM has constraints:

C1 := H+, C2 := {x ∈ H : A(x) = y}.

The following theorem gives conditions for norm convergence.

Theorem (Borwein–Sims–Tam 2015)

Let H be a Hilbert lattice, C1 := H+, C2 be a closed affine subspace with
finite codimensions, and C1 ∩ C2 6= ∅. For x0 ∈ H define xn+1 = TC1,C2xn.
Let Q denote the projection onto the subspace parallel to C2. Then (xn)
converges in norm whenever:

(a) C1 ∩ range(Q) = {0},
(b) Q(C2 − C1) ⊆ C1 ∪ (−C1) and Q(C1) ⊆ C1.

(c) C2 has codimension 1.

For codimension greater than 1?
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Pierra’s Product Space Reformulation

For our constraint sets C1,C2, . . . ,CN ⊆ H we define

D := {(x , x , . . . , x) ∈ HN : x ∈ H}, C :=
N∏
j=1

Cj .

We now have an equivalent two set feasibility problem since

x ∈
N⋂
j=1

Cj ⊆ H ⇐⇒ (x , x , . . . , x) ∈ D ∩ C ⊆ HN .

Moreover the projections onto the new sets can be computed whenever
PC1 ,PC2 , . . . ,PCN

. Denote x = (x1, x2, . . . , xN) they are given by

PDx =

 1

N

N∑
j=1

xi

N

and PCx =
N∏
j=1

PCj xj .
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A Many-set Douglas–Rachford Scheme?

A Many-set Douglas–Rachford Scheme?

Is there a Douglas–Rachford variant which can be used to solve the
problem in the original space? i.e., Without recourse to a product space
formulation?

An obvious candidate is the following: Given x0 ∈ H define

xn+1 = TA,B,Cxn where TA,B,C =
I + RCRBRA

2
.

A similar argument shows:

(xn) converges weakly to a point x ∈ FixTA,B,C .

Unfortunately, it is possible that PAx ,PBx ,PCx 6∈ A ∩ B ∩ C .
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A Many-set Douglas–Rachford Scheme?

xn+1 = TA,B,Cxn where TA,B,C =
I + RCRBRA

2
.

Let x0 = (−
√

3,−1) & 2 ≤ α ≤ ∞.
Define constraints:

A := {λ(0, 1) : |λ| ≤ α},

B := {λ(
√

3, 1) : |λ| ≤ α},

C := {λ(−
√

3, 1) : |λ| ≤ α}.

Then A ∩ B ∩ C = {0}.

We have x0 ∈ FixTA,B,C . However,

PAx0,PBx0,PCx0 6= 0.
A

B

C

x0 = RCRBRAx0

0

PAx0

PBx0

PCx0
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A Common Framework

Theorem (Borwein–Tam 2013)

Let C1, . . . ,CN ⊆ H be closed convex sets with nonempty intersection,
let Tj : H → H and denote T := TM . . .T2T1. Suppose the following
three properties hold.

(i) T is nonexpansive and asymptotically regular,

(ii) FixT = ∩Mj=1 FixTj 6= ∅,
(iii) PCj FixTj ⊆ Cj+1 for each j = 1, . . . ,N.

Then, for any x0 ∈ H, the sequence xn := T nx0 converges weakly to some
x such that PC1x = PC2x = · · · = PCN

x . In particular, PC1x ∈
⋂N

i=1 Ci .

Proof sketch. Denote CN+1 := C1.

1 (i) + (ii) =⇒ (xn) converges weakly to some x ∈ ∩FixT .

2 (iii) + convex projection inequality yields

〈x − PCj+1x ,PCj x − PCj+1x〉 ≤ 0 for all j
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A Common Framework

To complete the proof observe

1

2

N∑
j=1

‖PCj+1x − PCj x‖2

= 〈x , 0〉+
1

2

N∑
j=1

(
‖PCj+1x‖2 − 2〈PCj+1x ,PCj x〉+ ‖PCj x‖2

)
=

〈
x ,

N∑
j=1

(PCj x − PCj+1x)

〉
−

N∑
j=1

〈PCj+1x ,PCj x〉+
N∑
j=1

‖PCj+1x‖2

=
N∑
j=1

〈
x , (PCj x − PCj+1x)

〉
−

N∑
j=1

〈PCj+1x ,PCj x − PCj+1x〉

=
N∑
j=1

〈x − PCj+1x ,PCj x − PCj+1x〉 ≤ 0.

•
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Composition of DR-Operators

We require one final theorem.

Theorem (Bauschke et al. 2012)

Suppose that each Ti : H → H is firmly nonexpansive and asymptotically
regular. Then TmTm−1 . . .T1 is also asymptotically regular.

The proof can be found in:
H.H. Bauschke, V. Martin-Marquez, S.M. Moffat, and X. Wang.
Compositions and convex combinations of asymptotically regular
firmly nonexpansive mappings are also asymptotically regular, Fixed
Point Theory and Applications 2012, 2012:53.
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Cyclic Douglas–Rachford Method

Corollary (Borwein–Tam 2013)

Let C1,C2, . . . ,CN ⊆ H be closed and convex with non-empty
intersection. Given x0 ∈ H define

xn+1 := (TCN ,C1TCN−1,CN . . .TC2,C3TC1,C2 )︸ ︷︷ ︸
=:T[1 2 ... N]

xn where TCj ,Cj+1 =
I + RCj+1RCj

2
.

Then (xn) converges weakly to a point x such that PC1x = · · · = PCN
x .

Borwein–Tam

(arXiv:1310.2195): Analysed behaviour for empty intersections.

Using Hundal (2004): There exists a hyperplane and convex cone
with nonempty intersection such that convergence is not strong.

Bauschke–Noll–Phan (2014): If dimH <∞ and ∩Nj=1 riCj 6= ∅ then
convergence is linear.

Bauschke–Noll–Phan (2014): If FixT[1 2 ...N] is bounded linearly
regular and Cj +Cj+1 is closed, for each j , then convergence is linear.
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Three Methods: An Example

Consider the following examples with C2 := 0× R, and

C1 := epi(exp(·) + 1) or epi((·)2 + 1).

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

C1

MAP DR cyclic DR
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Averaged Douglas–Rachford Method

The following variant lends itself to parallel implementation.

Corollary (Borwein-Tam 2013)

Let C1,C2, . . . ,CN ⊆ H be closed and convex with non-empty
intersection. Given x0 ∈ H define

xn+1 :=
1

N

 N∑
j=1

TCj ,Cj+1

 xn where TCj ,Cj+1 =
I + RCj+1RCj

2
.

Then (xn) converges weakly to a point x such that PC1x = · · · = PCN
x .

Proof sketch. For x0 ∈ H, set x0 = (x0, . . . , x0) ∈ HN . Apply the
theorem to the product-space iteration

xn+1 = PD

(
N∏
i=1

TCi ,Ci+1

)
xn ∈ D ⊆ HN . •
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Cyclically Anchored Douglas–Rachford Method

Choose the first set C1 to be the anchor set, and think of

N⋂
j=1

Cj = C1 ∩

 N⋂
j=2

Cj

 .

Theorem (Bauschke–Noll–Phan 2014)

Let C1,C2, . . . ,CN ⊆ H be closed and convex with non-empty
intersection. Given x0 ∈ H define

xn+1 :=
N∏
j=2

TC1,Cj xn where TC1,Cj =
I + RCjRC1

2
.

Then (xn) converges weakly to a point x such that PC1x ∈
⋂N

j=1 Cj .

Bauschke–Noll–Phan (2014): If dimH <∞ and ∩Nj=1 riCj 6= ∅ then
convergence is linear.
Bauschke–Noll–Phan (2014): For subspaces, if FixTC1,Cj is bounded
linearly regular and C1 + Cj is closed then convergence is linear.
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Averaged Anchored Douglas–Rachford Method

The scheme also has a parallel counterpart:

Theorem

Let C1,C2, . . . ,CN ⊆ H be closed and convex with non-empty
intersection. Given x0 ∈ H define

xn+1 :=
1

N − 1

 N∑
j=1

TC1,Cj

 xn where TC1,Cj =
I + RCjRCi

2
.

Then (xn) converges weakly to a point x such that PC1x ∈
⋂N

j=1 Cj .

Proof sketch. Use the product space (as we did for the averaged DR
iteration) up the iteration:

xn+1 = PD

(
N∏
i=1

TC1,Cj

)
xn ∈ D ⊆ HN−1. •
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xn+1 = PD

(
N∏
i=1

TC1,Cj

)
xn ∈ D ⊆ HN−1. •
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Commentary and Open Questions

The (classical) Douglas–Rachford method better than theory
suggests performance on non-convex problems. Consequently many
variants and extensions have recently been proposed.

Even in the convex setting there are many subtleties and open
questions.

Norm convergence for realistic moment problems with codimension
greater than 1?

Experimental comparison of the variants needed.
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Exercises

1 Let Tj : H → H be firmly nonexpansive, for j = 1, . . . , r , and define
T := Tr . . .T2 T1. If FixT 6= ∅ show that T is asymptotically regular.

2 Show that the cyclic DR method becomes MAP in certain cases. Hence
find an example where convergence in cyclic DR is only weak.

3 (Hard) Prove or disprove: The Douglas–Rachford algorithm converges in
norm for the moment problem when the affine set has codimension 2.
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