The Douglas Rachford Reflection Method and Generalizations

Laureate Prof. Jonathan Borwein with Matthew Tam http://carma.newcastle.edu.au/DRmethods/paseky.html

Spring School on Variational Analysis VI Paseky nad Jizerou, April 19–25, 2015

Last Revised: May 6, 2016

Feasibility Problem

Given closed sets $C_1,\,C_2,\ldots,\,C_N\subseteq\mathcal{H}$ the feasibility problem asks

find
$$x \in \bigcap_{j=1}^{N} C_j$$
.

Many problems can be cast is this form. Three examples:

- ① Linear systems "Ax = b": $C_j = \{x : \langle a_j, x \rangle = b_j \}$.
- ② Phase retrieval: $C_1 = \{f : |\hat{f}| = m \text{ a.e.}\}$ and $C_2 = \{f : f = 0 \text{ on } D\}$.
- Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility problems. They work on the following principle:

- While the intersection might be difficult to deal with directly, the individual constraint sets are sufficiently "simple".
- (2) "Simple" means we can efficiently compute nearest points.
- ① Use an iterative scheme which employs nearest points to individual constraint sets at each stage, and obtain a solution in the limit.

Feasibility Problem

Given closed sets $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ the feasibility problem asks

find
$$x \in \bigcap_{j=1}^{N} C_j$$
.

Many problems can be cast is this form. Three examples:

- Linear systems "Ax = b": $C_i = \{x : \langle a_i, x \rangle = b_i\}$.
- **②** Phase retrieval: $C_1 = \{f : |\hat{f}| = m \text{ a.e.}\}$ and $C_2 = \{f : f = 0 \text{ on } D\}$.
- Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility problems. They work on the following principle:

- While the intersection might be difficult to deal with directly, the individual constraint sets are sufficiently "simple".
- "Simple" means we can efficiently compute nearest points.
- Use an iterative scheme which employs nearest points to individual constraint sets at each stage, and obtain a solution in the limit.

Feasibility Problem

Given closed sets $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ the feasibility problem asks

find
$$x \in \bigcap_{j=1}^{N} C_j$$
.

Many problems can be cast is this form. Three examples:

- ① Linear systems "Ax = b": $C_j = \{x : \langle a_j, x \rangle = b_j\}$.
- **②** Phase retrieval: $C_1 = \{f : |\hat{f}| = m \text{ a.e.}\}$ and $C_2 = \{f : f = 0 \text{ on } D\}$.
- Matrix completion problems: more on this later!

Projection algorithms are a popular approach to solving feasibility problems. They work on the following principle:

- While the intersection might be difficult to deal with directly, the individual constraint sets are sufficiently "simple".
- "Simple" means we can efficiently compute nearest points.
- Use an iterative scheme which employs nearest points to individual constraint sets at each stage, and obtain a solution in the limit.

Douglas, Rachford & Peaceman

Jim Douglas Jnr (1927 –)

Henry Rachford

Donald Peaceman

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \le \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

$$P_S(x) = p \iff \langle x - p, s - p \rangle \le 0 \text{ for all } s \in S.$$

$$R_S := 2P_S - I$$
.

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \le \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

$$P_S(x) = p \iff \langle x - p, s - p \rangle \le 0 \text{ for all } s \in S.$$

$$R_S := 2P_S - I$$
.

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \le \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

$$P_S(x) = p \iff \langle x - p, s - p \rangle \le 0 \text{ for all } s \in S.$$

$$R_S := 2P_S - I$$
.

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \le \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

$$P_S(x) = p \iff \langle x - p, s - p \rangle \le 0 \text{ for all } s \in S.$$

$$R_S := 2P_S - I$$
.

Let $S \subseteq \mathcal{H}$ be non-empty. The (nearest point) projection onto S is the (set-valued) mapping,

$$P_{S}x := \left\{ s \in S : \|x - s\| \le \inf_{s \in S} \|x - s\| \right\}.$$

If S is closed and convex then projections exists uniquely with

$$P_S(x) = p \iff \langle x - p, s - p \rangle \le 0 \text{ for all } s \in S.$$

$$R_S := 2P_S - I$$
.

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1,C_2}x_n$$
 where $T_{C_1,C_2} := \frac{Id + R_{C_2}R_{C_1}}{2}$.

$$C_1 = \{x \in \mathcal{H} : ||x|| \le 1\}, \quad C_2 = \{x \in \mathcal{H} : \langle a, x \rangle = b\}.$$

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1,C_2}x_n$$
 where $T_{C_1,C_2} := \frac{Id + R_{C_2}R_{C_1}}{2}$.

$$C_1 = \{x \in \mathcal{H} : \|x\| \le 1\}, \quad C_2 = \{x \in \mathcal{H} : \langle a, x \rangle = b\}.$$

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1,C_2}x_n$$
 where $T_{C_1,C_2} := \frac{Id + R_{C_2}R_{C_1}}{2}$.

$$C_1 = \{x \in \mathcal{H} : \|x\| \le 1\}, \quad C_2 = \{x \in \mathcal{H} : \langle a, x \rangle = b\}.$$

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1,C_2}x_n$$
 where $T_{C_1,C_2} := \frac{Id + R_{C_2}R_{C_1}}{2}$.

$$C_1 = \{x \in \mathcal{H} : \|x\| \le 1\}, \quad C_2 = \{x \in \mathcal{H} : \langle a, x \rangle = b\}.$$

Given an initial point $x_0 \in \mathcal{H}$, the Douglas–Rachford method is the fixed-point iteration given by

$$x_{n+1} \in T_{C_1,C_2}x_n$$
 where $T_{C_1,C_2} := \frac{Id + R_{C_2}R_{C_1}}{2}$.

$$C_1 = \{x \in \mathcal{H} : ||x|| \le 1\}, \quad C_2 = \{x \in \mathcal{H} : \langle a, x \rangle = b\}.$$

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \quad \iff \quad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \text{Fix } T_{C_1,C_2} \qquad \Longleftrightarrow \qquad x = \frac{x + R_{C_2}R_{C_1}x}{2} \\ \Longleftrightarrow \qquad x = R_{C_2}R_{C_1}x$$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \text{Fix } T_{C_1, C_2} \qquad \Longleftrightarrow \qquad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$
 $\iff \qquad x = R_{C_2} R_{C_1} x$
 $\iff \qquad x = 2P_{C_2} R_{C_1} x - R_{C_1} x$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \qquad \Longleftrightarrow \qquad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$

$$\iff \qquad x = R_{C_2} R_{C_1} x$$

$$\iff \qquad x = 2P_{C_2} R_{C_1} x - R_{C_1} x$$

$$\iff \qquad x = 2P_{C_2} R_{C_1} x - 2P_{C_1} x + x$$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \qquad \Longleftrightarrow \qquad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$

$$\iff \qquad x = R_{C_2} R_{C_1} x$$

$$\iff \qquad x = 2P_{C_2} R_{C_1} x - R_{C_1} x$$

$$\iff \qquad x = 2P_{C_2} R_{C_1} x - 2P_{C_1} x + x$$

$$\iff \qquad P_{C_1} x = P_{C_2} R_{C_1} x$$

The same argument for the set-valued case yields:

Why Fix T_{C_1,C_2} ? Assuming single-valueness of R_{C_1} and R_{C_2} we have:

$$x \in \operatorname{Fix} T_{C_1, C_2} \qquad \Longleftrightarrow \qquad x = \frac{x + R_{C_2} R_{C_1} x}{2}$$

$$\iff \qquad x = R_{C_2} R_{C_1} x$$

$$\iff \qquad x = 2P_{C_2} R_{C_1} x - R_{C_1} x$$

$$\iff \qquad x = 2P_{C_2} R_{C_1} x - 2P_{C_1} x + x$$

$$\iff \qquad P_{C_1} x = P_{C_2} R_{C_1} x$$

$$\implies \qquad P_{C_1} x \in C_1 \cap C_2.$$

The same argument for the set-valued case yields:

Tools from Nonexpansive Mapping Theory

Let $T: \mathcal{H} \to \mathcal{H}$. Then T is:

nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in \mathcal{H}.$$

• firmly nonexpansive if

$$||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2, \quad \forall x, y \in \mathcal{H}.$$

Tools from Nonexpansive Mapping Theory

Let $T: \mathcal{H} \to \mathcal{H}$. Then T is:

nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in \mathcal{H}.$$

• firmly nonexpansive if

$$||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2, \quad \forall x, y \in \mathcal{H}.$$

Proposition (Nonexpansive properties)

The following are equivalent.

- T is firmly nonexpansive.
- I T is firmly nonexpansive.
- 2T I is nonexpansive.
- $T = \alpha I + (1 \alpha)R$, for $\alpha \in (0, 1/2]$ and some nonexpansive R.
- $\langle x y, Tx Ty \rangle \ge ||Tx Ty||^2$ for all $x, y \in \mathcal{H}$.
- Other characterisations.

Tools from Nonexpansive Mapping Theory

Let $T: \mathcal{H} \to \mathcal{H}$. Then T is:

nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in \mathcal{H}.$$

• firmly nonexpansive if

$$||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2, \quad \forall x, y \in \mathcal{H}.$$

Nonexpansive properties of projections

Let $C_1, C_2 \subseteq \mathcal{H}$ be closed and convex. Then

- $P_{C_1} := \arg\min_{c \in C_1} \| \cdot c \|$ is firmly nonexpansive.
- $R_{C_1} := 2P_{C_1} I$ is nonexpansive.
- $T_{C_1,C_2} := \frac{1}{2}(I + R_{C_2}R_{C_1})$ is firmly nonexpansive.

Nonexpansive maps are closed under composition, convex combinations, etc. Firmly nonexpansive maps need not be. E.g., Composition of two projections onto subspace in \mathbb{R}^2 (Bauschke–Borwein–Lewis, 1997).

Tools from Nonexpansive Mapping Theory (cont.)

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$||T^{n+1}x-T^nx||\to 0.$$

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

Proof. Let $z \in Fix T$ then, for any $x \in \mathcal{H}$, we have

$$||T^{n+1}x - z||^2 + ||(I - T)(T^nx)||^2$$

$$= ||T(T^nx) - Tz||^2 + ||(I - T)(T^nx) - (I - T)z||^2 \le ||T^nx - z||^2$$

Hence $\lim_{n\to\infty} \|T^nx - z\|$ exists, and thus $\|(I-T)(T^nx)\| \to 0$.

A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let $T: \mathcal{H} \to \mathcal{H}$ be nonexpansive and asymptotically regular with Fix $T \neq \emptyset$. Set $x_{n+1} = Tx_n$. Then $x_n \stackrel{\text{ve}}{\longrightarrow} x$ such that $x \in \text{Fix } T$.

Tools from Nonexpansive Mapping Theory (cont.)

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$||T^{n+1}x-T^nx||\to 0.$$

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

Proof. Let $z \in Fix T$ then, for any $x \in \mathcal{H}$, we have

$$||T^{n+1}x - z||^2 + ||(I - T)(T^nx)||^2$$

= $||T(T^nx) - Tz||^2 + ||(I - T)(T^nx) - (I - T)z||^2 \le ||T^nx - z||^2$.

Hence $\lim_{n\to\infty} \|T^nx - z\|$ exists, and thus $\|(I - T)(T^nx)\| \to 0$.

A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let $T: \mathcal{H} \to \mathcal{H}$ be nonexpansive and asymptotically regular with Fix $T \neq \emptyset$. Set $x_{n+1} = Tx_n$. Then $x_n \stackrel{w_i}{\longrightarrow} x$ such that $x \in \text{Fix } T$.

Tools from Nonexpansive Mapping Theory (cont.)

• asymptotically regular if, for all $x \in \mathcal{H}$,

$$||T^{n+1}x-T^nx||\to 0.$$

Lemma (Asymptotic regularity)

Every firmly nonexpansive mapping with at least one fixed point is asymptotically regular.

Proof. Let $z \in Fix T$ then, for any $x \in \mathcal{H}$, we have

$$||T^{n+1}x - z||^2 + ||(I - T)(T^nx)||^2$$

= $||T(T^nx) - Tz||^2 + ||(I - T)(T^nx) - (I - T)z||^2 \le ||T^nx - z||^2$.

Hence $\lim_{n\to\infty} \|T^nx - z\|$ exists, and thus $\|(I - T)(T^nx)\| \to 0$.

A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let $T: \mathcal{H} \to \mathcal{H}$ be nonexpansive and asymptotically regular with Fix $T \neq \emptyset$. Set $x_{n+1} = Tx_n$. Then $x_n \stackrel{\mathbf{w}}{=} x$ such that $x \in \text{Fix } T$.

Lemma (Demiclosedness)

Let $T: \mathcal{H} \to \mathcal{H}$ be nonexpansive and denote $x_n := T^n x_0$ for some initial point $x_0 \in \mathcal{H}$. Suppose $x_n \stackrel{w_*}{\longrightarrow} x$ and $x_n - Tx_n \to 0$. Then $x \in \text{Fix } T$.

Proof. Since *T* is nonexpansive.

$$||x - Tx||^{2} = ||x_{n} - Tx||^{2} - ||x_{n} - x||^{2} - 2\langle x_{n} - x, x - Tx \rangle$$

$$= ||x_{n} - Tx_{n}||^{2} + 2\langle x_{n} - Tx_{n}, Tx_{n} - Tx \rangle + ||Tx_{n} - Tx||^{2}$$

$$- ||x_{n} - x||^{2} - 2\langle x_{n} - x, x - Tx \rangle$$

$$\leq ||x_{n} - Tx_{n}||^{2} + 2\langle x_{n} - Tx_{n}, \underbrace{Tx_{n}}_{x_{n+1}} - Tx \rangle - 2\langle x_{n} - x, x - Tx \rangle.$$

Since $x_n \stackrel{w}{\rightharpoonup} x$ and $x_n - Tx_n \to 0$, it follows that each term tends to 0.

Lemma (Demiclosedness)

Let $T: \mathcal{H} \to \mathcal{H}$ be nonexpansive and denote $x_n := T^n x_0$ for some initial point $x_0 \in \mathcal{H}$. Suppose $x_n \stackrel{w}{\longrightarrow} x$ and $x_n - Tx_n \to 0$. Then $x \in Fix T$.

Proof. Since *T* is nonexpansive,

$$\begin{aligned} \|x - Tx\|^2 &= \|x_n - Tx\|^2 - \|x_n - x\|^2 - 2\langle x_n - x, x - Tx \rangle \\ &= \|x_n - Tx_n\|^2 + 2\langle x_n - Tx_n, Tx_n - Tx \rangle + \|Tx_n - Tx\|^2 \\ &- \|x_n - x\|^2 - 2\langle x_n - x, x - Tx \rangle \\ &\leq \|x_n - Tx_n\|^2 + 2\langle x_n - Tx_n, \underbrace{Tx_n}_{x_{n+1}} - Tx \rangle - 2\langle x_n - x, x - Tx \rangle. \end{aligned}$$

Since $x_n \stackrel{w_i}{\rightharpoonup} x$ and $x_n - Tx_n \to 0$, it follows that each term tends to 0.

Proof (Opial's Theorem). Since T is non-expansive, for any $y \in Fix T$, we have

$$||T^{n+1}x - y|| \le ||T^nx - y|| \le \dots \le ||x - y||.$$

Whence the sequence $\{x_n\}_{n\in\mathbb{N}}$ is Fejér monotone w.r.t the closed convex set Fix T. By Th. 4.5.10(iii) of Lect. I (Properties of Fejér monotone sequences) the sequence $\{x_n\}_{n\in\mathbb{N}}$ has at most one weak cluster point in Fix T. To complete the proof it suffices to show: (i) $\{x_n\}_{n\in\mathbb{N}}$ has at least one cluster point; and (ii) that every cluster point of $\{x_n\}_{n\in\mathbb{N}}$ is contained in Fix T.

Indeed, as $\{x_n\}$ is bounded, it contains at least one weak cluster point. Let z be any weak cluster point and denote by $\{x_{n_k}\}_{k\in\mathbb{N}}$ a subsequence weakly convergent to z. Since T is asymptotically regular,

$$||x_{n_k}-Tx_{n_k}||\to 0.$$

By the Demiclosedness Lemma, $z \in Fix T$. This completes the proof. •

Proof (Opial's Theorem). Since T is non-expansive, for any $y \in Fix T$, we have

$$||T^{n+1}x - y|| \le ||T^nx - y|| \le \dots \le ||x - y||.$$

Whence the sequence $\{x_n\}_{n\in\mathbb{N}}$ is Fejér monotone w.r.t the closed convex set Fix T. By Th. 4.5.10(iii) of Lect. I (Properties of Fejér monotone sequences) the sequence $\{x_n\}_{n\in\mathbb{N}}$ has at most one weak cluster point in Fix T. To complete the proof it suffices to show: (i) $\{x_n\}_{n\in\mathbb{N}}$ has at least one cluster point; and (ii) that every cluster point of $\{x_n\}_{n\in\mathbb{N}}$ is contained in Fix T.

Indeed, as $\{x_n\}$ is bounded, it contains at least one weak cluster point. Let z be any weak cluster point and denote by $\{x_{n_k}\}_{k\in\mathbb{N}}$ a subsequence weakly convergent to z. Since T is asymptotically regular,

$$||x_{n_k}-Tx_{n_k}||\to 0.$$

By the Demiclosedness Lemma, $z \in Fix T$. This completes the proof. •

Proof (Opial's Theorem). Since T is non-expansive, for any $y \in Fix T$, we have

$$||T^{n+1}x - y|| \le ||T^nx - y|| \le \dots \le ||x - y||.$$

Whence the sequence $\{x_n\}_{n\in\mathbb{N}}$ is Fejér monotone w.r.t the closed convex set Fix T. By Th. 4.5.10(iii) of Lect. I (Properties of Fejér monotone sequences) the sequence $\{x_n\}_{n\in\mathbb{N}}$ has at most one weak cluster point in Fix T. To complete the proof it suffices to show: (i) $\{x_n\}_{n\in\mathbb{N}}$ has at least one cluster point; and (ii) that every cluster point of $\{x_n\}_{n\in\mathbb{N}}$ is contained in Fix T.

Indeed, as $\{x_n\}$ is bounded, it contains at least one weak cluster point. Let z be any weak cluster point and denote by $\{x_{n_k}\}_{k\in\mathbb{N}}$ a subsequence weakly convergent to z. Since T is asymptotically regular,

$$||x_{n_k}-Tx_{n_k}||\to 0.$$

By the Demiclosedness Lemma, $z \in Fix T$. This completes the proof.

The basic result which we have proven is the following.

Theorem (Douglas-Rachford '56, Lions-Mercier '79, Eckstein-Bertsekas '92, ...)

Suppose $C_1, C_2 \subseteq \mathcal{H}$ are closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{I + R_{C_2} R_{C_1}}{2}$.

Then (x_n) converges weakly to some $x \in Fix T_{C_1,C_2}$ with $P_{C_1}x \in C_1 \cap C_2$.

Proof. Since $C_1 \cap C_2 \subseteq \text{Fix } T_{C_1,C_2}$, the latter is non-empty. Thus T_{C_1,C_2} is (firmly) nonexpansive with a fixed point, hence asymptotically regular by the previous lemma. The result follows from Opial's Theorem.

- If the intersection is empty the iterates diverge: $||x_n|| \to \infty$.
- Bauschke–Combettes–Luke (2004): Thorough analysis of convex case.
- Hesse et al. & Bauschke et al. (2014): Convergence is strong for subspaces, and the rate is linear whenever their sum is closed.
- Phan (arXiv:1401.6509v3): If dim $\mathcal{H} < \infty$ and ri $C_1 \cap$ ri $C_2 \neq \emptyset$ then convergence in linear.

The basic result which we have proven is the following.

Theorem (Douglas-Rachford '56, Lions-Mercier '79, Eckstein-Bertsekas '92, ...)

Suppose $C_1, C_2 \subseteq \mathcal{H}$ are closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{I + R_{C_2} R_{C_1}}{2}$.

Then (x_n) converges weakly to some $x \in \text{Fix } T_{C_1,C_2}$ with $P_{C_1}x \in C_1 \cap C_2$.

Proof. Since $C_1 \cap C_2 \subseteq \operatorname{Fix} T_{C_1,C_2}$, the latter is non-empty. Thus T_{C_1,C_2} is (firmly) nonexpansive with a fixed point, hence asymptotically regular by the previous lemma. The result follows from Opial's Theorem.

- If the intersection is empty the iterates diverge: $||x_n|| \to \infty$.
- Bauschke-Combettes-Luke (2004): Thorough analysis of convex case.
- Hesse et al. & Bauschke et al. (2014): Convergence is strong for subspaces, and the rate is linear whenever their sum is closed.
- Phan (arXiv:1401.6509v3): If dim $\mathcal{H}<\infty$ and ri $C_1\cap$ ri $C_2\neq\emptyset$ then convergence in linear.

The basic result which we have proven is the following.

Theorem (Douglas–Rachford '56, Lions–Mercier '79, Eckstein–Bertsekas '92, ...)

Suppose $C_1, C_2 \subseteq \mathcal{H}$ are closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := T_{C_1, C_2} x_n$$
 where $T_{C_1, C_2} := \frac{I + R_{C_2} R_{C_1}}{2}$.

Then (x_n) converges weakly to some $x \in \text{Fix } T_{C_1,C_2}$ with $P_{C_1}x \in C_1 \cap C_2$.

Proof. Since $C_1 \cap C_2 \subseteq \operatorname{Fix} T_{C_1,C_2}$, the latter is non-empty. Thus T_{C_1,C_2} is (firmly) nonexpansive with a fixed point, hence asymptotically regular by the previous lemma. The result follows from Opial's Theorem.

- If the intersection is empty the iterates diverge: $||x_n|| \to \infty$.
- Bauschke-Combettes-Luke (2004): Thorough analysis of convex case.
- Hesse et al. & Bauschke et al. (2014): Convergence is strong for subspaces, and the rate is linear whenever their sum is closed.
- Phan (arXiv:1401.6509v3): If dim $\mathcal{H} < \infty$ and ri $C_1 \cap$ ri $C_2 \neq \emptyset$ then convergence in linear.

The following generalization include potentially empty intersections. Let

$$V:=\overline{C_1-C_2}, \qquad v:=P_V(0), \qquad F:=C_1\cap (C_2+v).$$

Theorem (Bauschke–Combettes–Luke 2004)

Suppose $C_1, C_2 \subseteq \mathcal{H}$ are closed and convex. Given $x_0 \in \mathcal{H}$ define $x_{n+1} := T_{C_2, C_1} x_n$. Then the following hold.

- (a) $x_n x_{n+1} = P_{C_1}x_n P_{C_2}R_{C_1} \rightarrow v$ and $P_{C_1}x_n P_{C_2}P_{C_1} \rightarrow v$.
- (b) If $C_1 \cap C_2 \neq \emptyset$ then (x_n) converges weakly to a point in

Fix
$$T_{C_1,C_2} = C_1 \cap C_2 + N_V(0)$$
;

otherwise, $||x_n|| \to +\infty$.

- (c) Exactly one of the following alternatives holds:
 - (i) $F = \emptyset, ||P_{C_1}x_n|| \to +\infty$ and $||P_{C_2}P_{C_1}x_n|| \to +\infty$.
 - (ii) $F \neq \emptyset$, the sequence $(P_{C_1} \times_n)$ and $(P_{C_2} P_{C_1} \times_n)$ are bounded and their weak cluster points are best approximation pairs relative to (C_1, C_2) .

The Douglas-Rachford Algorithm: Moment Problem

Recall the moment problem from Lecture I for linear map $A: X \to \mathbb{R}^M$ and a point $y \in \mathbb{R}^M$ has constraints:

$$C_1 := \mathcal{H}^+, \qquad C_2 := \{x \in \mathcal{H} : A(x) = y\}.$$

The following theorem gives conditions for norm convergence.

Theorem (Borwein-Sims-Tam 2015)

Let \mathcal{H} be a Hilbert lattice, $C_1 := \mathcal{H}^+$, C_2 be a closed affine subspace with finite codimensions, and $C_1 \cap C_2 \neq \emptyset$. For $x_0 \in \mathcal{H}$ define $x_{n+1} = T_{C_1,C_2}x_n$. Let Q denote the projection onto the subspace parallel to C_2 . Then (x_n) converges in norm whenever:

- (a) $C_1 \cap \text{range}(Q) = \{0\},\$
- (b) $Q(C_2-C_1)\subseteq C_1\cup (-C_1)$ and $Q(C_1)\subseteq C_1$.
- (c) C_2 has codimension 1.

For codimension greater than 1?

The Douglas-Rachford Algorithm: Moment Problem

Recall the moment problem from Lecture I for linear map $A: X \to \mathbb{R}^M$ and a point $y \in \mathbb{R}^M$ has constraints:

$$C_1 := \mathcal{H}^+, \qquad C_2 := \{x \in \mathcal{H} : A(x) = y\}.$$

The following theorem gives conditions for norm convergence.

Theorem (Borwein-Sims-Tam 2015)

Let \mathcal{H} be a Hilbert lattice, $C_1:=\mathcal{H}^+$, C_2 be a closed affine subspace with finite codimensions, and $C_1\cap C_2\neq\emptyset$. For $x_0\in\mathcal{H}$ define $x_{n+1}=T_{C_1,C_2}x_n$. Let Q denote the projection onto the subspace parallel to C_2 . Then (x_n) converges in norm whenever:

- (a) $C_1 \cap \text{range}(Q) = \{0\},\$
- (b) $Q(C_2 C_1) \subseteq C_1 \cup (-C_1)$ and $Q(C_1) \subseteq C_1$.
- (c) C_2 has codimension 1.

For codimension greater than 1?

Pierra's Product Space Reformulation

For our constraint sets $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ we define

$$\mathbf{D} := \{(x,x,\ldots,x) \in \mathcal{H}^N : x \in \mathcal{H}\}, \quad \mathbf{C} := \prod_{j=1}^N C_j.$$

We now have an equivalent two set feasibility problem since

$$x \in \bigcap_{j=1}^{N} C_j \subseteq \mathcal{H} \iff (x, x, \dots, x) \in \mathbf{D} \cap \mathbf{C} \subseteq \mathcal{H}^N.$$

Moreover the projections onto the new sets can be computed whenever $P_{C_1}, P_{C_2}, \dots, P_{C_N}$. Denote $\mathbf{x} = (x_1, x_2, \dots, x_N)$ they are given by

$$P_{\mathbf{D}}\mathbf{x} = \left(\frac{1}{N}\sum_{j=1}^{N}x_{j}\right)^{N}$$
 and $P_{\mathbf{C}}\mathbf{x} = \prod_{j=1}^{N}P_{C_{j}}x_{j}$.

Pierra's Product Space Reformulation

For our constraint sets $C_1, C_2, \dots, C_N \subseteq \mathcal{H}$ we define

$$\mathbf{D} := \{(x, x, \dots, x) \in \mathcal{H}^N : x \in \mathcal{H}\}, \quad \mathbf{C} := \prod_{j=1}^N C_j.$$

We now have an equivalent two set feasibility problem since

$$x \in \bigcap_{j=1}^{N} C_j \subseteq \mathcal{H} \iff (x, x, \dots, x) \in \mathbf{D} \cap \mathbf{C} \subseteq \mathcal{H}^N.$$

Moreover the projections onto the new sets can be computed whenever $P_{C_1}, P_{C_2}, \dots, P_{C_N}$. Denote $\mathbf{x} = (x_1, x_2, \dots, x_N)$ they are given by

$$P_{\mathbf{D}}\mathbf{x} = \left(\frac{1}{N}\sum_{j=1}^{N}x_{j}\right)^{N}$$
 and $P_{\mathbf{C}}\mathbf{x} = \prod_{j=1}^{N}P_{C_{j}}x_{j}$.

A Many-set Douglas-Rachford Scheme?

Is there a Douglas–Rachford variant which can be used to solve the problem in the original space? *i.e.*, Without recourse to a product space formulation?

An obvious candidate is the following: Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} = T_{A,B,C} x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

- (x_n) converges weakly to a point $x \in Fix T_{A,B,C}$.
- Unfortunately, it is possible that $P_A x, P_B x, P_C x \notin A \cap B \cap C$.

A Many-set Douglas-Rachford Scheme?

Is there a Douglas–Rachford variant which can be used to solve the problem in the original space? *i.e.*, Without recourse to a product space formulation?

An obvious candidate is the following: Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

- (x_n) converges weakly to a point $x \in Fix T_{A,B,C}$.
- Unfortunately, it is possible that $P_A x, P_B x, P_C x \notin A \cap B \cap C$.

A Many-set Douglas-Rachford Scheme?

Is there a Douglas–Rachford variant which can be used to solve the problem in the original space? *i.e.*, Without recourse to a product space formulation?

An obvious candidate is the following: Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

- (x_n) converges weakly to a point $x \in Fix T_{A,B,C}$.
- Unfortunately, it is possible that $P_A x, P_B x, P_C x \notin A \cap B \cap C$.

A Many-set Douglas-Rachford Scheme?

Is there a Douglas–Rachford variant which can be used to solve the problem in the original space? *i.e.*, Without recourse to a product space formulation?

An obvious candidate is the following: Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

- (x_n) converges weakly to a point $x \in \text{Fix } T_{A,B,C}$.
- Unfortunately, it is possible that P_Ax , P_Bx , $P_Cx \notin A \cap B \cap C$.

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1) \& 2 \le \alpha \le \infty$. Define constraints:

$$A := \{\lambda(0,1) : |\lambda| \le \alpha\},\$$

$$B := \{\lambda(\sqrt{3},1) : |\lambda| \le \alpha\},\$$

$$C := \{\lambda(-\sqrt{3},1) : |\lambda| \le \alpha\}.$$

Then $A \cap B \cap C = \{0\}$

We have $x_0 \in \text{Fix } T_{A,B,C}$. However,

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$A := \{\lambda(0,1) : |\lambda| \le \alpha\},\$$

$$B := \{\lambda(\sqrt{3},1) : |\lambda| \le \alpha\},\$$

$$C := \{\lambda(-\sqrt{3},1) : |\lambda| \le \alpha\}.$$

Then $A \cap B \cap C = \{0\}$.

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$A := \{\lambda(0,1) : |\lambda| \le \alpha\},\$$

$$B := \{\lambda(\sqrt{3},1) : |\lambda| \le \alpha\},\$$

$$C := \{\lambda(-\sqrt{3},1) : |\lambda| \le \alpha\}.$$

Then $A \cap B \cap C = \{0\}$.

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$A := \{\lambda(0,1) : |\lambda| \le \alpha\},\$$

$$B := \{\lambda(\sqrt{3},1) : |\lambda| \le \alpha\},\$$

$$C := \{\lambda(-\sqrt{3},1) : |\lambda| \le \alpha\}.$$

Then $A \cap B \cap C = \{0\}$.

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$A := \{\lambda(0,1) : |\lambda| \le \alpha\},\$$

$$B := \{\lambda(\sqrt{3},1) : |\lambda| \le \alpha\},\$$

$$C := \{\lambda(-\sqrt{3},1) : |\lambda| \le \alpha\}.$$

Then $A \cap B \cap C = \{0\}$.

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$A := \{\lambda(0,1) : |\lambda| \le \alpha\},\$$

$$B := \{\lambda(\sqrt{3},1) : |\lambda| \le \alpha\},\$$

$$C := \{\lambda(-\sqrt{3},1) : |\lambda| < \alpha\}.$$

Then $A \cap B \cap C = \{0\}$.

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$A := \{\lambda(0,1) : |\lambda| \le \alpha\},\$$

$$B := \{\lambda(\sqrt{3},1) : |\lambda| \le \alpha\},\$$

$$C := \{\lambda(-\sqrt{3},1) : |\lambda| \le \alpha\}.$$

Then $A \cap B \cap C = \{0\}$.

$$x_{n+1} = T_{A,B,C}x_n$$
 where $T_{A,B,C} = \frac{I + R_C R_B R_A}{2}$.

Let $x_0 = (-\sqrt{3}, -1)$ & $2 \le \alpha \le \infty$. Define constraints:

$$A := \{\lambda(0,1) : |\lambda| \le \alpha\},\$$

$$B := \{\lambda(\sqrt{3},1) : |\lambda| \le \alpha\},\$$

$$C := \{\lambda(-\sqrt{3},1) : |\lambda| < \alpha\}.$$

Then $A \cap B \cap C = \{0\}$.

A Common Framework

Theorem (Borwein-Tam 2013)

Let $C_1, \ldots, C_N \subseteq \mathcal{H}$ be closed convex sets with nonempty intersection, let $T_j: \mathcal{H} \to \mathcal{H}$ and denote $T:=T_M \ldots T_2 T_1$. Suppose the following three properties hold.

- (i) T is nonexpansive and asymptotically regular,
- (ii) Fix $T = \bigcap_{j=1}^{M} \text{Fix } T_j \neq \emptyset$,
- (iii) $P_{C_j} \operatorname{Fix} T_j \subseteq C_{j+1}$ for each $j = 1, \dots, N$.

Then, for any $x_0 \in \mathcal{H}$, the sequence $x_n := T^n x_0$ converges weakly to some x such that $P_{C_1} x = P_{C_2} x = \cdots = P_{C_N} x$. In particular, $P_{C_1} x \in \bigcap_{i=1}^N C_i$.

Proof sketch. Denote $C_{N+1} := C_1$.

- ① (i) + (ii) \Longrightarrow (x_n) converges weakly to some $x \in \cap \text{Fix } T$.
- (iii) + convex projection inequality yields

$$\langle x - P_{C_{i+1}}x, P_{C_i}x - P_{C_{i+1}}x \rangle \leq 0$$
 for all j

A Common Framework

Theorem (Borwein-Tam 2013)

Let $C_1, \ldots, C_N \subseteq \mathcal{H}$ be closed convex sets with nonempty intersection, let $T_j: \mathcal{H} \to \mathcal{H}$ and denote $T:=T_M \ldots T_2 T_1$. Suppose the following three properties hold.

- (i) T is nonexpansive and asymptotically regular,
- (ii) Fix $T = \bigcap_{j=1}^{M} \text{Fix } T_j \neq \emptyset$,
- (iii) P_{C_j} Fix $T_j \subseteq C_{j+1}$ for each j = 1, ..., N.

Then, for any $x_0 \in \mathcal{H}$, the sequence $x_n := T^n x_0$ converges weakly to some x such that $P_{C_1} x = P_{C_2} x = \cdots = P_{C_N} x$. In particular, $P_{C_1} x \in \bigcap_{i=1}^N C_i$.

Proof sketch. Denote $C_{N+1} := C_1$.

- **1** (i) + (ii) \Longrightarrow (x_n) converges weakly to some $x \in \cap \text{Fix } T$.
- (iii) + convex projection inequality yields

$$\langle x - P_{C_{i+1}}x, P_{C_i}x - P_{C_{i+1}}x \rangle \leq 0$$
 for all j

A Common Framework

To complete the proof observe

$$\frac{1}{2} \sum_{j=1}^{N} \|P_{C_{j+1}}x - P_{C_{j}}x\|^{2}$$

$$= \langle x, 0 \rangle + \frac{1}{2} \sum_{j=1}^{N} (\|P_{C_{j+1}}x\|^{2} - 2\langle P_{C_{j+1}}x, P_{C_{j}}x \rangle + \|P_{C_{j}}x\|^{2})$$

$$= \left\langle x, \sum_{j=1}^{N} (P_{C_{j}}x - P_{C_{j+1}}x) \right\rangle - \sum_{j=1}^{N} \langle P_{C_{j+1}}x, P_{C_{j}}x \rangle + \sum_{j=1}^{N} \|P_{C_{j+1}}x\|^{2}$$

$$= \sum_{j=1}^{N} \langle x, (P_{C_{j}}x - P_{C_{j+1}}x) \rangle - \sum_{j=1}^{N} \langle P_{C_{j+1}}x, P_{C_{j}}x - P_{C_{j+1}}x \rangle$$

$$= \sum_{j=1}^{N} \langle x - P_{C_{j+1}}x, P_{C_{j}}x - P_{C_{j+1}}x \rangle \leq 0.$$

Composition of DR-Operators

We require one final theorem.

Theorem (Bauschke et al. 2012)

Suppose that each $T_i: \mathcal{H} \to \mathcal{H}$ is firmly nonexpansive and asymptotically regular. Then $T_m T_{m-1} \dots T_1$ is also asymptotically regular.

The proof can be found in:

H.H. Bauschke, V. Martin-Marquez, S.M. Moffat, and X. Wang. Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular, *Fixed Point Theory and Applications* 2012, 2012:53.

Composition of DR-Operators

We require one final theorem.

Theorem (Bauschke et al. 2012)

Suppose that each $T_i:\mathcal{H}\to\mathcal{H}$ is firmly nonexpansive and asymptotically regular. Then $T_mT_{m-1}\ldots T_1$ is also asymptotically regular.

The proof can be found in:

H.H. Bauschke, V. Martin-Marquez, S.M. Moffat, and X. Wang.

Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular, *Fixed Point Theory and Applications* 2012, 2012:53.

Cyclic Douglas-Rachford Method

Corollary (Borwein-Tam 2013)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \underbrace{(T_{C_N,C_1}T_{C_{N-1},C_N}\dots T_{C_2,C_3}T_{C_1,C_2})}_{=:T_{[12\dots N]}}x_n \text{ where } T_{C_j,C_{j+1}} = \frac{I + R_{C_{j+1}}R_{C_j}}{2}.$$

Then (x_n) converges weakly to a point x such that $P_{C_1}x = \cdots = P_{C_N}x$.

- Borwein-Tam (arXiv:1310.2195): Analysed behaviour for empty intersections.
- Using Hundal (2004): There exists a hyperplane and convex cone with nonempty intersection such that convergence is not strong.
- Bauschke–Noll–Phan (2014): If dim $\mathcal{H} < \infty$ and $\bigcap_{j=1}^{N} \operatorname{ri} C_j \neq \emptyset$ then convergence is linear.
- Bauschke–Noll–Phan (2014): If Fix $T_{[12...N]}$ is bounded linearly regular and $C_j + C_{j+1}$ is closed, for each j, then convergence is linear.

Three Methods: An Example

Consider the following examples with $C_2 := 0 \times \mathbb{R}$, and

$$C_1 := \operatorname{epi}(\exp(\cdot) + 1) \text{ or } \operatorname{epi}((\cdot)^2 + 1).$$

Averaged Douglas-Rachford Method

The following variant lends itself to parallel implementation.

Corollary (Borwein-Tam 2013)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \frac{1}{N} \left(\sum_{j=1}^{N} T_{C_j, C_{j+1}} \right) x_n$$
 where $T_{C_j, C_{j+1}} = \frac{I + R_{C_{j+1}} R_{C_j}}{2}$.

Then (x_n) converges weakly to a point x such that $P_{C_1}x = \cdots = P_{C_N}x$.

Proof sketch. For $x_0 \in \mathcal{H}$, set $\mathbf{x}_0 = (x_0, \dots, x_0) \in \mathcal{H}^N$. Apply the theorem to the product-space iteration

$$\mathbf{x}_{n+1} = P_D \left(\prod_{i=1}^N T_{C_i, C_{i+1}} \right) \mathbf{x}_n \in D \subseteq \mathcal{H}^N.$$

Averaged Douglas-Rachford Method

The following variant lends itself to parallel implementation.

Corollary (Borwein-Tam 2013)

Let $C_1,C_2,\ldots,C_N\subseteq\mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0\in\mathcal{H}$ define

$$x_{n+1} := \frac{1}{N} \left(\sum_{j=1}^{N} T_{C_j, C_{j+1}} \right) x_n$$
 where $T_{C_j, C_{j+1}} = \frac{I + R_{C_{j+1}} R_{C_j}}{2}$.

Then (x_n) converges weakly to a point x such that $P_{C_1}x = \cdots = P_{C_N}x$.

Proof sketch. For $x_0 \in \mathcal{H}$, set $\mathbf{x}_0 = (x_0, \dots, x_0) \in \mathcal{H}^N$. Apply the theorem to the product-space iteration

$$\mathbf{x}_{n+1} = P_D \left(\prod_{i=1}^N T_{C_i, C_{i+1}} \right) \mathbf{x}_n \in D \subseteq \mathcal{H}^N.$$

Cyclically Anchored Douglas-Rachford Method

Choose the first set C_1 to be the anchor set, and think of

$$\bigcap_{j=1}^N C_j = C_1 \cap \left(\bigcap_{j=2}^N C_j\right).$$

Theorem (Bauschke-Noll-Phan 2014)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \prod_{i=2}^{N} T_{C_1, C_j} x_n$$
 where $T_{C_1, C_j} = \frac{I + R_{C_j} R_{C_1}}{2}$.

Then (x_n) converges weakly to a point x such that $P_{C_1}x \in \bigcap_{i=1}^N C_i$.

- Bauschke–Noll–Phan (2014): If dim $\mathcal{H} < \infty$ and $\bigcap_{j=1}^{N} \operatorname{ri} C_j \neq \emptyset$ then convergence is linear.
- Bauschke–Noll–Phan (2014): For subspaces, if Fix T_{C_1,C_j} is bounded linearly regular and $C_1 + C_j$ is closed then convergence is linear.

Averaged Anchored Douglas-Rachford Method

The scheme also has a parallel counterpart:

Theorem

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \frac{1}{N-1} \left(\sum_{j=1}^{N} T_{C_1, C_j} \right) x_n$$
 where $T_{C_1, C_j} = \frac{I + R_{C_j} R_{C_i}}{2}$.

Then (x_n) converges weakly to a point x such that $P_{C_1}x \in \bigcap_{j=1}^N C_j$.

Proof sketch. Use the product space (as we did for the averaged DR iteration) up the iteration:

$$\mathbf{x}_{n+1} = P_D \left(\prod_{i=1}^N T_{C_1, C_i} \right) \mathbf{x}_n \in D \subseteq \mathcal{H}^{N-1}.$$

Averaged Anchored Douglas-Rachford Method

The scheme also has a parallel counterpart:

Theorem

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with non-empty intersection. Given $x_0 \in \mathcal{H}$ define

$$x_{n+1} := \frac{1}{N-1} \left(\sum_{j=1}^{N} T_{C_1, C_j} \right) x_n$$
 where $T_{C_1, C_j} = \frac{I + R_{C_j} R_{C_i}}{2}$.

Then (x_n) converges weakly to a point x such that $P_{C_1}x \in \bigcap_{j=1}^N C_j$.

Proof sketch. Use the product space (as we did for the averaged DR iteration) up the iteration:

$$\mathbf{x}_{n+1} = P_D\left(\prod_{i=1}^N T_{C_1,C_i}\right)\mathbf{x}_n \in D \subseteq \mathcal{H}^{N-1}.$$

Commentary and Open Questions

- The (classical) Douglas—Rachford method better than theory suggests performance on non-convex problems. Consequently many variants and extensions have recently been proposed.
- Even in the convex setting there are many subtleties and open questions.
 - Norm convergence for realistic moment problems with codimension greater than 1?
- Experimental comparison of the variants needed.

Exercises

- **Q** Let $T_j: \mathcal{H} \to \mathcal{H}$ be firmly nonexpansive, for $j=1,\ldots,r$, and define $T:=T_r\ldots T_2$ T_1 . If Fix $T\neq\emptyset$ show that T is asymptotically regular.
- Show that the cyclic DR method becomes MAP in certain cases. Hence find an example where convergence in cyclic DR is only weak.
- (Hard) Prove or disprove: The Douglas-Rachford algorithm converges in norm for the moment problem when the affine set has codimension 2.

References

H.H. Bauschke, P.L. Combettes & D.R. Luke. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. *J. Approx. Theory* 127(2):178–192 (2004).

H.H. Bauschke, J.Y. Cruz, T.T.A. Nghia, H.M. Phan & W. Wang. The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 185:63–79 (2014).

H.H. Bauschke, D. Noll, H.M. Phan. Linear and strong convergence of algorithms involving averaged nonexpansive operators. *J. Math. Anal. and Appl.*, 421(1):1–20 (2014).

J.M. Borwein, B. Sims & M.K. Tam. Norm convergence of realistic projection and reflection methods. *Optim.*, 64(1):161–178 (2015).

J.M. Borwein & M.K. Tam. A cyclic Douglas–Rachford iteration scheme. *J. Optim. Theory Appl.*, 160(1):1–29 (2014). http://arxiv.org/abs/1303.1859.

J.M. Borwein & M.K. Tam. The cyclic Douglas–Rachford method for inconsistent feasibility problems. *J. Nonlinear and Convex Anal.*, to appear. http://arxiv.org/abs/1310.2195.

R. Hesse, D.R. Luke & P. Neumann. Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility. *IEEE Trans. Sign. Proc.*, 62(1):4868–4881 (2014).

 ${\sf H.M.\ Phan.\ Linear\ convergence\ of\ the\ Douglas-Rachford\ method\ for\ two\ closed\ sets.}} \ arXiv:1401.6509.$

Many resources available at: