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Matrix Completion Preliminaries

Many successful non-convex applications of the Douglas–Rachford method
can be considered as matrix completion problems (a well studied topic).

In the remainder of this series, we shall focus on recent successful
applications of the method to a variety of (real) matrix reconstruction
problems.

In particular, consider matrix completion in the context of:

1 Positive semi-definite matrices.

2 Stochastic matrices.

3 Euclidean distance matrices, esp. those in protein reconstruction.

4 Hadamard matrices together with their specialisations.

5 Nonograms – a Japanese number “painting” game.

6 Sudoku – a Japanese number game.

The framework is flexible and there are many other actual and potential
applications. Our exposition will highlight the importance of the model.
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Matrix Completion

From herein, we consider H = Rm×n equipped with the trace inner
product and induced (Frobenius) norm:

〈A,B〉 := tr(ATB), ‖A‖F :=
√

tr(ATA) =

√√√√ n∑
j=1

m∑
i=1

a2
ij .

A partial matrix is an m × n array for which only entries in certain
locations are known.

A completion of the partial matrix A = (aij) ∈ Rm×n, is a matrix
B = (bij) ∈ Rm×n such that if aij is specified then bij = aij .

Abstractly matrix completion is the following:

Given a partial matrix, find a completion which
belongs to some prescribed family of matrices.
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Matrix Completion: Example

Suppose the partial matrix D = (Dij) ∈ R4×4 is known to contains the
pair-wise distances between four points x1, . . . , x4 ∈ R2. That is,

Dij = ‖xi − xj‖2.

D =


0 3.1 ? ?

3.1 0 ? ?
? ? 0 4.3
? ? 4.3 0



??
?

⇐
=

D =


0 3.1 2.0 5

3.1 0 4.2 4.1
2.0 4.2 0 4.3
5 4.1 4.3 0



x1

x2

x3

x4

four points in R2

−→ Reconstruct D from known entries and a priori information.
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Matrix Completion Preliminaries

It is natural to formulate matrix completions as the feasibility problem:

find X ∈
N⋂
i=1

Ci ⊆ Rm×n.

Let A be the partial matrix to be completed. We (mostly) choose
C1 to be the set of all matrix completions of A.
C2, . . . ,CN s.t. their intersection equals the prescribed matrix family.

Let Ω denote the set of indices for the entry in A is known. Then

C1 := {X ∈ Rm×n : Xij = Aij for all (i , j) ∈ Ω}.

The projection of X ∈ Rm×n onto C1 is given pointwise by

PC1 (X )ij =

{
Aij , if (i , j) ∈ Ω,

Xij , otherwise.

The remainder of the talk will focus on choosing C2, . . . ,CN .
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Positive Semi-Definite Matrices

Denote the symmetric matrices by Sn, and the positive semi-definite
matrices by Sn+. Our second constraint set is

C2 := Sn+ = {X ∈ Rn×n : X = XT , yTXy ≥ 0 for all y ∈ Rn}.

The matrix X is a PSD completion of A if and only if X ∈ C1 ∩ C2.

Theorem (Higham 1986)

For any X ∈ Rn×n, define Y = (X + XT )/2 and let Y = UP be a polar
decomposition of Y (i.e., U unitary, P ∈ Sn+.). Then

PC2 (X ) =
Y + P

2
.

An important class of PSD matrices are the correlation matrices.
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Positive Semi-Definite Matrices: Correlation Matrices

For random variables X1,X2, . . . ,Xn, the ij-th entry of the corresponding
correlation matrix contains the correlation between Xi and Xj . This is
incorporated into C1 by enforcing that

(i , i) ∈ Ω with Aii = 1 for i = 1, 2, . . . , n. (1)

Moreover, whenever (1) holds for a matrix its entries are necessarily
contained in [−1, 1].
Apply this formulation for different starting points yields:

X0 := Y . X0 := 1
2 (Y + Y T ) ∈ S5. X0 := YY T ∈ S5.

Figure. Distribution of entries for correlation matrices generated by
choosing different initial points. Y is a random matrix in [−1, 1]5×5.

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Stochastic matrices

Recall that a matrix A = (Aij) ∈ Rm×n is said to be doubly stochastic if

m∑
i=1

Aij =
n∑

j=1

Aij = 1,Aij ≥ 0. (2)

These matrices describe the transitions of a Markov chain (in this case
m = n), amongst other things. We use the following constraint sets

C2 :=

{
X ∈ Rm×n|

m∑
i=1

Xij = 1 for j = 1, . . . , n

}
,

C3 :=

X ∈ Rm×n|
n∑

j=1

Xij = 1 for i = 1, . . . ,m

 ,

C4 := {X ∈ Rm×n|Xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n}.

The matrix X is a double stochastic matrix completing A if and only if

X ∈ C1 ∩ C2 ∩ C3 ∩ C4.
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Stochastic matrices

C2 :=

{
X ∈ Rm×n|

m∑
i=1

Xij = 1 for j = 1, . . . , n

}
,

C4 := {X ∈ Rm×n|Xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n}.

Denote e = (1, 1, . . . , 1) ∈ Rm. Since C2 applies to each column
independently, a column-wise formula for PC2 is given by

PE (x) = x +
1

m

(
1−

m∑
i=1

xj

)
e where E := {x ∈ Rm : eT x = 1}.

The projection of X onto C4 is given pointwise by

PC4 (X )ij = max{0,Xij}.

Singly stochastic matrix completion can be consider by dropping C3.

Related work of Thakouda applies Dykstra’s algorithm to a two set
model. The corresponding projections are less straight-forward.
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Hadamard Matrices

A matrix H = (Hij) ∈ {−1, 1}n×n is said to be a Hadamard matrix of
order n if 1

HTH = nI .

A classical result of Hadamard asserts that Hadamard matrices exist only
if n = 1, 2 or a multiple of 4. For orders 1 and 2, such matrices are easy
to find. For example, [

1
]
,

[
1 −1
1 1

]
.

The (open) Hadamard conjecture is concerned with the converse:

There exists a Hadamard matrices of order 4n for all n ∈ N.

1There are many equivalent characterizations and many local experts.
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Hadamard Matrices

Consider now the problem of finding a Hadamard matrix of a given order
– an important completion problem with structure restriction but no fixed
entries. We use the following constraint sets:

C1 := {X ∈ Rn×n|Xij = ±1 for i , j = 1, . . . , n},
C2 := {X ∈ Rn×n|XTX = nI}.

Then X is a Hadamard matrix if and only if X ∈ C1 ∩ C2.

The projection of X on C1 is given by pointwise rounding to ±1.

Proposition (A projection onto C2)

Let X = USV T be a singular value decomposition. Then

√
nUV T ∈ PC2 (X ).
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Hadamard Matrices

Let H1 and H2 be Hadamard matrices. We say H1 are H2 are:

Distinct if H1 6= H2,

Equivalent if H2 can be obtained from H1 by performing row/column
permutations, and/or multiplying rows/columns by −1.

For order 4n:

Number of Distinct Hadamard matrices is OEIS A206712:

768, 4954521600, 20251509535014912000, ...

Number of Inequivalent Hadamard matrices is OEIS A00729:

1, 1, 1, 1, 5, 3, 60, 487, 13710027, ...

With increasing order, the number of Hadamard matrices is a faster than
exponentially decreasing proportion of total number of ±1–matrices
(there are 2n2 ±1–matrices or order n).
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Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1

12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Checking if two Hadamard matrices are equivalent can be cast as a
problem of graph isomorphism (McKay ’79).

In Sage use is isomorphic(graph1,graph2).
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Hadamard Matrices

We give an alternative formulation. Define:

C1 := {X ∈ Rn×n|Xij = ±1 for i , j = 1, . . . , n},
C3 := {X ∈ Rn×n|XTX = ‖X‖F I}.

Then X is a Hadamard matrix if and only if X ∈ C1 ∩ C2 = C1 ∩ C3.

Proposition (A projection onto C3)

Let X = USV T be a singular value decomposition. Then√
‖X‖FUV T ∈ PC3 (X ).
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Hadamard Matrices

Table: Number of Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1

12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Order
C1 ∩ C3 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1970 505 8 1
4 0.2647 921 541 1
8 0.0117 1000 1000 1

12 0.8337 1000 1000 1
16 11.7096 16 16 4
20 22.6034 0 0 0

A more obvious formulation is can be less effective.
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Skew-Hadamard Matrices

Recall that a matrix X ∈ Rn×n is skew-symmetric if XT = −X . A
skew-Hadamard matrix is a Hadamard matrix H such that (I − H) is
skew-symmetric. That is,

H + HT = 2I .

Skew-Hadamard matrices are of interest, for example, in the construction
of various combinatorial designs. The number of inequivalent
skew-Hadamard matrices of order 4n is OEIS A001119 (for n = 2, 3, . . . ):

1, 1, 2, 2, 16, 54, . . .

It is convenient to redefine the constraint C1 to be

C1 = {X ∈ Rn×n|X + XT = 2I , Xij = ±1 for i , j = 1, . . . , n}.

A projection of X onto C1 is given pointwise by

PC1 (X ) =

{
−1 if i 6= j and Xij < Xji ,

1 otherwise.
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Skew-Hadamard Matrices

Table: Number of skew-Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 0.0003 1000 2 1
4 1.1095 719 16 1
8 0.7039 902 889 1

12 14.1835 43 43 1
16 19.3462 0 0 0
20 29.0383 0 0 0

Order
C1 ∩ C3 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 0.0004 1000 2 1
4 1.6381 634 16 1
8 0.0991 986 968 1

12 0.0497 999 999 1
16 0.2298 1000 1000 2
20 20.0296 495 495 2

Adding constraints can help.
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Sudoku Puzzles

In Sudoku the player fills entries of an incomplete Latin square subject to
the constraints:

Each row contains the numbers 1 through 9 exactly once.

Each column contains the numbers 1 through 9 exactly once.

Each 3× 3 sub-block contains the numbers 1 through 9 exactly once.

Figure. An incomplete Sudoku (left) and its unique solution (right).

The Douglas–Rachford algorithm applied to the natural integer
feasibility problem fails (exception: n2 × n2 Sudokus where n = 1, 2).
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Sudoku Puzzles: A Binary Model5

Let E = {ej}9
j=1 ⊂ R9 be the standard basis. Define X ∈ R9×9×9 by

Xijk =

{
1 if ijth entry of the Sudoku is k,
0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any X ∈
⋂5

i=1 Ci .
5Veit Elser was the first to realise the usefulness of this binary formulation for

solving Sudoku via Douglas–Rachford methods.
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Sudoku Puzzles: Computing projections

Proposition (projections onto permutation sets)

Denote by C ⊂ Rm the set of all vector whose entries are permutations of
c1, c2, . . . , cm ∈ R. Then for any x ∈ Rm,

PCx = [C]x ,

where [C]x is the set of vectors y ∈ C such that ith largest index of y
has the same index in y as the ith largest entry of x , for all indices i .

[C]x be computed efficiently using sorting algorithms.

Choosing c1 = 1 and c2 = · · · = cm = 0 gives2

PEx = {ei : xi = max{x1, . . . , xm}}.

Formulae for PC1 ,PC2 ,PC3 and PC4 easily follow.

PC5 is given by setting the entries corresponding to those in the
incomplete puzzle to 1, and leaving the remaining untouched.

2A direct proof of this special case appears in Jason Schaad’s Masters thesis.
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Sudoku Puzzles:Algorithm Details

1 Initialize: x0 := (y , y , y , y , y) ∈ D for some random y ∈ [0, 1]9×9×9.

2 Iteration: By setting

xn+1 := TD,Cxn =
xn + RCRDxn

2
.

3 Termination: Either if a solution is found, or 10000 iteration have
been performed. More precisely, round(PDxn) (PDxn pointwise
rounded to the nearest integer) is a solution if

round(PDxn) ∈ C ∩ D.

Taking round(·) is valid since the solution is binary.
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Sudoku Puzzles: An Experiment

We consider the following test libraries frequently used by programmers
to test their solvers.

1 Dukuso’s top95 and top1465.

2 First 1000 puzzles from Gordan Royle’s minimum Sudoku – puzzles
with 17 entries (the best known lower bound on the entries required
for a unique solution).

3 reglib-1.3 – 1000 test puzzle suited to particular human style
techniques.

4 ksudoku16 and ksudoku25 – a collection around 30 instances
(various difficulties) generated with KSudoku. Contains larger
16× 16 and 25× 25 puzzles.3

3Generating “hard” instances is a difficult problem.
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Computational Results: Success Rate

From 10 random replications of each puzzle:

Table. % Solved by the Douglas–Rachford method
top95 top1465 reglib-1.3 minimal1000 ksudoku16 ksudoku25
86.53 93.69 99.35 99.59 92 100

If a instance was solved, the solution was usually found within the
first 2000 iterations.
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku4 cannot be solved reliably (20.2% success rate) by
the Douglas–Rachford method.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Other “difficult” Sudoku puzzles do
not cause the Douglas–Rachford
method any trouble.

AI escargot = 98.5% success
rate.

Figure. Distance to the solution by iterations

4This is a modified version of an example due to Veit Elser.
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Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single entry
is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any single
entry is removed:

Top left 7 = 5

Any other entry = 200–3800

Is the Douglas–Rachford method hindered by
an abundance of ‘near’ solutions?
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Computational Results: Performance Comparison

We compared the Douglas–Rachford method to the following solvers:
1 Gurobi binary program – Solves the same binary model using integer

programming techniques.
2 YASS (Yet another Sudoku solver) – First applies a reasoning

algorithm to determine possible candidates for each empty square. If
this does not completely solve the puzzle, a deterministic recursive
algorithm is used.

3 DLX – Solves an exact cover formulation using the Dancing Links
implementation of Knuth’s Algorithm X (non-deterministic,
depth-first, back-tracking).

Table. Average Runtime (seconds).5

top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25
DR 1.432 0.279 0.509 5.064 4.011

Gurobi 0.063 0.059 0.063 0.168 0.401
YASS 2.256 0.039 0.654 - -
DLX 1.386 0.105 3.871 - -

5Some solvers are only designed to handle 9× 9 puzzles.
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Nonograms

A nonogram puzzle consists of a blank m × n grid of “pixels” together
with (m + n) cluster-size sequences (i.e., for each row and each column).
The goal is to “paint” the canvas with a picture such that:

1 Each pixel must be either black or white.

2 If a row (resp. column) has a cluster-size sequences s1, . . . , sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
si black pixels.

1

2 4 1 2 2

2 3 1 1 5 4 1 5 2 1

1 2

2

1

1

2

2 4

2 6

8

1 1

2 2
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Nonograms

We model nonograms as a binary feasibility problem. The m × n grid is
represented as a matrix A ∈ Rm×n with

A[i , j ] =

{
0 if the (i , j)-th entry of the grid is white,
1 if the (i , j)-th entry of the grid is black.

Let Ri ⊂ Rm (resp. Cj ⊂ Rn) denote the set of vectors having
cluster-size sequences matching row i (resp. column j). The constraints
are:

C1 = {A : A[i , :] ∈ Ri for i = 1, . . . ,m},
C2 = {A : A[:, j ] ∈ Cj for j = 1, . . . , n}.

Given an incomplete nonogram puzzle, A is a solution if and only if

A ∈ C1 ∩ C2.
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Nonograms: Computational Results

From 1000 random replications, the following nonograms were solved in
every instance.

0 2 4 6 8

0

2

4

6

8

0 5 10 15
0

5

10

15

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

A spaceman. A dragonfly. A moose.

0 5 10 15
0

5

10

15

20

25

0 5 10 15
0

5

10

15

0 5 10 15 20
0

5

10

15

20

A parrot. The number π. “Hello from CARMA”.
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Nonograms: Computational Details

Computing the projections onto C1 and C2 is difficult.

We do not know an efficient way to do so.

Our approach: Pre-compute all legal cluster size sequences (slow).

Only a few Douglas–Rachford iterations are required to solve (fast).

In contrast other problems, frequently, have relatively simple projections
but require many more iterations.

This suggests the following:

Trade-off between simplicity of projection operators and the number
of iterations required.
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Nonograms: An example

Iteration: 0 (random initialisation)
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Nonograms: An example

Iteration: 1
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Nonograms: An example

Iteration: 2
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Nonograms: An example

Iteration: 3
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Nonograms: An example

Iteration: 4
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Nonograms: An example

Iteration: 5
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Nonograms: An example

Iteration: 6 (solved)
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GCHQ’s 2015 Christmas Puzzle

5Kudos to Veit Elser who made us aware of the puzzle.
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GCHQ’s 2015 Christmas Puzzle

======== DR Nonogram Solver ========

Precomputing row/column clusters...

Precomputing done!

Time spent precomputing: 33.9s

Running DR...

Solution found!

Iterations: 10

Time spent running DR: 9.9s

Total time: 43.8s

====================================
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GCHQ’s 2015 Christmas Puzzle

The solution is a QR code which directs to the following website.
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Protein Conformation Determination and EDMs

Proteins are large biomolecules comprising of multiple amino acid chains.

Generic amino acid Myoglobin

They participate in virtually every cellular process, and knowledge of
structural conformation gives insights into the mechanisms by which they
perform.
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Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6Å). For 1PTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.

We say D = (Dij) ∈ Rm×m is a Euclidean distance matrix (EDM) if there
exists points p1, . . . , pm ∈ Rq such that

Dij = ‖pi − pj‖2.

When this holds for points in Rq, we say that D is embeddable in Rq.

We formulate protein reconstruction as a matrix completion problem:

Find a EDM, embeddable in Rs where s := 3,
knowing only short inter-atomic distances.
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this corresponds to < 8% of the total inter-atomic distances.

We say D = (Dij) ∈ Rm×m is a Euclidean distance matrix (EDM) if there
exists points p1, . . . , pm ∈ Rq such that

Dij = ‖pi − pj‖2.

When this holds for points in Rq, we say that D is embeddable in Rq.

We formulate protein reconstruction as a matrix completion problem:

Find a EDM, embeddable in Rs where s := 3,
knowing only short inter-atomic distances.

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Protein Conformation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6Å). For 1PTQ (404 atoms)
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A Feasibility Problem Formulation

Denote by Q the Householder matrix defined by

Q := I − 2vvT

vT v
,where v =

[
1, 1, . . . , 1, 1 +

√
m
]T ∈ Rm.

Theorem (Hayden–Wells 1988)

A nonnegative, symmetric, hollow matrix X , is a EDM iff X̂ ∈ R(m−1)×(m−1) in

Q(−X )Q =

[
X̂ d
dT δ

]
(∗)

is positive semi-definite (PSD). In this case, X is embeddable in Rq where

q = rank(X̂ ) ≤ m − 1 but not in Rq−1.

Let D denote the partial EDM (obtained from NMR), and Ω ⊂ N×N the
set of indices for known entries. The problem of low-dimensional EDM
reconstruction can thus be case as a feasibility problem with constraints:

C1 = {X ∈ Rm×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ Rm×m : X̂ in (∗) is PSD with rank X̂ ≤ s := 3}.
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A Feasibility Problem Formulation

Recall the constraint sets:

C1 = {X ∈ Rm×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ Rm×m : X̂ in (∗) is PSD with rank X̂ ≤ s := 3}.

Now,

C1 is a convex set (intersection of cone and affine subspace).

C2 is convex iff m ≤ 2 (in which case C2 = Rm×m).

For interesting problems, C2 is never convex.

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Computing Projections and Reflections

Recall the constraint sets:

C1 = {X ∈ Rm×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ Rm×m : X̂ in (∗) is PSD with rank X̂ ≤ s := 3}.

The projection onto C1 is given (point-wise) by

PC1 (X )ij =

{
Dij if (i , j) ∈ Ω,

max{0,Xij} otherwise.

The projection onto C2 is the set

PC2
(X ) =

{
−Q

[
Ŷ d
dT δ

]
Q : Q(−X )Q =

[
X̂ d
dT δ

]
,

X̂ ∈ R(m−1)×(m−1),
d ∈ Rm−1, δ ∈ R, Ŷ ∈ PS3

X̂

}
,

where Ss is the set of PSD matrices of rank s or less.

Computing PSs (X̂ ) = spectral decomposition → threshold eigenvalues.

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Computing Projections and Reflections

Recall the constraint sets:

C1 = {X ∈ Rm×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ Rm×m : X̂ in (∗) is PSD with rank X̂ ≤ s := 3}.

The projection onto C1 is given (point-wise) by

PC1 (X )ij =

{
Dij if (i , j) ∈ Ω,

max{0,Xij} otherwise.

The projection onto C2 is the set

PC2
(X ) =

{
−Q

[
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The Algorithmic Approach

The reconstruction approach can be summarised as follows:

Reconstruct
EDM using

Douglas–Rachford

Convert EDM
to points in R3

Partial EDM

Random
initialization

Draw using
Swiss-PdbViewer6

1http://spdbv.vital-it.ch/
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Experiment: Six Test Proteins

Experiment: We consider the simplest realistic protein conformation
determination problem.

NMR experiments were simulated for proteins with known conformation
by computing the partial EDM containing all inter-atomic distances < 6Å.

Table: Six proteins from the RCSB Protein Data Bank.7

Protein # Atoms # Residues Known Distances

1PTQ 404 50 8.83%
1HOE 581 74 6.35%
1LFB 641 99 5.57%
1PHT 988 85 4.57%
1POA 1067 118 3.61%
1AX8 1074 146 3.54%

2http://www.rcsb.org/
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Experiment: Six Test Proteins

Table: Average (worst) results: 5,000 iterations, five random initializations.

Protein Problem Size Rel. Error (dB) RMS Error Max Error

1PTQ 81,406 -83.6 (-83.7) 0.02 (0.02) 0.08 (0.09)
1HOE 168,490 -72.7 (-69.3) 0.19 (0.26) 2.88 (5.49)
1LFB 205,120 -47.6 (-45.3) 3.24 (3.53) 21.68 (24.00)
1PHT 236,328 -60.5 (-58.1) 1.03 (1.18) 12.71 (13.89)
1POA 568,711 -49.3 (-48.1) 34.09 (34.32) 81.88 (87.60)
1AX8 576,201 -46.7 (-43.5) 9.69 (10.36) 58.55 (62.65)

The reconstructed EDM is compared to the actual EDM using:

Relative error (decibels) = 10 log10

(
‖PAxn − PBRAxn‖2

‖PAxn‖2

)
.

The reconstructed points in R3 are then compared using:

RMS Error =

(
m∑

k=1

‖zk − zactual
k ‖2

)1/2

, Max Error = max
k=1,...,m

‖zk − zactual
k ‖,

which are computed up to translation, reflection and rotation.
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Experiment: Six Test Proteins
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Experiment: Six Test Proteins

1HOE (actual) 1LFB (actual) 1POA (actual)

1HOE (-72.7dB) 1LFB (-60.5dB) 1POA (-49.3dB)

1HOE is good, 1LFB is mostly good, and 1POA has two good pieces.
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Experiment: Six Test Proteins

Let’s take a closer look at the bad 1POA reconstructions.

We partition
the bad protein’s atoms into two clusters: blue and red. We colour the
same atoms in the actual structure.

The reconstructed protein’s clusters splits actual conformation nicely
in two ’halves’.
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Experiment: A Better Stopping Criterion?

Optimising our implementation gave a ten-fold speed-up. We performed
the following experiment:

Figure: Relative error by iterations (vertical axis logarithmic).

For < 5, 000 iterations, the error exhibits non-monotone oscillatory
behaviour. It then decreases sharply. Beyond this progress is slower.

Early termination to blame? −→ Terminate when error < −100dB.
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A More Robust Stopping Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps, -49.3dB

The optimised implementation:

1POA (actual) 28,500 steps, -100dB (perfect!)

Similar results observed for the other test proteins.

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



A More Robust Stopping Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps, -49.3dB

The optimised implementation:

1POA (actual) 28,500 steps, -100dB (perfect!)

Similar results observed for the other test proteins.
Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Experiment: Why Use the Douglas–Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas–Rachford method?

First 3,000 steps of the 1PTQ reconstruction

http://carma.newcastle.edu.au/DRmethods/1PTQ.html
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1PTQ.swf
Media File (application/x-shockwave-flash)

http://carma.newcastle.edu.au/DRmethods/1PTQ.html


Experiment: Why Use the Douglas–Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas–Rachford method?

A simpler projection method is the method of alternating projections.
Given a point y0 ∈ H is given by the fixed-point iteration

yn+1 ∈ PC2PC1yn.

Before reconstruction Douglas–Rachford method reconstruction:

500 steps, -25 dB 1,000 steps,-30 dB 2,000 steps, -51 dB

1PTQ (actual) Method of alternating projections reconstruction:

500 steps,-22 dB 1,000 steps, -24 dB 2,000 steps, -25 dB

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Experiment: Why Use the Douglas–Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas–Rachford method?

A simpler projection method is the method of alternating projections.
Given a point y0 ∈ H is given by the fixed-point iteration

yn+1 ∈ PC2PC1yn.

Before reconstruction Douglas–Rachford method reconstruction:

500 steps, -25 dB 1,000 steps,-30 dB 2,000 steps, -51 dB

1PTQ (actual) Method of alternating projections reconstruction:

500 steps,-22 dB 1,000 steps, -24 dB 2,000 steps, -25 dB

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Experiment: Why Use the Douglas–Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas–Rachford method?

A simpler projection method is the method of alternating projections.
Given a point y0 ∈ H is given by the fixed-point iteration

yn+1 ∈ PC2PC1yn.

Before reconstruction Douglas–Rachford method reconstruction:

500 steps, -25 dB 1,000 steps,-30 dB 2,000 steps, -51 dB

1PTQ (actual) Method of alternating projections reconstruction:

500 steps,-22 dB 1,000 steps, -24 dB 2,000 steps, -25 dB

Jonathan Borwein (CARMA, University of Newcastle) Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Experiment: Why Use the Douglas–Rachford Method?

Theorem (Basic behaviour of the Douglas–Rachford method)

Suppose C1,C2 are closed convex subsets of a finite dimensional Hilbert
space H. For any x0 ∈ H, define xn+1 = TC1,C2xn.

1 If C1 ∩ C2 6= ∅, then xn → x such that PC1x ∈ C1 ∩ C2.

2 If C1 ∩ C2 = ∅, then ‖xn‖ → +∞.

The Douglas–Rachford method can be sensitive to perturbations in
the constraint sets.

In contrast the alternating projections sequence might still converge
even if the intersection is empty.

Perhaps the Douglas–Rachford method’s instability stops it from
getting ‘stuck’ in local minima.
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Ionic Liquid Chemistry

Ionic liquids (ILs) are salts (i.e., they are comprised of positively and
negatively charged ions) having low melting points, and typically occupy
the liquid state at room temperature.

An analogous EDM reconstruction problem arising in the context of
ionic liquid chemistry is to determine a given ionic liquid’s
coloralertbulk structure. That is, the configuration of its ions with
respect to each other (the structure of the individual ions is known).

Entries of the partial EDM are assumed to be known whenever the two
atoms are bonded (i.e., when their Van der Waals radii overlap)

An ethylammonium nitrate (EAN) ion pair (melting point 12◦C).
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Ionic Liquid Chemistry

Dr Alister Page, a chemist at UoN, provided us with a propylammonium nitrate
(PAN) data set consisting of 180 atoms. The corresponding rank-3 EDM
completion problem has a total of 32,220 non-zero inter-atomic distances of
which 5.95% form the partial EDM.

Table: Average (worst) results for PAN: five random replications, ε = 10−5.

EDM-Error Position-Error Iterations

0.6323 (0.6918) 2.0374 (2.5039) 41553.2 (82062)

The bulk structure (left) and the reconstruction (right).
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Automated Road Design

Consider the following problem arising in the automated design of road
alignments:8A road is to built between two cities. The (horizontal) route has
already been decided but the (vertical) road profile has not. A civil engineer
seeks a profile which satisfied various regulations dictated by civil design
standards. The model is:

The ground profile, g : [a, b]→ R for some interval [a, b], gives the
elevation above of existing ground.

The initial design profile, f0 : [a, b]→ R (to initialise the algorithm).

Profile must pass through given points (e.g., connect to existing roads).

Other constraints regarding the curvature and slope of the profile.

The goal is to find a road design f : [a, b]→ R satisfying these constraints.
8Courtesy of Bauschke & Koch (2013). Example is design for a highway near

Kelowona (Canada) for a design speed of 130km/h and maximum slope of 4%.
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Automated Road Design

We assume that we are given a sequence breakpoints

a := t1 < t2 < · · · < tm := b,

thus our solution f is a linear spline, parametrised by a vector x ∈ Rm,

f (τ) =
xi+1 − xi
ti+1 − ti︸ ︷︷ ︸

slope

(τ − ti ) + xi for τ ∈ [ti , ti+1].

Our problem is therefore reduced to finding a vector x ∈ Rm satisfying
the three types of constraints.
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Automated Road Design

We consider the following types of constraints (in terms of x ∈ Rm).

Interpolation constraints: The value of f (ti ) is given for all i ∈ I where I
is some index set (the road must pass through a given point):

C1 := {x : xi = yi for all i ∈ I}.

Slope constraints: The road cannot be too steep or too flat (to allow
water to drain):

C2 :=
⋂
i even

{x : αi < |xi+1 − xi | < βi},

where αi , βi > 0. C3 is the analogous intersection over odd indices. Both
C2 and C3 are non-convex constraints!

Curvature constraints: The change in slope between adjacent splines
cannot be too severe:{

x : γi ≥
xi+2 − xi+1

ti+2 − ti+1
− xi+1 − xi

ti+1 − ti
≥ δi

}
,

where δi , γi ∈ R. Intersections of these of constraints form C4,C5 and C6.

In total, we have six constraints. Partitioning of slope and curvature constraints
allows for efficient computation of their projections (details not discussed here).
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Commentary and Open Questions

The Douglas–Rachford method applied to non-convex problems performs
better than theory suggests.

Approach is novel since we directly solve a non-convex problem.

Ongoing work is focusing on conditions for local convergence.

The Douglas–Rachford method is a general purpose algorithm →
potential for problem specific improvements. For instance, for protein
reconstruction we have used:

Updating projection using heuristics (fixed or infrequent updates).
Imposing additional constraints on protein distances.

Other fruitful applications? We have also applied our EDM approach to a
bulk structure determination problem arising in ionic liquid chemistry.

The importance of modelling in areas such as integer programming has
long been emphasised but less so here. Our study suggests it is equal as
important!

When presented a problem, it is worth seeing if Douglas–Rachford can deal

with it – it is conceptually simple and easy to implement.
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Exercises

1 (Projections onto permutation sets) Denote by C ⊂ Rm the set of all
vector whose entries are permutations of c1, c2, . . . , cm ∈ R. Show that for
any x ∈ Rm,

PCx = [C]x ,

where [C]x is the set of vectors y ∈ C such that ith largest index of y has
the same index in y as the ith largest entry of x , for all indices i .

2 Prove that the two Hadamard formulation are equivalent. That is,
C1 ∩ C2 = C1 ∩ C3 where

C1 := {X ∈ Rn×n|Xij = ±1 for i , j = 1, . . . , n},

C2 := {X ∈ Rn×n|XTX = nI},

C3 := {X ∈ Rn×n|XTX = ‖X‖I}.

3 (Hard) Find an efficient method to compute the nonogram projections.
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