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Conclusion

Abstract

What we present here is based on recent work by one of our PhD
students; Matthew K. Tam

Abstract:

In the Hilbert space setting we present a new iteration scheme,
inspired by the 2-set Douglas–Rachford scheme, but which is
applicable to N -set convex feasibility problems.

Our main result is weak convergence of the method to a point
whose nearest point projections onto each of the N sets coincide.

In the case of affine subspaces, norm convergence is obtained.

These results will appear in the Journal of Optimization – Theory
and Applications.
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Those involved

Matt Tam

Jon Borwein Brailey Sims
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Conclusion

The problem

Given N closed, convex sets with nonempty intersection, the N -set
convex feasibility problem asks for a point contained in the
intersection of the N sets.

Many optimization problems can be cast in this framework, either
directly or as a suitable relaxation if a desired bound on the quality
of the solution is known a priori.
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Projection algorithms I

A common approach to solving N -set convex feasibility problems is
the use of projection algorithms.

Some well known projection methods include:
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Projection algorithms II

• von Neumann’s alternating projections method

John von Neumann
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Projection algorithms

• the Douglas–Rachford method, the focus of this talk

Jim Douglas Henry H. Rachford
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Projection algorithms III

• Dykstra’s projection algorithm

Edsger Wybe Dijkstra

Of course, there are also many variants to all of these.
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Conclusion

equivalences

And, on certain classes of problems, various projection methods
coincide with each other, and with other known techniques. For
example:

• If the sets are closed affine subspaces, alternating
projections = Dykstra’s method

• If the sets are hyperplanes, alternating projections = Dykstra’s
method = Kaczmarz’s method

• If the sets are half-spaces, alternating projections = the
method of Agmon, Motzkin and Schoenberg (MAMS), and
Dykstra’s method = Hildreth’s method

• Applied to the phase retrieval problem, alternating
projections = error reduction, Dykstra’s method = Fienup’s
BIO, and Douglas–Rachford = Fienup’s HIO
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The setting and problem

Throughout, H is a real Hilbert space with inner product 〈·, ·〉 and
induced norm ‖ · ‖.

We use
w.
⇀ to denote weak convergence,

xn
w.
⇀ x iff 〈xny〉 → 〈x, y〉, for all y ∈ H.

We are concerned with the N -set convex feasibility problem:

Find x ∈
N⋂
i=1

Ci 6= ∅ where Ci ⊆ H are closed and convex. (1)
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Conclusion

Projections and reflections

For a Tchebychev (hence, any nonempty closed convex) A ⊆ H
and x ∈ H the nearest point projection of x onto A is,

PA(x) := argmin{‖x− c‖ : c ∈ A} = {cx}.

Reflection in A is the operator RA : H → H defined by
RA := 2PA − I where I denotes the identity operator mapping any
x ∈ H to itself.
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Basic facts about projections and reflections

(i) (Variational characterization of a projection)

PA(x) = ax ⇐⇒ 〈x− ax, a− ax〉 ≤ 0 for all a ∈ A.

(ii) (Variational characterization of a reflection)

RA(x) = r ⇐⇒ 〈x− r, a− r〉 ≤ 1
2
‖x− r‖2 for all a ∈ A.

(iii) (Translation formula) For y ∈ H, Py+A(x) = y + PA(x− y).

(iv) (Dilation formula) For 0 6= λ ∈ R, PλA(x) = λPA(x/λ).

(v) If A is a subspace then PA (and hence RA) is linear.

(vi) If A is an affine subspace then PA (and hence RA) is affine.
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Form of projections

Application of the various iterative methods discussed above
assumes that the projection onto each of the individual sets is
relatively simple to compute. For instance:
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Nonexpansive and firmly nonexpansive maps

Let D ⊆ H and T : D → H.

We say T is asymptotically regular if ‖Tnx− Tn+1x‖ → 0, for all
x ∈ D.

We denote the set of fixed points of T by FixT = {x : Tx = x}.
We say T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ D

We say T is firmly nonexpansive if

‖Tx−Ty‖2 + ‖(I −T )x− (I −T )y‖2 ≤ ‖x− y‖2 for all x, y ∈ D.

It follows that every firmly nonexpansive mapping is nonexpansive.
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Basic facts for nonexpansive and firmly nonexpansive maps

(i) The class of nonexpansive maps is closed under convex
combinations and compositions (this is not true for the class
of firmly nonexpansive maps)

(ii) A nonexpansive self-map of a nonempty closed convex subset
of H has a fixed point

(iii) The following are equivalent

(a) T : D → H is firmly nonexpansive
(b) 〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2 for all x, y ∈ D
(c) ‖Tx− Ty‖ ≤ ‖((1− t)x+ tTx)− ((1− t)y + tTy)‖ for all

t ∈ [0, 1] and all x, y ∈ D
(d) T = 1

2 (I + V ), where V : D → H is nonexpansive
(e) 2T − I is nonexpansive
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Key examples of nonexpansive and firmly nonexpansive
maps

Let A,B ⊆ H be closed and convex. Then,

(i) PA is firmly nonexpansive, hence

(ii) RA is nonexpansive and

(iii) TA,B := 1
2(I +RBRA) is firmly nonexpansive.
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Some basic results I

A sufficient condition for a firmly nonexpansive map T to be
asymptomatic regular is that FixT 6= ∅.

Although composites of firmly nonexpansive maps need not be
firmly nonexpansive (even the composition of two projections onto
subspaces need not be firmly nonexpansive [Censor and Reich,
1997]), this extends [Reich, 1987]:

Lemma

Let Ti : H → H be firmly nonexpansive, for i = 1, 2, · · · , r, and
define T := Tr . . . T2 T1. If FixT 6= ∅ then T is asymptotically
regular.
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Some basic results II

The following characterizes fixed points of certain compositions of
firmly nonexpansive operators [Bauschke, 2011].

Lemma

Let Ti : H → H be firmly nonexpansive, for each i, and define
T := Tr . . . T2 T1. If F :=

⋂r
i=1 FixTi 6= ∅ then FixT = F .
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Douglas-Rachford for two sets

The Douglas-Rachford algorithm (also known as
Reflect-Reflect-Average) was introduced in 1956 in connection
with numerical solutions for certain heat conduction problems. It
consists of iterating the operator

TA,B :=
1
2

(I +RBRA) (2)

= PB(2PA − I) + (I − PA) (3)

And led to:

Theorem

Let A,B ⊆ H be closed and convex. For any x0 ∈ H, the sequence
TnA,Bx0 converges weakly to a point x such that PAx ∈ A ∩B.
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2 set Douglas-Rachford

 

A B 

x1 
 

x2 = x3= . . . 

PA( x2)  
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Lions and Mercier

This was proved by Lions and Mercier in 1979.

Pierre-Louis Lions Bertrand Mercier
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Proof of D-R

There are many way to prove Theorem 3. One is to use the
following well known theorem together with the facts collected
above and the observation from 3 that PA FixTA,B = A ∩B.

Theorem (Opial, 1967)

Let T : H → H be nonexpansive, asymptotically regular, and
FixT 6= ∅. Then for any x0 ∈ H, Tnx0 converges weakly to an
element of FixT .

Zdzislaw Opial 1930 –1974
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Proof of D-R continued

Further, when T is linear, the limit can be identified and
convergence is in norm.

Theorem

Let T : H → H be linear, nonexpansive and asymptotically regular.
Then for any x0 ∈ H,

lim
n→∞

‖Tnx0 − PkerTx0‖ = 0.
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Why D-R

Interest in the Douglas–Rachford iteration is in part due to its
excellent performance, despite a lack of theoretical justification, on
various problems involving one or more non-convex sets.
For example:

• in phase retrieval problems arising in the context of image
reconstruction [Bauschke, Combettes and Luke, 2002] -
Hubble telescope.

• various NP-complete combinatorial problems including
Boolean satisfiability and Sudoku [Elser, 2997].

In contrast, von Neumann’s alternating projection method applied
to such problems often fails to converge satisfactorily.
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Non convex D-R

Borwein and S have provided limited theoretical justification for
non-convex Douglas–Rachford iterations, proving local convergence
for a prototypical instance involving a sphere and an affine
subspace in Euclidean space.

Even more recently, a local version of firm nonexpansivity has been
utilized by Hesse and Luke to obtain local convergence of the
Douglas–Rachford method in a limited non-convex framework.

These two sets of results are Complementary and do not directly
overlap one another.
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From 2 to N sets

Most projection algorithms can be extended to the N -set convex
feasibility problem without significant modification.

An exception is the Douglas–Rachford method, for which only the
theory of 2-set feasibility problems has so far been successfully
investigated.

 

C 

A 

B 

x2 = x1 
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Divide and Concur

One approach is to reduce an N > 2 set problem to an equivalent
2-set feasibility problem posed in a product space to which
Douglas–Rachford can be applied.

In which case the iteration effectively becomes: ‘parallel’ reflect in
each set and then average – a scheme also known as divide and
concur.
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How to Divide and Concur

To find a point in the intersection of N sets
A1, A2, . . . Ak, . . . , AN in H we can instead consider the subset

A :=
N∏
k=1

Ak and the (diagonal) subspace

B := {x = (x1, x2, . . . , xN ) : x1 = x2 = · · · = xN}

of the Hilbert space product
N∏
k=1

H.

Then we observe that,

RA : (x1, x2, . . . , xN ) 7→ (RA1x1, RA2x2, . . . , RAN
xN ),

so that the reflections are ‘divided’ up.

And,
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Divide and Concur continued

PB(x) =
(
x1 + x2 + · · ·+ xN

N
, . . . ,

x1 + x2 + · · ·+ xN
N

)
,

so that the projection and hence reflection on B are averaging
(‘concurrences’); thence the name.

In this form the algorithm is particularly suited to parallelization.
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N–set cyclic Douglas–Rachford

We now introduce a new projection algorithm, the cyclic
Douglas–Rachford iteration scheme.

For C1, C2, . . . , CN ⊆ H define T[C1 C2 ... CN ] : H → H by

T[C1 C2 ... CN ] := TCN ,C1TCN−1,CN
. . . TC2,C3TC1,C2

=
(
I +RC1RCN

2

)(
I +RCN

RCN−1

2

)
. . .

(
I +RC3RC2

2

)(
I +RC2RC1

2

)
.

Given x0 ∈ H, the cyclic Douglas–Rachford method iterates by
setting xn+1 = T[C1 C2 ... CN ]xn.
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2–set cyclic Douglas–Rachford

For two sets this reduces to,

T[C1 C2] = TC2,C1TC1,C2 =
(
I +RC1RC2

2

)(
I +RC2RC1

2

)
.

So, the 2–set cyclic Douglas–Rachford scheme does not coincide
with the classic Douglas–Rachford scheme.
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Notation and conventions

When there is no ambiguity we abbreviate TCi,Cj by Ti,j , and
T[C1 C2 ... CN ] by T[1 2 ... N ].
Indices will always be understood modulo N . In particular,
T0,1 := TN,1, TN,N+1 := TN,1, C0 := CN and CN+1 := C1.

We are now ready to present our main result, regarding
convergence of the cyclic Douglas–Rachford scheme.
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Convergence of cyclic Douglas–Rachford

Theorem (Cyclic Douglas–Rachford)

Let C1, C2, . . . , CN ⊆ H be closed and convex with nonempty
intersection. For any x0 ∈ H, the sequence Tn[1 2 ... N ]x0 converges
weakly to a point x such that PCix = PCjx for all i, j. Moreover,

PCjx ∈
⋂N
i=1Ci, for each j.
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Proof of cyclic Douglas–Rachford

Proof:

Ti,i+1 is firmly nonexpansive, for each i and, since

FixTi,i+1 ⊇ Ci ∩ Ci+1, we have
⋂N
i=1 FixTi,i+1 ⊇

⋂N
i=1Ci 6= ∅.

So, Tn[1 2 ... N ]x0 converges weakly to a point

x ∈ FixT[1 2 ... N ] =
⋂N
i=1 FixTi,i+1.

Further, for each i, PCix = PCiTi,i+1x ∈ Ci ∩ Ci+1 ⊆ Ci+1.

Now compute,
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Proof of cyclic Douglas–Rachford continued

1
2

N∑
i=1

‖PCix− PCi−1x‖2

= 〈x, 0〉+
1
2

N∑
i=1

(
‖PCix‖2 − 2〈PCix, PCi−1x〉+ ‖PCi−1x‖2

)
=

〈
x,

N∑
i=1

(PCi−1x− PCix)

〉
−

N∑
i=1

〈PCix, PCi−1x〉+
N∑
i=1

‖PCix‖2

=
N∑
i=1

〈x− PCix, PCi−1x− PCix〉≤0.

Thus, PCix = PCi−1x, for each i.
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Illustration I

An interactive Cinderella applet showing a cyclic Douglas–Rachford
trajectory differing from von Neumann’s alternating projection

method. Each green dot represents a 2-set cyclic
Douglas–Rachford iteration.
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Illustration II

An interactive Cinderella applet using the cyclic Douglas–Rachford
method to solve a feasibility problem with two sphere constraints.

Each green dot represents a 2-set cyclic Douglas–Rachford
iteration.
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Illustration III

An interactive Cinderella applet showing the cyclic
Douglas–Rachford method applied to the case of a non-intersecting
ball and a line. The method appears convergent to a point whose

projections onto the constraint sets form a best approximation pair.
Each green dot represents a cyclic Douglas–Rachford iteration.
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Illustration IV

Cyclic Douglas–Rachford algorithm applied to a 3-set feasibility
problem in R3.

The constraint sets are colored in blue, red and yellow. Each arrow
represents a 3-set cyclic Douglas–Rachford iteration.
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Conclusion

Numerical experiments on instances involoving ball/sphere
constraints suggest that that the cyclic Douglas–Rachford scheme
outperforms divide and concur , which suffers as a result of the
product formulation, although having the advantage of possible
parallel implementation.

For inconsistent 2-set problems, there is evidence suggesting that
the cyclic Douglas–Rachford scheme yields best approximation
pairs.
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