A Cyclic Douglas–Rachford Iteration Scheme in Hilbert spaces

Brailey Sims

Computer Assisted Research Mathematics & Applications University of Newcastle <http://carma.newcastle.edu.au/>

Workshop on

SPECIAL WORKSHOP ON FIXED POINT THEORY AND RELATED TOPICS

29 – 30 April MMXIII Chiang Mai University, Thailand

Abstract:

In the Hilbert space setting we present a new iteration scheme, inspired by the 2-set Douglas–Rachford scheme, but which is applicable to N-set convex feasibility problems.

Our main result is weak convergence of the method to a point whose nearest point projections onto each of the N sets coincide.

In the case of affine subspaces, norm convergence is obtained.

These results will appear in the Journal of Optimization – Theory and Applications.

Abstract:

In the Hilbert space setting we present a new iteration scheme, inspired by the 2-set Douglas–Rachford scheme, but which is applicable to N -set convex feasibility problems.

Our main result is weak convergence of the method to a point whose nearest point projections onto each of the N sets coincide.

In the case of affine subspaces, norm convergence is obtained.

These results will appear in the Journal of Optimization – Theory and Applications.

Abstract:

In the Hilbert space setting we present a new iteration scheme, inspired by the 2-set Douglas–Rachford scheme, but which is applicable to N -set convex feasibility problems.

Our main result is weak convergence of the method to a point whose nearest point projections onto each of the N sets coincide.

In the case of affine subspaces, norm convergence is obtained.

These results will appear in the Journal of Optimization – Theory and Applications.

Abstract:

In the Hilbert space setting we present a new iteration scheme, inspired by the 2-set Douglas–Rachford scheme, but which is applicable to N -set convex feasibility problems.

Our main result is weak convergence of the method to a point whose nearest point projections onto each of the N sets coincide.

In the case of affine subspaces, norm convergence is obtained.

These results will appear in the Journal of Optimization – Theory and Applications.

Abstract:

In the Hilbert space setting we present a new iteration scheme, inspired by the 2-set Douglas–Rachford scheme, but which is applicable to N -set convex feasibility problems.

Our main result is weak convergence of the method to a point whose nearest point projections onto each of the N sets coincide.

In the case of affine subspaces, norm convergence is obtained.

These results will appear in the Journal of Optimization – Theory and Applications.

Those involved

Matt Tam

 $\in \Xi \Rightarrow$

 \equiv

 $\circledcirc \circledcirc \circledcirc$

Jon Borwein Br[ai](#page-5-0)l[ey](#page-7-0)[Si](#page-6-0)[m](#page-7-0)[s](#page-0-0) **Brailey Sims Brailey Sims**

Given N closed, convex sets with nonempty intersection, the N -set convex feasibility problem asks for a point contained in the intersection of the N sets.

Many optimization problems can be cast in this framework, either directly or as a suitable relaxation if a desired bound on the quality of the solution is known a priori.

Given N closed, convex sets with nonempty intersection, the N -set convex feasibility problem asks for a point contained in the intersection of the N sets.

Many optimization problems can be cast in this framework, either directly or as a suitable relaxation if a desired bound on the quality of the solution is known a priori.

Projection algorithms I

A common approach to solving N -set convex feasibility problems is the use of projection algorithms.

Some well known projection methods include:

Projection algorithms II

• von Neumann's alternating projections method

John von Neumann

 \equiv

ミト

4 n + 4 n + 4 F

Projection algorithms

• the Douglas–Rachford method, the focus of this talk

Brailey Sims [Cyclic D-R](#page-0-0)

 $4.171 - 16$

 \equiv

Projection algorithms III

• Dykstra's projection algorithm

Edsger Wybe Dijkstra

Of course, there are also many variants to all of these.

 \leftarrow \Box

Projection algorithms III

• Dykstra's projection algorithm

Edsger Wybe Dijkstra

Of course, there are also many variants to all of these.

 \leftarrow \Box

- If the sets are closed affine subspaces, alternating $projections = Dykstra's method$
- If the sets are hyperplanes, alternating projections $=$ Dykstra's $method = Kaczmarz's method$
- If the sets are half-spaces, alternating projections $=$ the method of Agmon, Motzkin and Schoenberg (MAMS), and $Dykstra's method = Hildreth's method$
- Applied to the phase retrieval problem, alternating $projection = error reduction$, Dykstra's method $=$ Fienup's BIO , and Douglas–Rachford $=$ Fienup's HIO

イロト イ何ト イラト イラト

- If the sets are closed affine subspaces, alternating $projections = Dykstra's method$
- If the sets are hyperplanes, alternating projections $=$ Dykstra's $method = Kaczmarz's method$
- If the sets are half-spaces, alternating projections $=$ the method of Agmon, Motzkin and Schoenberg (MAMS), and $Dykstra's method = Hildreth's method$
- Applied to the phase retrieval problem, alternating $projection = error reduction$, Dykstra's method $=$ Fienup's BIO , and Douglas–Rachford $=$ Fienup's HIO

イロト イ何ト イラト イラト

- If the sets are closed affine subspaces, alternating $projections = Dykstra's method$
- If the sets are hyperplanes, alternating projections $=$ Dykstra's $method = Kaczmarz's method$
- If the sets are half-spaces, alternating projections $=$ the method of Agmon, Motzkin and Schoenberg (MAMS), and Dykstra's method $=$ Hildreth's method
- Applied to the phase retrieval problem, alternating $projection = error reduction$, Dykstra's method $=$ Fienup's BIO , and Douglas–Rachford $=$ Fienup's HIO

- 4 伊 ト 4 ミ ト 4 ミ ト

- If the sets are closed affine subspaces, alternating $projections = Dykstra's method$
- If the sets are hyperplanes, alternating projections $=$ Dykstra's $method = Kaczmarz's method$
- If the sets are half-spaces, alternating projections $=$ the method of Agmon, Motzkin and Schoenberg (MAMS), and Dykstra's method $=$ Hildreth's method
- Applied to the phase retrieval problem, alternating projections $=$ error reduction, Dykstra's method $=$ Fienup's BIO , and Douglas–Rachford $=$ Fienup's HIO

- オ国 ト オラ ト オラト

The setting and problem

Throughout, H is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$.

We use $\stackrel{w}{\rightharpoonup}$ to denote weak convergence,

$$
x_n \stackrel{w}{\rightharpoonup} x
$$
 iff $\langle x_n y \rangle \to \langle x, y \rangle$, for all $y \in \mathcal{H}$.

We are concerned with the N -set convex feasibility problem:

Find
$$
x \in \bigcap_{i=1}^{N} C_i \neq \emptyset
$$
 where $C_i \subseteq \mathcal{H}$ are closed and convex. (1)

The setting and problem

Throughout, H is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$.

We use $\stackrel{w}{\rightarrow}$ to denote weak convergence,

$$
x_n \stackrel{w}{\rightharpoonup} x
$$
 iff $\langle x_n y \rangle \to \langle x, y \rangle$, for all $y \in \mathcal{H}$.

We are concerned with the N -set convex feasibility problem:

Find
$$
x \in \bigcap_{i=1}^{N} C_i \neq \emptyset
$$
 where $C_i \subseteq \mathcal{H}$ are closed and convex. (1)

Projections and reflections

For a Tchebychev (hence, any nonempty closed convex) $A \subseteq \mathcal{H}$ and $x \in \mathcal{H}$ the nearest point projection of x onto A is,

$$
P_A(x) := \operatorname{argmin} \{ \|x - c\| : c \in A \} = \{c_x\}.
$$

Reflection in A is the operator $R_A : \mathcal{H} \to \mathcal{H}$ defined by $R_A := 2P_A - I$ where I denotes the *identity* operator mapping any $x \in \mathcal{H}$ to itself.

Brailey Sims [Cyclic D-R](#page-0-0)

Projections and reflections

For a Tchebychev (hence, any nonempty closed convex) $A \subseteq \mathcal{H}$ and $x \in \mathcal{H}$ the nearest point projection of x onto A is,

$$
P_A(x) := \operatorname{argmin} \{ \|x - c\| : c \in A \} = \{c_x\}.
$$

Reflection in A is the operator $R_A : \mathcal{H} \to \mathcal{H}$ defined by $R_A := 2P_A - I$ where I denotes the *identity* operator mapping any $x \in \mathcal{H}$ to itself.

Basic facts about projections and reflections

(i) (Variational characterization of a projection)

$$
P_A(x) = a_x \iff \langle x - a_x, a - a_x \rangle \le 0 \text{ for all } a \in A.
$$

(ii) (Variational characterization of a reflection)

$$
R_A(x) = r \iff \langle x - r, a - r \rangle \le \frac{1}{2} ||x - r||^2 \text{ for all } a \in A.
$$

(iii) (Translation formula) For $y \in H$, $P_{y+A}(x) = y + P_A(x - y)$. (iv) (Dilation formula) For $0 \neq \lambda \in \mathbb{R}$, $P_{\lambda A}(x) = \lambda P_A(x/\lambda)$. (v) If A is a subspace then P_A (and hence R_A) is linear. (vi) If A is an affine subspace then P_A (and hence R_A) is affine.

na c

Form of projections

Application of the various iterative methods discussed above assumes that the projection onto each of the individual sets is relatively simple to compute. For instance:

Examples of projection operators P_C

- ▶ hyperplane $x \frac{\langle a, x \rangle \beta}{\|a\|^2}$ a, when $C = \{x \in X \mid \langle a, x \rangle = \beta\};$
- ► positive orthant x_i^+ = max $\{x_i, 0\}$;
- halfspace $x \frac{(\langle a, x \rangle \beta)^{+}}{\|\mathbf{a}\|^2} a$, when $C = \{x \in X \mid \langle a, x \rangle \leq \beta\};$
- \blacktriangleright stripes
- ► unit ball $x/||x||$ if $||x|| > 1$;
- affine subspace $x A^{\dagger}(Ax b)$, when $C = A^{-1}b$.
- \blacktriangleright boxes
- ► Fourier magnitude constraints $y(\omega)/|y(\omega)|\gamma(\omega)$
- nearest positive semidefinite matrix $U\Lambda^+U^T$, where $U\Lambda U^T \in \mathbb{S}^{n}$
- ► nearest unit vector e_i , where $\langle e_i, x \rangle = \max_{i \in I} \langle e_i, x \rangle$;
- \blacktriangleright dilations, translations of the above

Nonexpansive and firmly nonexpansive maps

Let $D \subseteq \mathcal{H}$ and $T : D \to \mathcal{H}$.

We say T is *asymptotically regular* if $\|T^nx-T^{n+1}x\|\to 0,$ for all $x \in \mathcal{D}$.

We denote the set of fixed points of T by $Fix T = \{x : Tx = x\}$. We say T is nonexpansive if

$$
||Tx - Ty|| \le ||x - y||
$$
 for all $x, y \in D$

We say T is firmly nonexpansive if

$$
\|Tx-Ty\|^2+\|(I-T)x-(I-T)y\|^2\leq \|x-y\|^2\text{ for all }x,y\in D.
$$

It follows that every firmly nonexpansive mapping is nonexpansive.

Basic facts for nonexpansive and firmly nonexpansive maps

- (i) The class of nonexpansive maps is closed under convex combinations and compositions (this is not true for the class of firmly nonexpansive maps)
- (ii) A nonexpansive self-map of a nonempty closed convex subset of H has a fixed point
- (iii) The following are equivalent

\n- (a)
$$
T: D \to \mathcal{H}
$$
 is firmly nonexpansive
\n- (b) $\langle Tx - Ty, x - y \rangle \geq ||Tx - Ty||^2$ for all $x, y \in D$
\n- (c) $||Tx - Ty|| \leq ||((1 - t)x + tTx) - ((1 - t)y + tTy)||$ for all $t \in [0, 1]$ and all $x, y \in D$
\n- (d) $T = \frac{1}{2}(I + V)$, where $V: D \to \mathcal{H}$ is nonexpansive
\n- (e) $2T - I$ is nonexpansive
\n

Brailey Sims [Cyclic D-R](#page-0-0)

 OQ

Key examples of nonexpansive and firmly nonexpansive maps

Let $A, B \subseteq \mathcal{H}$ be closed and convex. Then,

(i) P_A is firmly nonexpansive, hence (ii) R_A is nonexpansive and (iii) $T_{A,B} := \frac{1}{2}(I + R_B R_A)$ is firmly nonexpansive. A sufficient condition for a firmly nonexpansive map T to be asymptomatic regular is that $Fix T \neq \emptyset$.

Although composites of firmly nonexpansive maps need not be firmly nonexpansive (even the composition of two projections onto subspaces need not be firmly nonexpansive [Censor and Reich, 1997]), this extends [Reich, 1987]:

Lemma

Let $T_i: \mathcal{H} \to \mathcal{H}$ be firmly nonexpansive, for $i=1,\,2,\,\cdots,\,r$, and define $T := T_r \dots T_2 T_1$. If $\text{Fix } T \neq \emptyset$ then T is asymptotically regular.

イロト イタト イチト イチト

Some basic results II

The following characterizes fixed points of certain compositions of firmly nonexpansive operators [Bauschke, 2011].

Lemma

Let $T_i:\mathcal{H}\rightarrow \mathcal{H}$ be firmly nonexpansive, for each i , and define $T := T_r \dots T_2 T_1$. If $F := \bigcap_{i=1}^r \text{Fix } T_i \neq \emptyset$ then $\text{Fix } T = F$.

Douglas-Rachford for two sets

The Douglas-Rachford algorithm (also known as Reflect-Reflect-Average) was introduced in 1956 in connection with numerical solutions for certain heat conduction problems. It consists of iterating the operator

$$
T_{A,B} := \frac{1}{2}(I + R_B R_A)
$$
 (2)

$$
= P_B(2P_A - I) + (I - P_A)
$$
 (3)

 OQ

And led to:

Let $A, B \subseteq \mathcal{H}$ be closed and convex. For any $x_0 \in \mathcal{H}$, the sequence $T^n_{A,B}x_0$ converges weakly to a point x such that $P_Ax\in A\cap B.$

Douglas-Rachford for two sets

The Douglas-Rachford algorithm (also known as Reflect-Reflect-Average) was introduced in 1956 in connection with numerical solutions for certain heat conduction problems. It consists of iterating the operator

$$
T_{A,B} := \frac{1}{2}(I + R_B R_A)
$$
 (2)

$$
= P_B(2P_A - I) + (I - P_A)
$$
 (3)

 $\alpha \alpha$

And led to:

Theorem

Let $A, B \subseteq \mathcal{H}$ be closed and convex. For any $x_0 \in \mathcal{H}$, the sequence $T^n_{A,B}x_0$ converges weakly to a point x such that $P_Ax\in A\cap B.$

2 set Douglas-Rachford

イロト イ団ト イミト

 \rightarrow \equiv \rightarrow

 \equiv

 $\circledcirc \circledcirc \circledcirc$

Lions and Mercier

This was proved by Lions and Mercier in 1979.

Pierre-Louis Lions Bertrand Mercier

 $+$ n $+$ $+$ \oplus

 OQ

三

Proof of D-R

There are many way to prove Theorem [3.](#page-29-0) One is to use the following well known theorem together with the facts collected above and the observation from [3](#page-29-1) that $P_A Fix T_{A,B} = A \cap B$.

Theorem (Opial, 1967)

Let $T : \mathcal{H} \to \mathcal{H}$ be nonexpansive, asymptotically regular, and $\operatorname{Fix} T\neq \emptyset$. Then for any $x_0\in {\mathcal H}$, T^nx_0 converges weakly to an element of Fix T.

Zdzislaw Opial 1930 [–1](#page-32-0)[97](#page-34-0)[4](#page-32-0)

 OQ

Brailey Sims [Cyclic D-R](#page-0-0)

Proof of D-R continued

Further, when T is linear, the limit can be identified and convergence is in norm.

Theorem

Let $T: \mathcal{H} \to \mathcal{H}$ be linear, nonexpansive and asymptotically regular. Then for any $x_0 \in \mathcal{H}$,

$$
\lim_{n \to \infty} \|T^n x_0 - P_{\ker T} x_0\| = 0.
$$

Why D-R

Interest in the Douglas–Rachford iteration is in part due to its excellent performance, despite a lack of theoretical justification, on various problems involving one or more non-convex sets. For example:

- in phase retrieval problems arising in the context of image reconstruction [Bauschke, Combettes and Luke, 2002] - Hubble telescope.
- various NP-complete combinatorial problems including Boolean satisfiability and Sudoku [Elser, 2997].

In contrast, von Neumann's alternating projection method applied to such problems often fails to converge satisfactorily.

n a r

Interest in the Douglas–Rachford iteration is in part due to its excellent performance, despite a lack of theoretical justification, on various problems involving one or more non-convex sets. For example:

- in phase retrieval problems arising in the context of image reconstruction [Bauschke, Combettes and Luke, 2002] - Hubble telescope.
- various NP-complete combinatorial problems including Boolean satisfiability and Sudoku [Elser, 2997].

In contrast, von Neumann's alternating projection method applied to such problems often fails to converge satisfactorily.

na c

Interest in the Douglas–Rachford iteration is in part due to its excellent performance, despite a lack of theoretical justification, on various problems involving one or more non-convex sets. For example:

- in phase retrieval problems arising in the context of image reconstruction [Bauschke, Combettes and Luke, 2002] - Hubble telescope.
- various NP-complete combinatorial problems including Boolean satisfiability and Sudoku [Elser, 2997].

In contrast, von Neumann's alternating projection method applied to such problems often fails to converge satisfactorily.

Interest in the Douglas–Rachford iteration is in part due to its excellent performance, despite a lack of theoretical justification, on various problems involving one or more non-convex sets. For example:

- in phase retrieval problems arising in the context of image reconstruction [Bauschke, Combettes and Luke, 2002] - Hubble telescope.
- various NP-complete combinatorial problems including Boolean satisfiability and Sudoku [Elser, 2997].

In contrast, von Neumann's alternating projection method applied to such problems often fails to converge satisfactorily.

Borwein and S have provided limited theoretical justification for non-convex Douglas–Rachford iterations, proving local convergence for a prototypical instance involving a sphere and an affine subspace in Euclidean space.

Even more recently, a local version of firm nonexpansivity has been utilized by Hesse and Luke to obtain local convergence of the Douglas–Rachford method in a limited non-convex framework.

These two sets of results are Complementary and do not directly overlap one another.

From 2 to N sets

Most projection algorithms can be extended to the N -set convex feasibility problem without significant modification.

An exception is the Douglas–Rachford method, for which only the theory of 2-set feasibility problems has so far been successfully investigated.

One approach is to reduce an $N > 2$ set problem to an equivalent 2-set feasibility problem posed in a product space to which Douglas–Rachford can be applied.

In which case the iteration effectively becomes: 'parallel' reflect in each set and then average – a scheme also known as divide and concur.

How to Divide and Concur

To find a point in the intersection of N sets $A_1, A_2, \ldots A_k, \ldots, A_N$ in H we can instead consider the subset $A := \prod\limits A_k$ and the (diagonal) subspace N $k=1$ $B := \{x = (x_1, x_2, \ldots, x_N) : x_1 = x_2 = \cdots = x_N\}$ of the Hilbert space product $\prod \mathcal{H}.$ N $k=1$

Then we observe that,

 $R_A: (x_1, x_2, \ldots, x_N) \mapsto (R_{A_1} x_1, R_{A_2} x_2, \ldots, R_{A_N} x_N),$

so that the reflections are 'divided' up.

And,

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

How to Divide and Concur

To find a point in the intersection of N sets $A_1, A_2, \ldots A_k, \ldots, A_N$ in $\mathcal H$ we can instead consider the subset $A := \prod\limits A_k$ and the (diagonal) subspace N $k=1$ $B := \{x = (x_1, x_2, \ldots, x_N) : x_1 = x_2 = \cdots = x_N\}$ of the Hilbert space product $\prod \mathcal{H}.$ N $k=1$

Then we observe that,

 $R_A: (x_1, x_2, \ldots, x_N) \mapsto (R_{A_1} x_1, R_{A_2} x_2, \ldots, R_{A_N} x_N),$

so that the reflections are 'divided' up.

And,

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

Divide and Concur continued

$$
P_B(x) = \left(\frac{x_1 + x_2 + \dots + x_N}{N}, \dots, \frac{x_1 + x_2 + \dots + x_N}{N}\right),
$$

so that the projection and hence reflection on B are averaging ('concurrences'); thence the name.

In this form the algorithm is particularly suited to parallelization.

N–set cyclic Douglas–Rachford

We now introduce a new projection algorithm, the cyclic Douglas–Rachford iteration scheme.

For $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ define $T_{[C_1\, C_2\, ... \, C_N]}: \mathcal{H} \to \mathcal{H}$ by

$$
T_{[C_1 C_2 ... C_N]} := T_{C_N, C_1} T_{C_{N-1}, C_N} \dots T_{C_2, C_3} T_{C_1, C_2}
$$

= $\left(\frac{I + R_{C_1} R_{C_N}}{2}\right) \left(\frac{I + R_{C_N} R_{C_{N-1}}}{2}\right) \dots \left(\frac{I + R_{C_3} R_{C_2}}{2}\right)$

Given $x_0 \in \mathcal{H}$, the cyclic Douglas–Rachford method iterates by setting $x_{n+1} = T_{[C_1 C_2 ... C_N]} x_n$.

2–set cyclic Douglas–Rachford

For two sets this reduces to,

$$
T_{[C_1 C_2]} = T_{C_2, C_1} T_{C_1, C_2} = \left(\frac{I + R_{C_1} R_{C_2}}{2}\right) \left(\frac{I + R_{C_2} R_{C_1}}{2}\right).
$$

So, the 2–set cyclic Douglas–Rachford scheme does not coincide with the classic Douglas–Rachford scheme.

When there is no ambiguity we abbreviate T_{C_i,C_j} by $T_{i,j}$, and $T_{[C_1\, C_2\, ... \,C_N]}$ by $T_{[1\, 2\, ... \,N]}.$ Indices will always be understood modulo N . In particular, $T_{0,1} := T_{N,1}, T_{N,N+1} := T_{N,1}, C_0 := C_N$ and $C_{N+1} := C_1$.

We are now ready to present our main result, regarding convergence of the cyclic Douglas–Rachford scheme.

When there is no ambiguity we abbreviate T_{C_i,C_j} by $T_{i,j}$, and $T_{[C_1\, C_2\, ... \,C_N]}$ by $T_{[1\, 2\, ... \,N]}.$ Indices will always be understood modulo N . In particular, $T_{0,1} := T_{N,1}, T_{N,N+1} := T_{N,1}, C_0 := C_N$ and $C_{N+1} := C_1$.

We are now ready to present our main result, regarding convergence of the cyclic Douglas–Rachford scheme.

Convergence of cyclic Douglas–Rachford

Theorem (Cyclic Douglas–Rachford)

Let $C_1, C_2, \ldots, C_N \subseteq \mathcal{H}$ be closed and convex with nonempty intersection. For any $x_0 \in \mathcal{H}$, the sequence $T_{[1\,2\,...\,N]}^n x_0$ converges weakly to a point x such that $P_{C_i}x = P_{C_j}x$ for all i, j . Moreover, $P_{C_j} x \in \bigcap_{i=1}^N C_i$, for each j .

Proof of cyclic Douglas–Rachford

Proof:

 $T_{i,i+1}$ is firmly nonexpansive, for each i and, since $\mathrm{Fix}\, T_{i,i+1}\supseteq C_i\cap C_{i+1}.$ we have $\bigcap_{i=1}^N\mathrm{Fix}\, T_{i,i+1}\supseteq \bigcap_{i=1}^N C_i\neq \emptyset.$ So, $T_{[1\,2\ldots N]}^n x_0$ converges weakly to a point $x \in \text{Fix } T_{[1\,2...N]} = \bigcap_{i=1}^{N} \text{Fix } T_{i,i+1}.$

Further, for each i, $P_{C_i} x = P_{C_i} T_{i,i+1} x \in C_i \cap C_{i+1} \subseteq C_{i+1}$.

Now compute,

Proof of cyclic Douglas–Rachford continued

$$
\frac{1}{2} \sum_{i=1}^{N} \| P_{C_i} x - P_{C_{i-1}} x \|^2
$$
\n
$$
= \langle x, 0 \rangle + \frac{1}{2} \sum_{i=1}^{N} \left(\| P_{C_i} x \|^2 - 2 \langle P_{C_i} x, P_{C_{i-1}} x \rangle + \| P_{C_{i-1}} x \|^2 \right)
$$
\n
$$
= \left\langle x, \sum_{i=1}^{N} (P_{C_{i-1}} x - P_{C_i} x) \right\rangle - \sum_{i=1}^{N} \langle P_{C_i} x, P_{C_{i-1}} x \rangle + \sum_{i=1}^{N} \| P_{C_i} x \|^2
$$
\n
$$
= \sum_{i=1}^{N} \langle x - P_{C_i} x, P_{C_{i-1}} x - P_{C_i} x \rangle \le 0.
$$

Thus, $P_{C_i}x = P_{C_{i-1}}x$, for each *i*.

 $4.171 - 16$

Illustration I

An interactive Cinderella applet showing a cyclic Douglas–Rachford trajectory differing from von Neumann's alternating projection method. Each green dot represents a 2-set cyclic Douglas–Rachford iteration.

イロン イ母ン イヨン イヨン

Illustration II

An interactive Cinderella applet using the cyclic Douglas–Rachford method to solve a feasibility problem with two sphere constraints. Each green dot represents a 2-set cyclic Douglas–Rachford iteration.

 OQ

Еь

Illustration III

An interactive Cinderella applet showing the cyclic Douglas–Rachford method applied to the case of a non-intersecting ball and a line. The method appears convergent to a point whose projections onto the constraint sets form a best approximation pair. Each green dot represents a cyclic Douglas–Rachford iteration.

Illustration IV

Cyclic Douglas–Rachford algorithm applied to a 3-set feasibility problem in \mathbb{R}^3 .

The constraint sets are colored in blue, red and yellow. Each arrow represents a 3-set cyclic Douglas–Rac[hf](#page-54-0)o[rd](#page-56-0)[ite](#page-55-0)[r](#page-56-0)[ati](#page-0-0)[on](#page-56-0)[.](#page-0-0) OQ

Numerical experiments on instances involoving ball/sphere constraints suggest that that the cyclic Douglas–Rachford scheme outperforms divide and concur , which suffers as a result of the product formulation, although having the advantage of possible parallel implementation.

For inconsistent 2-set problems, there is evidence suggesting that the cyclic Douglas–Rachford scheme yields best approximation pairs.