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Motivation

Given finitely many closed convex sets C1,C2, · · · ,Cm in Rn with⋂m
i=1 Ci 6= ∅. Let x0 ∈ Rn. The sequence of cyclic projections, (xk )k∈N,

is defined by

x1 := P1x0, x2 := P2x1, · · · , xm := Pmxm−1, xm+1 := P1xm . . . ,

where Pi denotes the Euclidean projection to the set Ci .

Bregman showed that

xk −→ x∞ ∈
m⋂

i=1

Ci .

In this talk, we study

how fast (xk )k∈N converges a point in
m⋂

i=1

Ci .
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Notation and definitions

Throughout this talk,
Rn is a Euclidean space with the norm ‖ · ‖ and the inner product
〈·, ·〉.
Let C ⊆ Rn. The interior of C is int C and C is the norm closure of
C.
B(x0, δ) :=

{
x ∈ Rn | ‖x − x0‖ ≤ δ

}
.

[α]+ := max{α,0}.
The distance function to the set C is dist(x ,C) := infc∈C ‖x − c‖.
The projector operator to the set C is
PC(x) := {c ∈ C | ‖y − c‖ = dist(x ,C)}.
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Notation and definitions

x0

PC(x0)C

distC(x0) = ‖x0 − PC(x0)‖

Figure : The projection of the point x0 to the set C.

β(n) :=
( n
[n/2]

)
is the central binomial coefficient with respect to n.
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Notation and definitions

f : Rn → R is a polynomial if

f (x) :=
∑

0≤|α|≤r

λαxα,

where λα ∈ R, x = (x1, · · · , xn), xα := xα1
1 · · · xαn

n , αi ∈ N ∪ {0},
and |α| :=

∑n
j=1 αj . The corresponding constant r is called the

degree of f .

A polynomial f is constant on [x , y ]⇒ f is constant on aff [x , y ].

We say that C is a semi-algebraic convex set if

C = {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,N},

where gi is convex polynomial for every i = 1, . . . ,N.
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Notation and definitions

From now on we assume that

m ∈ N, γi ∈ N, i = 1, . . . ,m
gi,1,gi,2, · · · ,gi,γi are convex polynomials onRn

Ci :=
{

x ∈ Rn | gi,1(x) ≤ 0,gi,2(x) ≤ 0, · · · ,gi,γi (x) ≤ 0
}

Pi := PCi

C :=
m⋂

i=1

Ci 6= ∅.
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Auxiliary results

Fact 1. (Kollár, 1999)
Let gi be polynomials on Rn with degree ≤ d for every i = 1, · · · ,m.
Let g(x) := max1≤i≤m gi(x). Suppose that there exists ε0 > 0 such that
g(x) > 0 for all x ∈ B(0, ε0)\{0}. Then there exist constants c, ε > 0
such that

‖x‖ ≤ c g(x)
1

β(n−1)dn , ∀‖x‖ ≤ ε.

Fact 2. (Li, 2010)
Let g be a convex polynomial on Rn with degree at most d . Let
S := {x | g(x) ≤ 0} and x̄ ∈ S. Then there exist constants c, ε > 0
such that

dist(x ,S) ≤ c [g(x)]
1

(d−1)n+1
+ , ∀‖x − x̄‖ ≤ ε.
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Theorem 1. (Local error bounds for convex polynomial systems)
Let gi be convex polynomials on Rn with degree at most d for every
i = 1, · · · ,m. Let S := {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,m} and x̄ ∈ S.
Then there exist c, ε > 0 such that

dist(x ,S) ≤ c
(

max1≤i≤m[gi(x)]+
)τ ∀‖x − x‖ ≤ ε,

where [α]+ := max{α,0}, τ := max
{ 2
(2d−1)n+1 ,

1
β(n−1)dn

}
, β(n − 1) is

the central binomial coefficient with respect to n − 1 which is given by( n−1
[(n−1)/2]

)
.
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Theorem 2. (Hölderian regularity)
Let θ > 0 and K ⊆ Rn be a compact set. Then there exists c > 0 such
that

distθ(x ,C) ≤ c
( m∑

i=1

distθ(x ,Ci)

)τ
, ∀x ∈ K ,

where τ := 1
min
{

(2d−1)n+1
2 , β(n−1)dn

} and β(n − 1) is the central binomial

coefficient with respect to n − 1 which is given by
( n−1
[(n−1)/2]

)
.
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Our Main result

Theorem 3. (Cyclic convergence rate)
Suppose that d > 1. Let x0 ∈ Rn and the sequence of cyclic
projections, (xk )k∈N, be defined by

x1 := P1x0, x2 := P2x1, · · · , xm := Pmxm−1, xm+1 := P1xm . . . .

Then xk converges to x∞ ∈ C, and there exists M > 0 such that

‖xk − x∞‖ ≤ M
1
kρ
, ∀k ∈ N,

where ρ := 1
min
{
(2d−1)n−1, 2β(n−1)dn−2

} and β(n − 1) is the central

binomial coefficient with respect to n − 1 which is given by
( n−1
[(n−1)/2]

)
.
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von Neumann alternating projection

When m = 2, we can consider the general case where the intersection
of these two sets is (possibly) empty.

We assume that

gi ,hj are convex polynomials with degree at most d
A := {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,m}
B := {x ∈ Rn | hj(x) ≤ 0, j = 1, · · · , l}
b0 ∈ Rn, ak+1 := PAbk , bk+1 := PBak+1.

Liangjin Yao (University of Newcastle) cyclic projection algorithm on semialgebraic convex sets June 3rd, 2013 12 / 25



von Neumann alternating projection

Theorem 4. (von Neumann alternating projection)
Assume d > 1. Then ak −→ ã ∈ A and bk −→ b̃ ∈ B with b̃ − ã = v
where v := PB−A0. Moreover, there exists M > 0 such that

‖ak − ã‖ ≤ M
1
kρ

and ‖bk ,−b‖ ≤ M
1
kρ
, ∀k ∈ N,

where ρ := 1
min
{
(2d−1)n−1, 2β(n−1)dn−2

} and β(n − 1) is the central

binomial coefficient with respect to n − 1 which is given by
( n−1
[(n−1)/2]

)
.

Remark 1. The intersection of these two sets A and B is (possibly)
empty.
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Examples and Applications

Example 1.
Let

C1 := {(x , y) ∈ R2 | (x + 1)2 + y2 − 1 ≤ 0}
C2 := {(x , y) ∈ R2 | x + y − 1 ≤ 0}
C3 := {(x , y) ∈ R2 | (x − 1)2 + y2 − 1 ≤ 0}
C4 := {(x , y) ∈ R2 | x + (y + 2)2 − 4 ≤ 0}.

Take x0 ∈ R2. Let (xk )k∈N be defined by

x1 := P1x0, x2 := P2x1, x3 := P3x2, x4 := P4x3, x5 := P1x4 . . .

Then ‖xk‖ = O( 1

k
1
6

).
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Examples and Applications

Example 2.
Let α ≥ 0 and

A := (−1,0) + B(0,1) and B :=
{

(x , y) ∈ R2 | −x + α ≤ 0
}
.

Let (ak )k∈N and (bk )k∈N be defined by

b0 ∈ R2, ak+1 := PAbk , bk+1 := PBak+1.

Then for every k ≥ 2

bk =
(
α,

t1√
(1 + α)2(k−1) + t2

1
∑k−2

i=0 ((1 + α)2i

)
ak+1 =

(
− 1 +

α + 1√
(α + 1)2 +

t2
1

(1+α)2(k−1)+t2
1
∑k−2

i=0 ((1+α)2i

,

t1√
(1 + α)2k + t2

1
∑k−1

i=0 ((1 + α)2i

)
.
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Example 2 continued

Consequently,

If α = 0, ak −→ 0 and bk −→ (α,0) at the rate of k−
1
2

if α 6= 0(then A ∩ B = ∅),

ak −→ 0 and bk −→ (α,0) at the rate of (1 + α)−k .

Remark 2.
According to Theorem 4, we can only deduce that (ak )k∈N in
Example 2 converges to (0,0) and (bk )k∈N converge to (α,0) at the
rate of at least of k−

1
6 .
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Examples and Applications

Example 3.
Let

A :=
{

(x , y) ∈ R2 | (x + 1)2 + y2 − 1 ≤ 0
}

B :=
{

(x , y) ∈ R2 | (x − 1)2 + y2 − 1 ≤ 0
}
.

Let (x0, y0) ∈ R2 and (xk , yk )k∈N be defined by

(x1, y1) := PA(x0, y0), (x2, y2) := PB(x1, y1), (x3, y3) := PA(x2, y2), · · · .

Figure 2 depicts the algorithm’s trajectory with starting point (0,2).
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Example 3 continued

Figure : The iteration commencing at (0,2).
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Example 3 continued

Since (xk , yk ) ∈ bdry A ∪ bdry B, rk :=
√

x2
k + y2

k satisfies r2
k = 2αk ,

where αk := |xk |. Hence

1− αk+1 =
1 + αk√
1 + 4αk

.

Linearizing the above equation, set wk := 4αk to obtain

wk+1 ≈ wk (1− wk ) and then
1

wk+1
− 1

wk
=

1
1− wk

.

When summing and dividing by N, leads to

lim
N→∞

1
NwN

= lim
N→∞

(
1

NwN
− 1

Nw0

)
= lim

N→∞

1
N

N−1∑
k=0

1
1− wk

= lim
N→∞

1
1− wN

= 1 (since (xk , yk ) −→ 0).

Liangjin Yao (University of Newcastle) cyclic projection algorithm on semialgebraic convex sets June 3rd, 2013 19 / 25



Example 3 ended

Then we have √
x2

k + y2
k ∼

1√
2k
.

Hence (xk )k∈N and (yk )k∈N converge to 0 and at the rate of k−
1
2 .

Remark 3.
According to Theorem 4, we can only deduce that (xk )k∈N and (yk )k∈N

in Example 3 converge to (0,0) at the rate of at least of k−
1
6 .
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Examples and Applications

Example 4.
Let A,B be defined by

A :=
{

(x , y) ∈ R2 | x ≤ 0
}

and B :=
{

(x , y) ∈ R2 | y2 − x ≤ 0
}
.

Let b0 ∈ R× R+ with ‖b0‖ ≤ 1, and (ak )k∈N, (bk )k∈N be defined by

ak+1 := PAbk , bk+1 := PBak+1.

Then

(ak )k∈N and (bk )k∈N converge to 0 at the rate of at exactly of k−
1
2 .

Remark 4.
According to Theorem 4, we can only deduce that (ak )k∈N and (bk )k∈N

in Example 4 converge to (0,0) at the rate of at least of k−
1
6 .
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Conclusion and questions

Our explicit examples show that, in general, our estimate of the
convergence rate of the cyclic projection algorithm will not be tight.
It would be interesting to see how one can sharpen the estimate
obtained in this talk and get a tight estimate for the cyclic
projection algorithm.
Can we extend the approach here to analyze the convergence
rate of the Douglas-Rachford algorithm?
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Thanks for your attention

Thanks for your attention.
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