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Dear Student,

These are the complete notes for the last half of Second
Semester option: Sturm-Liouville Theory.

As you will see, this theory has its origins very much in
applied mathematics. Most of the material results from the research of
two French mathematicians, Joseph Liocuville {1809-82) and Charles Sturm
(1803-55) , although naturally our treatment uses some more modern
language and concepts. Sturm and Liouville pioneered the direct approach
to differerantial and other kinds of equations: finding information
about the behaviour of their solutions without being concerned with the
search for explicit solutions. Their work solved and unified many of
the then current problems of mathematical physics, and is still of
central importance to modern science. It also established a foundation
and direction for subsequent developments in analysis.

In the first few pages we have tried to indicate how the
theory interacts with physical problems. This material is included
for interest only - particularly for those of you who have studied some
applied mathematics or physics - but without mastering the detail, vou
should soon be convinced that the differential equations we are studying
have many applications and that the sortsof questions we shall seek to
answer about them are ones that arise naturally in physical contexts.
Even without the applications, there is much to interest the pure
mathematician. Differential equations of a form like

y* + a(x)y' + b(x)y = 0

are sufficiently "simple" to have an appeal to anyone who has studied
differentiation beyond the most elementary level, and it is then
"natural" to ask questions about the existence and behaviour of solutions.

The course proper may be considered to start at P.8; the
material to be covered is indicated in the list of contents following
this letter. Book-work and problem-solving are equally important aspects
of a course like this. We do not expect complete mastery of the material,
some of which is both intricate and abstract, but rather, we would like
you to gain some broad coherent oversight of this area of mathematics -
its accomplishments and techniques, as well as being able to answer the
simpler of the specific problems. The proofs of the shorter theorems
may be regarded as examinable (particularlythose on pp.8-11, 13-14 and
26-27); for the longer proofs {e.q. that on Pp-29-32), you should be
gble to describe the general strategy and major steps rather than
necessarily reproduce the mass of intricate {usually trivial) calculations.

For the most part, the calculus techniques we shall require
are simply those of differentiation (in particular, the rules for the First
and second derivatives of a product) and elementary integration. You
may find it helpful to reread some of your earlier notes or texthooks on
a few aspects of differential equations: integrating factors, particular
and general solutions, etc. Many of the results generalize concepts
you have met in the Linear Algebra course (eigenvalues, eigenvectors, ete.),
but apart from the language and a few elementary ideas (linear independence;
and linear operator (alsc called mapping)), we shall not make much demands
on that topic. Because it involves practically no additional work, we have
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presented some of the theory in terms of complex-valued functiong; if
you wish, at first reading, you might ignore this and consider the
functions to be real-valued: at some-stages, this means you simply
ignore any conjugation (a + ib # a + ib = a - ib) since this has no
effect on real numbers. Some abbreviated notations have been used for

caleculns concepts; generally, functions are dencted by single letters
like a,b, rather than a{x), b(x); ' is widely used for differentiation,

as in (xy')' for a%{x gﬁa; dx or dt is often omitted in the notation

for an integral, as is also the lower limit of integration if thdis need

not be specified, e.qg.
X X
f a means J a(t)dt
3

where { may be assigned any convenient value.

Unfortunately there seems to be no texthook suitable for
this course. We hope these notes will be sufficiently ccherent for you
to follow without too much difficulty. Two books are referred to
occasionally in the notes; these and some other references that could
be consulted for further information are listed at the end of the notes.
In any case, if you have any gueries about any topic covered, or any
aspect of the course, please do not hestiate to contact me.

I am sorry to be so late in issuing these notes, but T
hope that you will find the course interesting and enjoyable.

Wishing you every success in your studies,

£ 19 v

E.W. Bowen,

5th september, 1978
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STURM-LIOUVILLE THEORY

Introduction
i S S

The mathematical expression of many problems from the natural sciences:

Physies, Chemistry, Geology and the life sciences, leads to differential

equations of the Form

alx}y" + b(x)y' + c(x)y = f(x).

Some of the more commonly occurring of these are listed in the following table

together with a few of the situations in which they apise.

vy + by' + ey = £(x)

(b, ¢ constants)

Forced vibrations of mechanical
and electrical systems, Simple

ecological models.

Euler {or Cauchy) Equation
x2yM 4 bxy' + ey = F(x)

(b, ¢ constants)

Some potential problems with

circular symmetry.

Bessel Equation (solutions of
order v)

xZyn xy' + (%2 - vy = 0

Vibrational, gravitational and
electromagnetic potential
problems with eylindrical
symmetry. Diffraction problems
(astronomy) resolving power of
optical instruments.

Chemistry, Biochemistry.

Airy Equation
y' - xy = 0
(Essentially a Bessel Equation)

Scattering problems (atomic
collisions,.rainbows). Quantum
description of a particle in a

uniform field.

Legendre Equation
(1 - %2y - Zxy' + n{n + 1)y = 0

Potential problems (as for
Bessel's) with spherical symmetry.
Including quantum models of the

Hydrogen atom.

Laguerre Equation

®y" + (1 - x)y' +ny = 0

Radial structure of the quantum

mechanical hydrogen atom.

Hermite Equation

y' + 2xy' + 2ny = 0

Quantum mechanical Harmonic

Oscillator.




Tchebyshev Equation Theory of Filters

(L - x2)y" - xy' + 02y = 0 (Telecommunications).
Hypergeometric Equation Unifies a broad class of

#{(L - x)y" + (e - (a + b+ L))y - aby = 0 special functions. Statistics.
Mathieu Equation Vibration of elliptical

y'"+ (a+ Db sin x)y = 0 membranes.

The above applications, and most of the later examples, are drawn Erom physics,
not because analogous problems do not occur in all the other branchs of science,
but simply because it is the area of which T am least ignorant.

No such table would be even partially complete without adding the one-dimensional

Schradinger Equation

2
1255 "4 [E - P(x)]9 = 0

determining the probability demsity function, |¢(x)]2, for the position of a
particle, mass m, of total emergy E and potential energy P(x) confined to 'motiom'
along a straight line.

Except in special cases, none of the above equations (with the possible
exception of the first two) have soluticns which can be expressed as finite
combinations of the elementary functions* (x » x, sin, cos, exp, and their
inverses). Their solutions belong to the class of special functions (Bessel's
functions, gamma functions ete.) whose individual properties were intensively
researched during the 19th century, and are still of great interest to the
applied mathematician and scientist of today.

In the absence of such elementary closed form solutions it becomes important
to establish techniques whereby the behaviour of solutions can be studied
directly from the equations. Even in cases where a2 closed form solution is
available, it frequently proves less tedious to work from the equation itself
rather than employ the solution.

In this course we develop some general theories which enable us to probe
(at least qualitatively) certain aspects of solutions to such equations.

The thorny question of whether or not the eguations under consideration do
indeed possess solutions will not be tackled (see PMI notes and Boyce and diPrime
§2.11), we will assume that solutions exist and when necessary that they are

unique.

* In many cases however, solutions can be expressed as infinite series, products,
ete. of these elementary Ffunctions.



Throughout it is well to bear in mind the trivial, yet powerful,
observation that since a solution to a differential equation must be a priori

differentiable, it is therefore continuous.

Examples
We now examine specific cases which may help motivate the type of questioms
considered in the ensuing work and how they can arise. The underlying physics

is included for interest only and is not an examinable part of the course.

1. VIBRATING MEMBRANES

We begin by deriving the equation of motion Ffor small amplitude transverse
vibrations of an 'infinite' plane membrane of density p per unit of area, under
‘a uniform tension t (per unit of length). For our later work it will be convenient

if we work in polar coordinates (r, ¢).

An 'infinitesimal' element of the membrane surface such as illustrated in

figure 1(a) is subject to the foreces indicated on the diagram.
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If, due to slight vertical distortions of the membrane, the cross-sectional

views of -the element are as shown in figures 1(b) and (c), we have

total vertical force on element
= tér(sin(8 + 68) - sin 8) + r + 6r)&p sin(y + 6P) - réd sin )
= 16§06 + Trédd) +tdrdpy
(since 8 and ¢ are small and 88, 8P even smaller).
S0, if y denotes the vertical displacement of the element, we have, from

Newton's second law

2
prégsr %E%': T{rspsy + Srddy + Srdo)

The approximation becoming more nearly exact the smaller the values of 6p

and G&¢.

~ - 3y = - 3y
Now, ¥ = tan ¥ = e and 6 tan 0 = 798
whence
oy 3y
8%y . . (50 L3, 6[r8¢]
at ér T or pade)

and so, passing to the limit as 8, 8¢ + 0 we recognise this as

at2 are © r 12 942
or
2 2 2
2, - 87y 13y 1 3% _p 3%y
vy av2 ' T ap T 12 22 ~ T 3t2

where V2 (= A) is the two-dimensional Laplacian operator, here expressed for
polar coordinates. This partial differential equation is the two dimensicnal

Wave equation in polar coordinates.. (What is the form of the equation in

rectangular coordinates?)
Solutions to the wave equation, of the form y(r,$,t) = R(r)d{4)T(t) may be

obtained by separation of variables, i.e. observing that y = R@T implies

8y _ ... ¢R 32y d?R
—_— —_ =0 —_—
5o - T ar* bz - T arz oo
we obtain
d?R 1 _ dR 1 d2¢ _ p . 42T
HT —— _ —_ —_— PE R SR o ) QR
oT vz T T ot dr ' 72 RT $2 T RY d+?



or dividing throughout by y = ReT,

d?R L dR 1 a% 42T
dr?2 " pdr 12 d¢Z p dr?
+ - = = 2

R ] T T

which is of the form: a function of v and ¢ only equals a function of t only,
and =0 we conclude that both sides must equal a common constant p. (Prove)

Thus T is determined by

—-..._.dzT = U_’E_ T
dt2 p
while
d?R 1 drR 1 4%
dr2 ' p dr + 2 a2 _
R @ s H
da?r | 1 4r -d2a
2 2
or 2[dr R r dr -yl = d$ = & constant

4, say (for similar reasons to above).

Consequently ¢ is given by

d2g . sin
— = =) L} =
T2 Ad (solutions o(¢) cos YA d)

and clearly, unless our membrane is schizophrenic we require (¢ + 27)= &(¢)
for all ¢, which in general necessitates vX = n,an integer.

R iz then a solution of

2
2dR E‘;E — e - 2 =
T a;§-+ r g + (~ur n“)JR = 0

which transforms to the Bessel equation

2
2d“R dR 2 . 12%p =
LN + x I + (x n“)R = 0

where x = V-u p. (Note: for wave-like golutions we need T(t) to vary
periodically, or yu < 0, so §-= k > 0.)
Cireular Nodes. If the circle v = a is to be g permanent node (curve of zero
amplitude "wibration") we require

yv(a,$,t) = R(a) 0(4) T(t) = 0 for all ¢ and +t
and so (unless @(¢) or T(t) = 0, i.e. the membrane is static)

R(a) = 0



or X = ka is a zero of the sclution to the above Bessel Eguation.

Vibration of a cireular drum skin. The clamped outer edge of the skin, at
r = g—(where D is the diameter of the drum head), must be a node. Thus if
0 <z < 2y < 23 < .... are successive zeros of the solution to the Bessel
equation

xzy” + xy' + (%2 - nz)y =0

we require k to be such that

D .
5 = kz] (4 =1, 2, ...
Thus the possible values of p = -k2 are
Dz .
UI“H(]:].,Q,S,...)

and via the equation for T, these values determine the frequency of vibraticn
of the skin.

The mode of vibration corresponding to each of these frequencies is kncﬁn as
an "harmonic'.

We therefore see that it i1s desirable to determine the existence and

location of zero's to solutions of equations such as the one considered here.

Often, by touching the centre of the skin, a drummer introduces a node at the
centre.
For a fixed n € {1,2,....}, the problem then becomes;

find values of p such that

2 dr
ZQHB. L I< R 2
r 7 +r ar n“R wr<R

has a non-trivial solution (i.e. other than R = 0) on the domain 0 S QQ%
which vanishes at the two boundary points of the domain, i.e. is such that
R{0) = 0, R(gJ = 0. {Again the values of u determine the harmonics of the drum.)

For obvious reasons such a problem is usually vreferred to as a Boundary value

problem, in contrast to the Initial value problem: find solutiomns satisfying

initial conditions,
R{rg) = Rg, R'(rg) = R'g,

specified at one point (the initial point) r = rg.

(A simpler example, and one which the student might well investigate himself,

iz afforded by the vibration of a taut, uniform string clamped at each end, which,
unlike the above illustration, iz completely tractable in terms of the elementary

functions. )



2. HYDROGEKIC IO¥

Schrodinger's equation for the 'spacial! probability density function of a
single electron (mass m, charge -e) bound to a considerably more massive neucleus

of charge Ze at the origin of a set of spherical polar coordinates (r,8,4), is

2 2
%v‘azp + [E_E___ E)Y = 0 (where E > 0).

For spherically symmetric solutions, % is a function of r only, in which case,

the form of the Laplacian operator for spherical polar coordinates, leads to the

equation
1 d d 2mZe?  2mE
2 dp (v? di) * [‘:2; - .:2)¢ =0

For the change of variables ((r) = e-ﬂxy(x), X = gr we have

dy _ dx d r -Bx _ —Bx -8x
a; = a; d—x—(e y(X)) = e Y' - ofe Y
and similarly
2 - - -
7y | 2. 7Bx v - 2028 Bx v' + 02pe Bx v,

dr2

which, upon substitution, leads to the transformed equation

2
xy" + (2 - Z2B)y' + [[ngs - 28] + [Bz - 22E2}X]Y =0

il
and so choosing B = %, o = /EE%
il

we have the "associated Laguerre Equation"

2
xy" + (2 - x)y' + Ay = 0, where A = gﬁ%_ /5%. .

We are thus lead to seek solutions of this eguation for the domain

0 < x < = which satisfy the "natural boundary conditions

y(0) and Limit y(x) are both finite.
N

n
The values of E corresponding to those values of A [E = SEQEEJ For which the

above Boundary wvalue problem has a non-trivial solution, represent the permissible

energy levels for the electron.
The zero's (if any) of the solution for a permissible energy level correspond to
"forbidden" regions for the electron.

As we have tried to indicate, many questions of applied mathematics result in



boundary value problems, & theory of Boundary wvalue problems is therefore of

considerable practical importance.

STURM'S OSCILLATION THEQORY.
In this section we investigate the existence and location of zeros for

solutions to equations of the form
y'" + alx)y! + b(x)y = 0.
RECALL xg is a zero of the fumction y if y(xg) = O.

The Licuville Normal Form

If y and v are functions related by y(x) = u(x)v(x) where u(x) > 0, for
all =, then
(a) %9 is a =zero of y if and only if %y is a zero of v

and (b} if y satisfies

y' +ay' + by = 0
then upon substitution of uv for y, we find v satisfies
uv" + (2u' + and)v' + (u" + au' + bu)v = 0.
Thus by choosing u apprepriately (subject to the constraint u > 0) we may obtain

an equation for v, of a "simpler" form than the original equation for y,

whose solutions have precisely the same zeros as solutions to the original

equation.
It is particularly suitable, to choose u such that 2u' + au = 0
®
' 1
i.e. -z-—- = bz or u(x) = e 2 I a(t)dt ,

in which case

X
u(x) > 0 providedIJ a(t)dtj< =

and the equation for v becomes

ul'l u1

LAUNE S (—-+ a—-+ bl =0
1 u
or v'' 4 (b - 4a' - %a)v = 0
. u' . . . .
since, —— = —%a and u" = -%(an)' = “(a'u - La2u) (provided a is differentiable)
. u” 2
e T “La' + ac.

The equation
v+ (b(x) - ' (%) - Ba?(x))v = 0

is the wnormal form of



y" + alx)y' + bix)y = 0

It is clear from the above derivation that the presence and location of zero's
can be studied from the normal form.
Henceforth, we will therefore only consider equations of the form

v' + I{x)y = 0.

EXAMPLES. Airy's, Mathieu's and the 1-dimensional Schrodinger eguation are
already in normal form.

Writing Bessel's equation as
1 vZy
y'" o+ ;—y' + (l - ;EJY =0 (x> 0)

we see that

1 1 -
a(x) = = (and|J =adt =|tn x|, < = for all finite x)
x i t
[ \)2
while b(x) = (1 - ;EJ:

and so the normal form of Bessel's equation is

2
v 1 1 _
v (L -t v T O
1 - uy?
or vt o+ [l + ‘“TE;T_J =0 (for = > 0)

EXERCISES.
Noting any necessary restrictions, obtain the normal form for each of the

equations listed in the previous table.

Hote: Rather than remembering the precise form of the v coefficient in the
normal form (i.e. b - %a' - %a?) it is nearly as easy to work from first

principles. You should try at least one of the above cases in this way.

Basic Theory

THEOREM. (Comvexity) If I(x) < C for a < x < B, then any non-trivial solution
of v'' + I{x)v = 0 has at most one zero between a aqnd B.

Proof. Let v be a non-trivizl solution and assume v has two consecutive zeros
gt ®1] and xp where a < ¥; < % < B. Then either v(x) > 0 for

Xy} <% < %y or vi(x) < 0 for ®x; < ®x < x3. (This follows since v is continuous
and v'(x, ) # 0, otherwise the unique solution satisfying v(x;) = v'(x;) = 0

would be v = 0.}
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In case v(x) > 0 for x; < x < x; we have v"'(x) = -I(x)v(x) > 0 For every
x between x) and xy but, since v(x1) = v(xp) = 0 there must exist a point xg
between x; and xy at which v attains a maximum; then v'(xg) = 0 and
vii(xg) <0, contradicting v'"(xq) > 0.
We therefore conclude that in this
case there do not exist consecutive
zeros of v between o and B and so v
has at most one zero in the interval.

A similar argument applies in the

—— e = —

case

<

4 7=

X
L8]
7
el

v{x) < 0 for ®) <R < Hp.
]

EXAMPLE. The equation y" - xay = 0 satisfies the conditions of the theorem for
all x with € < x < » (where e is any strictly positive number). So, there is at

most one zeroc greater than e,

THEOREM (Sturm's Theorem). Let u and v be non—trivial solutions of
v+ I(x)v = 0 and u" + J(x)u = 0 respectively where I(x) > J(x) for all x

with o < x < . Then v has at least ome zero between any two consecutive seros

of u, provided these are both between o and B.

Proof. Let %) < x, be consecutive zeros of u, both lying between o and g, and
assume v(x} # 0 for x; < x < KXo
Then both u ané v have a constant sign throughout the interval from o to

B. Without loss of generality we take both to be strictly positive i.e.
u(x) > 0 and v(x) > 0 for all x with x; < x < Xo

(possible, since -u and -v are also solutions satisfying the required conditions).
Now construct
wix) = v(x)u'(x) - ulx)v'(x), then
w(xy) 2 0 (since u(x;) = 0 and u(x) > 0 for X3 < X < %p and
so u'(x;) > 0) similarly
w(xy) < 0.
8o (by the Mean Value Theorem) there is a point %g between x; and x,
for which w'(xp) < 0.

But, w'(x} = v(x)u"(x) - ulx)v"(x)

[I&)—‘NXHV&hﬂX)>Dlwfmea%wmmhmsonI,J,v

and u for %3 < x < xy, contradicting w'(xp) S 0. So v must have & zero between
%] and x®s.
NOTE: This theorem remains true under the weaker assumption I(x) & J(x), I F J

for ¢ < x < B.
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COROLLARY (Spacing of Zeros Theorem)

Let T be such that 0 <m < I(x) < M for ¢ < x < B, where m, M are
constants, then if x1 and xy are two consecutive zevos of v + I(x)v = 0, with

¢ < X3 < xp < B, we have

"//ﬁ<x2—x1<7r/1/ﬂ .

0 which has a non-trivial

Proof. Coansider the comparison equation u" + Mo
solution u(x) = sin /M(x - x1) with zero at x; and the next zero at xp /AL
Now by Sturm's Theorem there is a mero of u between x; and x; so we must have

Xp > ¥y + //_'or
T/ < Xp - X3
The upper bound is established in the same manner.

EXAMFLE.

From the normal form of Bessel's Equation

_ 2
v o+ [} + 1 4U-Jv =0

Ux2
we have
1 for all x > 0, if |v|
_ 1~ u4y?
I(X)-—l']""'—l_—'_;z—m >

2 .
» for x > /&2_5__£. all other v

Thus, taking J(x) = %, we see that for sufficiently large x any solution of
Bessel's equation has a zero between nvor and (n + 1)/2w, consecutive Zeros
of a solution of u" + L4u = 0,

Further for each x; > 0 it is easily seen that we can select numbers

m(xp) and M(xg) with

- 2
m{xg) < [l + i_giﬁﬁ_J < M{xg) for all x > xg

in such a way that m(xp) and M{xg) both tend to 1 as ®p * =. Thus for large
values of x, the spacing between consecutive zeros of any non-trivial solution
to Bessel's equation is very nearly m.

Our next result extends the observation:
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(1)

y = sin x and y = cos x are linearly independent

solutions of y" + y = 0 and between each pair of consecutive zeros of the sine

function there is a zero of the cosine function (i.e. their zeros interlace).

3.!‘\

THECREM (Interlacing of Zeros). Let vy, vy be two linearly independent, non-

trivial, solutions of v" + I(x)v = 0, then between each pair of consecutive

zeros of vy there is a zero of vs.

Proof. Since v) and vy are linearly independent, twice differentiable functions

(2)

their Wronskian W(vy, vp) = vivy - v1vs is never zero, and so has constant
sign. Without loss of generality take W(vy, vy) > 0 (otherwise replace W by -W
in the following argument).

Let %1 < xp be two consecutive zeros of v; and assume vo(x) # 0 for all x

between x) and xp. So we may form the quotient %l-for all % between % and x5,
2

(1) Recall: Two functions f and g are linearly independent if a-£f(x) 4+ b-g(x)=0
for all x implies the constants a and b are both zero.

(2) If W(vy, vp) (xp) = 0 for some xp we show there exist non-zero constants
a, b with av] + bvy = 0 and so vy and Vo are not linearly independent.

Now, since v; is non-trivial, there exists a point x1] with vi{x;) # 0
and so by the continuity of vj there is an open interval J containing x;
on which v; does not vanish. So for x € J we can form the quotient

22=-fc:m which
Vi

' as W' = vy"va - vyvo!t
(22J - W(vlé va) - 0 f 1 V2 1V2
Vi vl = —IV1V2 + IV1V2
So for x € J gz- = k, a constant { =0
1
S0 W = comnstant
or Vo = le
=0 as Wixg) = 0

We now show this holds true for all x. )

From y = vy - kvy, then y(x) = 0 for all x ¢ J and so in particular
y(xg) = 0 and further since xg is an interior point of J y'(xg) = 0.
Further y, being a linear combination of the solutions vy and vy is itself
a solution of the second order equation v" + J(x)v = 0, which as we have
seen satisfies the initial conditions y(xp) = y'(xg) = 0. Clearly another
such solution would be the zero function. However the solution to such a
problem is unique and we therefore conclude that ¥ = 0or vp = kvy and so
vy and v, are not linearly independent.
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X9 v ' v X2 )
Now J [J' = [_L = 0 (as vi(x1) = vi{xp) = Q)
Va V3
f 1 ' )
But Al - Nve - vyvy _ Wy, vy S0
Vo v v2
2 2
x2 b ) 7 :
> f LglJ ) j wcv§§ ) 0 & contradiction.
2 2
X]_ Kl

Hence we cannot have vo(x) # 0 for all x between %) and xp whence there exists

x9(x) < %y < xy) with va(xp) = 0 i.e. vo has a zero between x; and xj.

Oseillatory Solutions

The presence (or absence) of oscillatory behavicur is of importance in many
physical and biological situations. Clearly the broperty of a function, y = fx),
oscilla?ing about the line y = 0 ig characterized by its repeated crossing of the

w

¥x-axis,

AY

© x\fa}%&fﬂj&\/ﬁ} > x

We therefore offer the following definition.

DEFINITION. The function f is oseillatory (ahout ¥y = 0) if there exists a

sequence of points %) < x5 < x5 < ... < g € see. with X, + = a5 n + » guch

that £(x;) = 0, i = 1,2,... and £(x) # 0 if x # X, any n.

THEOREM. If I Zs such that I(x) > m > 0 for all x > o 20, then any non-trivigl

solution of v" + I(x)v = 0 4g oscillatory.

Proof. The equation u" + mu = 0 has a non-trivial solution u(x) = sin vm x
which has zeros at x = 0, W/VE; Qﬂfﬂﬁl Bw/%ﬁ, .. and so, since Sturm's Theorem
applies, there exists zeros X1» ¥z, X3, . & of any non-trivial solution of
v'" + I(x)v = 0 with | .

Ggaékw/\/n_a< Xy < (k+l)7r//ﬁ< xp < (k+2)ﬂ//ﬁ<

* Oscillatory behaviour is not to be confused with periodiecity, which is 3

. -t . . . - . .
g§pecial case, Thus e san t is oscillatory but not periodic,
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As a consequence of the convexity theorem we also have
THECREM. If I is sueh that I{x) < 0 for all x > o Z 0, then v + I{x)v = 0

has no oseillatory solutions.

Frequently an application of the spacing of zeros theorem allows something

to be said on the "frequency" of the oscillations.

EXAMPLES.

For Bessel's equation in normal form

- 2 _
L—i)%forallx) Ll.u_.._.il

Tx) = 1 + Tz 5

and so solutions to Bessel's equation are oscillatory.

For ® > 0 the Airy equation y" - xy = 0 has I(x) = -x nepgative and so solutions
are not oscillatory. Reversing the direction of x by the substitution t = —x
we obtailn

a4

——Q—dty +ty = 0
which is oscillatory for t > 0 (i.e. x < 0).
Further, from the spacing of zeros thebrem, we conclude that

tz Sty + "/VE] where tp > 1

are consecutive zeros, i.e. the maximum spacing between zeros decreases as

T & o,

Thus, the zeros must be distributed as illustrated below, where the form of a

golution curve has also been indicated.
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EXERCISES
1. By obtaining explicit solutions Ffor the equation y" + ky = 0 (k a constant)
show that the theorems obtained so far are 'matural' generalizations of
what this equation might lead you to suspect.
2. Under what conditions does
y'+ ay' + by = 0 {(a, b constants)
have
(a) oseillatory solutions
(b) periodic solutions?

3. Discuss the existence of oscillatory solutions to Mathieu's equation

v' + (a + b sin ®x)v = 0 (a, b constants).
4. {The condition m > 0 cannot be dropped from the corollary to Sturm's Theorem. )

Show that the normal form of Fuler's equation, y" + %—xuzy = 0, has

. r .
solutions of the form y = Ax 1 + Bx" 2 where ry and vy, are appropriately
chosen real numbers and so has at most one zero greater than 0, even though

1 -2
=X

I(x) = g

> 0 for all x > 0.

5. ©Show that if v is a non-trivial solution of v" + I(x)v = 0 with I(x) > 0
for o < % < B where v'(a) = v'(B) = 0, then v has a zero between o and B.
*6. Using the result obtained for Bessel's equation, investigate the higher

harmonics of a cipcular dpum.

Boundary Value Prohlems
=====z=é;=====gg===fgggg

Finite-dimensional Analogues. Our treatmert of boundary-value ‘problems will
involve-generqlizatiqnskof,finite~dim¢nsidna1~vectcr space concepts, some

of which were-discussed-in-Sections VII,VIII of the Linear Algebra Notes,
‘e.g. elgenvalue has essentially the same meaning,  eigenvector becomes
eigenfunetion. ‘Another relevant finite-dimensional concept is th
following: - ' - - ST T

On the vector space X of complex n-tuples we can define a scalar

(colloquially, "dot") product by

5.Y = (1s %2, oees %) (0 Yas s )

X, V.

X1§1+X2§2+...+Xn§ = 573
1

n

I ~—pd

]
which has the readily established bProperties

1. x-x = 0 if and only if x = Q,
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and consequently

x-0y) = Ay, 2 (y + 2) = g7 + 32
A linear operator T:X - X is such that

T(x + Ay) = T(x) + AT(y)

T is seZiLadﬁqint.pr;hermitian-(= symmefric'in-thg real.-case) if itg

matrix;[ti.] (w.r.t. some basis) ig hermitian, i.e. tis = t,., or
equivalentiy, E 1]
T(x)-y = 2 T(y) (for all %, y e X).

The eigenvalues of a self-adjoint operator (i.e. values of A for which there
exists x £ 0 with T(x) = Ax) are real.

If Ay, Ap are two distinct eigenvalues of the self-adjoint operator T and ey, €p
corresponding eigenvectors (iLEL.T(gj) = Ajgj’ j =1,2), then g and ey are
orthogonal i.e. ej.ep = 0.

Definition of the Problem (see earlier examples)

We now investigate Boundary value problems of the form:

Find those values of A (eigenvalues) for which there are non—trivial

solutions (corresponding eigenfumetions) to the second order eguation

a(x)y" + b(x)y' + c(x)y = -Ap(x)y
satisfying prescribed boundary conditions on the closed interval
[a, B] = {x ¢ R: agxébf
We will only consider boundary conditions of the following three types

1. Separated Linear Homogeneous Boundary Conditions.
o1y{(0) + B1y'(0) 0
apy(1) + Boy'(1)
which include the simplest boundary conditions
y(0) = y(1) = 0.

0 (a1, vy, By, By constants)

2. General Linear Homogeneous Boundary Conditions.
a1y(0) + B1y'(0) + yyy(1) + §1y' (1) = 0
a2y {(0) + Roy' (0} + voy(l) + 8oy ' (1) 0

(Yote 1 is a special case of 2, in which the conditions at 0 are separated

from the conditions at 1).

Except when otherwise stated we will +ake a = 0 and b = 1, indeed unless

either a = «» or b = ® under the change of variable
t - . : . . . .
® = Z the interval (a, :] becomes [0, 17, and so it is sufficient to

consider problems defined on [o, 17.
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General Homogeneous Boundary Conditions.

Any conditions on y, y' at 0 and 1 which ensure that for some suitzhble
function p(x), ‘ x=1

[Py " ()ya () — yi1(x)ys'(x))]
, <=0
= p(L Ny " (Dya (1) - y1(L)ye ' (1)) - p(0)(yy'(0)ye(0) - y1(0)y,"(0)) = 0

where yj, y» are eigenfunctions of the equation, possibly for different

values of A.

Note. If the boundary conditions (1) hold we have

i
o

or y1(0)y,(0) - yi(O)yg(O)

and similarly

H
]

Yl(l)Yé(l) - yi(l)YQCl)

for any two solutions yi, yg, and so
(1) implies a special case (3).

The other case of interest, where (3) applies is when either p(0) or p(1) = 0
in which case a sufficient condition at 0 (or 1) is that ¥y and y' assume finite

values (i.e. are bounded).

Although the character of the boundary value problem is largely dependent
on the particular boundary conditions prescribed and in the absence of any
would be ill-posed, as we shall now see, the boundary conditions can be placed

in the background (at least for the purpose of general theory).

Operator Formulation

Since, a priori the eigenfunctions of a given boundary value problem must
be twice differentiable and must satisfy the boundary conditions we need never
look beyond the set H of twice differentiable functions which satisfy the
boundavy conditions.

Fote. (1) H will vary from problem to problem as we change the boundary
conditions, and
{(2) There is no assumption that the elements of H satisfy the differential

equation. H is determined entirely from the boundary conditions.

For convenience we take the elements of H to be complex valued functions i.e.

functions of the form

flx) = ulx) + ivix).
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LEMMA. The set H of twice differentiable functions satiefying boundary
conditions of the type (1), (2) or (3) is a vector space under point-wise

defined addition and scalar multiplication.

Proof. Recall: By f + g we mean the function defined by

(f + g)(x) = £(x) + g(x), and by Af the function for which (Af) (%) = AF(x).
Since under these operations the set of all functions with demain [0, 1]

is a vector space (see linear algebra) it suffices to show H is & subspaée,
i.e. £, g € H implies £ + Ag ¢ H. ‘

From elementary calculus £ + Ag is twice differentiable if £ and g are.
Indeed (£ + Ag)" = £" + Ag".

Now for boundary conditions of the type (1) and £, g € H we have

a1 (F(0) + 2g(0)) + B1(£7(a) + Ag'(0))

(a1£(0) + B1£'(0)) + Ae3g(0) + Byg'(0))
= 0 + 0

as both £ and g satisfy the boundary conditions.
A similar argument applies at % = 1 and so we conclude that F + Ag € H.

For boundary conditions of type (2) and (3) analogous arguments {give them)

It was largely to ensure the truth of the above lemma that we restricted oun

establish the resuit.

attention to the three particular types of boundary conditions. Had we for
example allowednonhomogeneous boundary conditions,
e.g. y(0) = a # 0 and y(1) = b,
then, for f and g satisfying the boundary conditions we have
(f + g)(0) = £(0) + g(0) = 2a #a

and so their sum £ + g does not satisfy the boundary conditions.

We now define an operator L on H as follows. L maps £ ¢ H to the new function

at” + bf' + of (a, b and ¢ are the given functions appearing in the differential
equation)

ice, LIFY(x) = a(x)f"(x) + bOF () + cGOF(x) (all x ¢ [o, 11).

EXAMPLE. TFor the boundary value problem .
(1 - Xz)y" - 2xy! = -Ay

with y(0) = 0, y(1) finite

we have associated the Legendre operator L such that

LE)(®) = (1 - x2)F"(x) - 2xF'(x).
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So, if f(x) = %3 (clearly a member of H in this case) we have

L(£)(x) = (1 -~ %x2)6x - 6x2
=  Bx - BxZ - 6x3.
Similarly L{exp)(x) = (1 - 2x - x2)e™.

LEMMA. L, as defined above, is a linear operator on j,

Proof. This follows trivially, since differentiation is a linearv operator.

Thus, for £, g € H we have

LOE 4+ Ag) = a(£ + Ag)" + b(f + Ag)' + c(f + Ag)
al(f" + Ag") + b(F' + Ag") + (F + Ag)
af'" + bf' + ef + A(ag" + bg' + cg)

L{E) + AL{(g)

1t

(Because of this the differential equation
L{y) = ay" + by' + ¢y = 0 is often referred to as "linear'.)

In terms of the vector space H and linear operator L, our boundary value
problem may be restated as -
Find values of A for which there is a non-trivial element v of H such
that
L{y) = -Ar(x)y.

Except for the factor -r(x) on the R.H.S. this should be highly suggestive
of the eigenvalue/eigenvector problem of linear algebra, hence the parallel
terminology (eigenvalue, eigenfunctions).

Since symmetric operators on finite dimensional vector spaces have the
richest eigenvalue-theory, we attempt to develop an analogous theory for a

second order linear differential operator L on H.

An innepr-product for H

Since H is in general an "infinite dimensional' vector space, it is not
possible to represent L by a matrix,as linear transformations of Finite
dimensional vector spaces can be. Thus if we are going to try and specify
what a self-adjoint (symmetric) operator on H might be, we must look for a
definition other than the usual matrix one of Ffinite dimensional linear algebra.

A suggestion comes from the scalar product characterization of self-adjoint
linear transformations viz.

The linear transformation T is self-adjoint if and only if ¥ T(y) = T(x)-y

for all ® and y-
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In order.to use this as a definition in our case, we must first however,
define a scalar product on H, and what could one mean by the "dot" product
of two functions?

A clue is to be found by examining the definition of dot product in the
finite case.

For x = (X1, Xp, X35 «aay X )

Y= (V1> Y20 Y35 «+vs Yg) (xj,_yj complex numbers)

defn = — - =
Xy == X1y] * Xpyz + X3y3z + ... + xnyn

§ —_
= X.¥.
3=1 1713

Now, the vector x may be regarded as the "baby" function, whose domain

11,2,3,...,n} is mapped into the complex numbers according to

1 x,
2 b x,

3 b——— x3

-
"

n F———r x
n

which we summarize by writing x: e xj. Similarly y is equivalent to

the function y: j » yj.

From this point of view the individual terms, x1§}, X9Y¥3, ..., Of the scalar
product x-y represent the value of x at each domain point j (xj) multiplied
by the conjugate of the value of y at the same domain point. The scalar
product is obtained by summing these products over all possible domain points.
In the case of interest to us, our vectors are again complex valued
functions defined on the domain [0, 1]. For £, g € H the corresponding

point value product is f(x) g(x) and the "sum" over all such values corresponds

to
1

J flx)g(x)dx
0

\

We are therefore led to define a scalar.product“in H by
1
frg = J f(x)g(x)dx Ffor all £, g ¢ H.
]

* In more advanced works, scalar products are usually termed inner-products and
denoted by (f, g) instead of f-g.
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It is readily verified that "." satisfies all the axioms of a scalar product.
1. £-£f =0 if and only if £ = 0

2. (Af).g = A{(f-g).

3. (F+g)h=+fh+gh

4, gf = £-g

1
For example: f£f-f = 0 ﬁ’J |£(x)|2ax = 0
0

ﬁ’lf(x)|2 = 0 for all x (f is twice diffeventiable and
so continuous)

1 1
gf = J g(x)f(x)dx
]

g(x)f(x)dx

H
[-=- | N
3

1
= i F(x)g(x)dx

f-g .

(Proofs of the remaining two are left to you.)

From these we also have the uzeful identities:

£'(g + h) = (g + h)-f = g-f + h-F
=g f+hfz=fg+ fh
and
£ (iAg) = (Ag)'f = A(g-F)
= Mg f) = ME-g) .

EXAMPLE: If H contaims £(x) = x + ix? and g(x) = %3 + ix5 we have

1
(2 + ix2)(x3 + ix5)dx

.

frg
J
0
1
= | (x + ix2)(x3 - ix%)dx

o

0
1

= (x* + x7) + 1(x® - xB)ax
0
r,1 1

= | (x* + x7)ax + 1 J (x® - xB)ax
0 0

w
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Self-adjoint (Hermitian) operators

Having established a scalar product in H we now define a (linear) operator

L on H to be self-adjoint if

(Lf)-g = £-(Lg) for all £, g e H.

1 1
(i.e. if f L(F)(x) glx) dx = J f(x) Lig)(x) dx)
0 0

EXAMPLES. (1) The simplest type of operator we define on H is multiplication

by a fixed functiom.

i.a. M (£)(x) = r(x)f(x)

r(x)

E.g. Mo, (sin)(x) = e * sin x.
e

Provided r{x) is a real valued function, the operator Mr(x) is self-adjoint

on H. r(x) = r(x), so
L ‘ 1 A
() E = J » ()£ GOZTax = J £x) TR
0 ]

= f'Mr(x)(g).)

(2) Let H be the set of twice differentiable functions vanishing

at 0 and 1 i.e. £ e H® f" exists on [0, 1] and £(0) = £(1) = 0.
- 2

The operator D? = g;ﬁ'is self-adjoint on H.

Proof. For any f, g € H vie have

(D2£)-g = l £ {x)g{x)dx
1 1
= {f'(x)g(x)]o - J Frix) g (x)dx (integration by parts)
0

1
—J Fr(x) g'(x)dx & (as g(0) = g(1) = 0)

0

H
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1 1
~If(x)g'(x)] + J Fx)g"(x)dx
0
1 ¢
{ £(x)g" (x)dx (as £(0) = £(1) = 0)

0

1l

£-(p?g).

The boundary walue problem:

a(x)y" + b(x)y' + c(x)y = -ar{x)y {(r{x), real)

with prescribed boundary conditions on [0, 1], is termed a self-adjoint problem

if the operator L defined by
L{f) = af" + bf' + cf

iz self-adjoint on the vector space H of all complex valued twice differentiable
functions satisfying the prescribed boundary conditions.

Thus from the above example the problem

y' = -hy
y(0) = y(1) = 0

is a self-adjoint boundary value problem.

One of the most difficult tasks in any application of Boundary value problems
is establishing that the appropriate operators are self-zdjoint.
Fortunately many of the commonly encountered problems are covered by the

following result:

THEOREM (Liouville) A boundary value problem of the form
%;—[p(x) %%] - q(x)y = —ar(r)y

with the boundary conditions

[P(X)(yi(x)yz(x) - Y1(X)Y5(X))]X=l = 0,

®=0

where yi1, yp are any solutions of the equation for some values of A,

[of type (8) including type (1)]<s a self-adjoint problem.

Proof. Here H is the set of twice differentiable functions satisfying the

boundary conditions and L is the operator defined by

L(£) = (pf")' - of,
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whence, for any £, g ¢ E we have
1

L(£)-g - £-L{g) = F(pf')' g - afg - J £(pg') - ofg
0
= J (pf' g - £flpg") (as q = q)
0
_ 1
= [pfl'g - fpg']o -0 (integration by parts)

0 by the boundary conditions satisfied by f and g.
n

Boundary value problems of the form treated in the above thecrem are known as

Sturm-Liouville problems. Many commonly occurring boundary value problems

are reducible to Sturm-Liouville problems.

Generally, the second order linear differential equation
a(x)y" + b(x)y' + elx)y = Ar(x)y

may be converted to the form

d dy | -

— {p(x) T~ Ay = ap(xdy
by means of an integrating factor.
Multiplying throughout by u(x) gives

way" + uby' + uey Aury

which will be of the Fform
(vay')' + ucy = Aury

provided we select n so that

(va)' = ub
i.e. p'a + ga' = pb
1 t
or B _b _a'
u a a
®
i.e. Inu = J b_ n a
a
X
L [ A
So pi{x) = .



- 95 -

EXERCISE

Show that by this means, the equations listed below may be reduced to the form
shown, and so define self-adjoint boundary value problems for the specified

demain and boundary conditions.

Equation Reduced Form Boundary Conditions

Bessel Equation

2
xzyn + Xy" _ nzy = _)\XZY (XY')' — 2_}1’ = —)\xy ¥ Finite at 0,
y(1) =0
Legendre Equation
(L - =2)y" - 2xy' = -Ay (1 - xz)y‘)' = -y y finite at % = 21
Laguerre Equatieon _
xy" + (1 - %)y = -Ay (™ y')' = —Ae_xy y finite at 0, and

Limit y(x)| < =
x—}m

Hermite Equation

2 2
ro_ T o= _ -x /2 ,'___"X/Q . . -
y' Xy = -Ay (e y') = -le v %i?ét y(x)| <
Techebychev Equation
A
JUR - W | S T o= = iy - L =+
(L - x*)y Xy Ay (VI = %Z y'} Tz Y vy finite at x 1

Theory of Self-adjoint Boundary Value Problems

Let H be the vector space of twice differentiable, complex valued functions
satisfying preseribed boundary conditions and L a self-adjoint (second ovder)
linear differential operator on H.

We then have the following results for the self-adjoint Boundary value
problem -

L{y) = a»(x)y, ¥y e H,

where r(x) > 0

(with the possible exception of a finite number of points).
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THEOREM. The eigenvalues are real.

Proof. Let y = ¢$(x) be an eigenfunction corresponding to the eigenvalue Ag

i.e. ¢ € H and L(¢) = Agrd.
Then, Ag(rdded = (Agrd)-¢
= (L{¢))-¢
= ¢+L(¢) (L self-adjoint)
= ¢+ (Agrd) = Agle-(r¢))
= Aglrd)-o (as multiplication by r

defines a self-adjoint operator on H, see p.22).

Thus (g - p)Xre)p = 0,
) - 1
now (rd-9) = I r|$|2 > 0 (by the assumption on r)
a
and so Ag = Ap or Ap is real.

COROLLARY. The eigenfunctions may always be chosen to be real valued.

Proof. If ¢ = u + iv is a eigenfunction corresponding to the (real) eigenvalue

Ag we have
L(u + iv) = L{u) + iL(v) = Agr(u + iv) = Agru + iigrv
and so equating rezl and imaginary parts
L{u) = Agru, L{v) = Agrv,

i.e. the real valued functions u and v are also eigenfunctions corresponding

to 7\0.

THEOREM (Orthogonality)

If ¢1., 9o are (real valued) eigenfunctions corresponding to distinet
etgenvalues A1, Ay respectively, then

1
(rd1)-45 = 0 (or J r(x)dy(x)do(x}dx = 0)

0
and we say ¢1, by are orthogonal with respect to the weight fumetion r(x).

Proof. A{rdy)92 = (Ayrdy)-dp
L(1)-d2
¢1-L{dp) (L self-adjoint)

b1 (Aordo)

H
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Aoy (rdy)
Ay )ty

(as Ay is real, and r defines a self-adjoint operator on H).

Thus (A7 - Ay) {r¢;)+ds = 0 and since Ay # Ay (rdy)-dp = 0, as requiredulll

EXAMPLE.

The most trivial boundary value problem
g o= -Ay -

y(0)

y(1) =0

is readily seen to be self-adjoint. It can also be solved explicitly.

The eigenvalues are A= w2, a2, e, n
with corresponding eigenfunctions sin wx, sin 2m%, ....., sin nwx, ......

Here r(x} = 1 and so, from the above thecrem, we have the ocrthogonality

relationghip )

[ sin nmx sin mmx dx = 0, for m #n,
0

basic to the construction of (odd) Fouriep Series.

Turther results and discussion

On finite dimensional vector spaces the elgenvectors of certain self-adjoint
linear transformations form a (orthogonal) basis for the space. When this happens
it is extremely useful.

Similarly, for certain (but not alil) self-adjoint boundary value problems
L{y) = vy, v € H,

the eigenfunctions form a basis For H (frequently for some vector space H' 2 H)
in the sense that any f ¢ H may be "expanded" as
f(x) = nEl a_ ¢n(x)

where ¢1(x), ¢o(x), ..., ¢n(x), +.. are the eigenfuncticns corresponding to the
countable set of eigenvalues Ao Apy nn, An’ e
Fourier series are a special instance of this.

It can be shown that any self-adjoint problem has only a countable number of
eigenvalues and that most of the commonly ocecurring boundary value problems (for
example, those listed previously) have a set of eigenfunctions with this property

(Hilbert-Schmidt Thecrem).
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In case f can be so expanded, the coefficients, a ., are determined by the
orthogonality relationship.

IF f=) a b
n=1

B

I
CX

then (rf)-¢m ((ran¢n)'¢m)

lad Jeo =
= 1

n'n’ 'm
n=1

1~z

n
= nzlan( (I‘d)n )- rbm)

=%Jm%n%)as(m%L%nzO

unless n=m

Whence

(rf)-¢m

am—w (m=1,2,3,...)
1
_ [ rIE(x)¢ (x)dx
or a = 2 m
2
fﬂr(x)¢m(x)dx

c.f. TFourier sine coefficients

1
fof(x)sin mrx dx

v =
n

2 mwx ax

I
f sin

0
Application to the non-homogeneous problem.

Consider L[y] = wr(x)y + £(x) with boundary conditions, with respect to
which L is self-adjoint. Let ¢:n be an eigenfunction corresponding to the eigen-
value An of the corresponding homogeneous problem L{y] = Ar(x)y under the same
boundary conditions.

Azszume that f and r are such that f/r has the expansion f/r = z . ¢k.
© k=1
We seek a solution y which can be expressed as y = Z bk ¢k’ substituting
k=1

this into the equation we have

Llyl =} b_L{¢,]1 = } b A m¢
k=1 k k kol k 'k k

ur Z b, ¢, + F
=1 k "k

Dividing by » and rearranging we obtain
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[»=] f [=:)

IO, -wb b ="/p=] a ¢.

=1 k k 'k X=1 k 'k
So using the orthogonality of the ¢n we see that

(Ak - u)bk 'S
a
k

So provided u # Kn for any n, we have bk = P and can write down the
Tk

solution as
© a
y = Z —2 ¢n where a = (f » ¢n)/(r¢n)'¢n

n=l An L

Thus, by first solving the corresponding homogeneous problem, and thencaleculating

the constants a .we can write down a series solution for the non-homogeneous problem.

The Existence Problem

Although we have established results about the eigenvalues and eigenfunctions of
a boundary problem, we as yet have no guarantee that for a given problem there are
any eigenvalues. Indeed some boundary value problems do not have satisfactory
solutions.

We now investigate this situation for the relatively simple type of boundary

value problem

Liy) = y" + a(x)y' + b))y = Ay

(1)

y(0) = y(1) = 0O

where b is bounded and“has a bounded derivative on [0, 11].
~ ® ]
W) od
In this case, writing v = uv where u = e © we have, by the arguments used
on p.B8, for some function I,
Lly] = Liuv] = [v" + I(x)v]lu = Auv

and so since u(x) # 0 for any x € [0, 1] we have

v+ I{x)}v = Av } (1%)
while v{0) = v{(1} = 0.

Further, if Ag is an eigenvalue of (1%) with corresponding eigenfunction vy,
then yp = uvg is an eigenfunction of (1) and Ay is the corresponding eigenvalue.
It is equally clear that the converse is also true.

Thus (1) and (1%) have the same eigenvalues and have eigenfunciions related
by a factor u.

It is therefore sufficient to consider the boundary value problem (1%)

which is clearly a Sturm-Licuville problem and so a self-adjoint problem.
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Let Imin = minimum {I(x): 0 <x <1} (strictly we should use 'greatest lower

bound' or 'infinum' in place of minimum) and Imax = maximum {1(x): 0 < x <1},

I{(x) for 0 < x <1

Set I#(x) = <I1(0) for x < QO
I(1l) for = > 1
I
T —7—\ = I*(—'t)
) Y > >
\ g=I(x)

and for any A let VA(X) be a solution of the initial value problem

F'" 4+ (I%(x) - A)v = 0, v(0) = 0 (v'(0) # O)

(that such a v may always be found follows from the 'existence theorem' for
initial value problems - see B. diP. p.88).

The following argument is motivated by the observatiom that vxois an
eigenfunction of (1%) which corresponds to the eigenvalue Agif vy has a zero at 1.

Let the strictly positive zeros of v, occur at the points

®1(A) < x(A) < ... < X (x) < ..., wherelxn(l) +®as n > o,
(For A < Imin’ the existence of such a sequence of zeros follows from the carollary
to Sturms thecrem since, then I#*(x) - A ;:Imin - A > 0.)

For any n, xn(h) will vary as we vary A. We will assumethat xn(l) is a
continuous function of A. (This may be proved using arguments similar to those
appearing in the proof of the existence theorem, and iz a2 special case of the
"continuous dependence on parameters theorem" - see Sachez p.136).

We now show that the graphs, in the y-A plane, of the family of functions
v = xn(}\),1 n =1,2,3,... are of the form shown on the next page.

Y
Ay <N < Trein

- ~ —— /
e N pelaEN s ~ PRy A\ W)

o o v~ ?
0 ' =, (55‘.\ /, alhe) i J'#-("\;?/ \x
3 ~ - ~ e
- NS 7,69
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=250V

Since 0 iz a zero of vy for all A (by assumption) the spacing of zeros theorem
gives

w/vVI - A <x1(A) <w/YI_ . - A
max min
while for n = 1
W/Y < x (A) - X (A) < ﬁ/V

So vy = x3{A) is a continuous curve lying between the two curves
y = ﬂ/#ImaX - A and y = w/VImin - & both of which tend to zero as A + -w,
while the first tends to @« as A + I____ and the second as A + I . —. Go we
. max min
conclude that x3(A) +~ 0 as A + -= and assumes arbitrarily large values for values
of A between Imin and Imax' Hence v = x1(A) has a graph of the form illustrated,
and from the intermediate value theorem for continuous functions we see that there

is a A; for which x;(3y) = 1. Thus, from our earlier remark, A; is an eigenvalue



- 37 -

a corresponding eigenfunction. Further since x3(A;) = 1 is the

(by definition of x;(1))

of (1%) with v
A

location of the smallest strictly positive zero of Vhl

we see that the eigenfunction v, corresponding to A; has no zeros in the interval

Al
between 0 and 1.

EXERCISE. TFrom the above arguments obtain bounds between which the eigenvalue

A1 must lie.
Similarly y = %3(A) is a continuous curve which, from above, lies between

vy = x1(3) + w/vI - Aand y = %(A) + w/VI ., -~ A.
max : min

Again both of these curves tend to zero as A + -®» and assume arbitrarily large

%p(X) has the form illustrated and there
1.

values for A sufficiently large. So y

I

exists a value As; < Aj at which xy(A5)

Whence, Ap; is an eigemvalue of (1*) with v, a corresponding eigenfunction

which, from the definition of the xn(h)'s, has gzzero at x3(X3) and so has one zero
in the interval between 0 and 1.
Continuing in this way we see, by an inductive argument, that the graphs of
y = xn(l) {n = 3,4,...) are as illustrated, and that (1%) has eigenvalues
Ay > Az > Az > ... > Ay > ... (where A is such that xn(ln) = 1). That
kn + ~® as n -+ = follows from the earlier observation that xn(h) + ©ag n + «

for each A. TFurther vy is an eigenfunction, corresponding to the eigenvalue An’
n
which has zeros at the points xl(ln), xz(ln), can sy xn_l(hn) in the interval between

0 and 1, and so has n-1 zeros in the interval between 0 and 1.

We have therefore proved
THEOREM. Let I be a bounded function on the interval from 0 to 1, then the
boundary value problem

u" + I(x)u = Av
u(0) = v(l) = 0

has eigenvalues
A1 > Ag > Ag > .., > kn > o.., wWith An + - gs n > %, Further corresponding

to the eigenvalue A there is an eigenfunction v, with precisely n-1 zeros

A
between 0 and 1. n
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PROBLEMS

1. Show that the solution of the boundary value problem

y"' = -dy

n

y(0) = y(1) = 0

iz as stated in the text.

2. Find approximately the eigenvalues and corresponding elgenfunctions for

the boundary value problem

y' = -Ay
y(0) + y'(0) = 0 = y(1)
3. For the boundary value problem
y' = -Ay

i

y(0) - y(1) = 0 = y'{(0) - y" (1)

{(a) Tind the eigenvalues and corresponding eigenfunctions; o

(b) Show the problem is self-adjoint, even though the boundary conditions
are not separated and so the problem is not a Sturm-Liouville problem;

(c) Observe that to each eigenvalue there corresponds two linearly

independent eigenfunctiocas.

%4, For a Sturm-Liouville problem with separated boundary conditions (of type 1)
show that, if ¢; and ¢, are two eigenfunctions corresponding to the one
eigenvalue, then they are linearly dependent.

(Hint: Show that it is sufficient to prove

$1(0) ¢,(0) -
Widy, d5)(0) = . . = 0, and then do so.)
$1(0) ¢5(0)

This property of Sturm-Liouville problems is an important one for more
advanced work, which is not necessarily true for a general self-adjoint
boundary value problem (see problem 3).

5. Find a series solution for the problem

y' + Ay = x

y(0) =y(1) =0

in terms of the eigenfunctions of the corresponding homogenecus problem

(see problem 1).
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What is the impert of our theory on the Hydrogenic ion model, considersd

in the introduction?

Observe that, if ¢n is an eigenfunction, of the self-adjoint boundary value
problem

L(y) = -Ary, y € H,

corresponding to the n'th eigenvalue An’ then k¢n is also an eigenfunction
corresponding to ln, for any k 7 0.
The eigenfunction, k¢n, is referred to as normalized if k is chosen so that

(rk¢n)-(k¢n) =1

; 1 %
1l.8. k = -
< /(1¢n.¢n) .
What are the normalized eigenfunctions for problem 1 above?

GREEN'S FUNCTIONS (An altermative approach to boundary value problems)

Suppose L(y) = -[p(x)y']' + q(x)y = £(x) under

1]
o

aly(O) + asy! {0)

1
(=

biy(1) + boy'(1) =

has the solution

y = ¢(x) = JlG(x,u)f(u)du, for some Green's Function G(x, u).

0
Let ¢i(x) be the normalised (see problem 7) eigenfunction of L(y) = ir(x)y
under (%) corresponding to the eigenvalue ki, then vy = ¢i(x) is a solution

of L(y) f(X) E Air(X)(bi(X) under (:':)

H

1]

1
S0 ¢i(x) J G(x, u)lir(u)¢i(u)du.

o
Use this to determine G(x, u) by assuming

Gx, u) = ) a, (x)¢, (u)
i=1

Consider the Legendre Boundary value problem

(1 ~ xz)y" - 2xy' = -Ay
y(-1), y(1) finite.
Clearly any polynomial y = anxn + an_lxnml + ... + a1x + ap satisfies the

boundary conditions.
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#3., (continued)

Show that for appropriate values of A, the equatibn has such polynomial
solutions for eigenfunctions (the orthogonal polynomials so arrived at are
the "Legendre Polynomials"),

(Hint: X must have the form m{(m + 1), m & positive integer, for which the
corresponding polynomial is of degree m. If you can do nothing more, at

least find polynomial eigenfunctions for m = 0,1,2.)

10. On p.32 you were asked to estimate bounds for the first eigenvalue, Aq,
of the problem 1%. Using similar arguments estimate bounds between which

the n'th eigenvalue An must lie.

nm nr
(Hint: Show f==—==y< x (A} < m=—==).
max min
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