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Preliminary homours (H} work is intended for students with a strong
natural ability and interest in mathematics, particularly students
preparing for the study of mathematics at a higher level {an Honours degree,
Litt.B etc.) or who anticipate a similar course of study in a mathematically
based discipline such as theoretical physics or chemistry, certain areas of
economics and biology.

The higher examination grades (Distinction and High Distinction) are
awarded to students who demonstrate outstanding ability. Normally such
students will be expected to have attempted the H work. In awarding these
grades preference will be given to those who have displayed competence in
the H work.

- In 1983 the H work supplements the pass course and will be available
to both internal and external students. Change between the alternative
versions PM111 and PM112 is not restricted to the first weeks of term. In
fact, you would do best to take no action until it is clear which you want
to do.

For internal students a regular lecture/tutorial devoted to the H work
will be conducted at 11 a.m. each Tuesday, beginning in the third week of
the academic year. To assist external students attempting the H work
special sessions at the residential and weekend schools will be organised.

The enclosed notes cover the H-material for the first semester. You
will see internal evidence that the course was begun by Dr. Sims!

Chapter I of the notes presents Cantor's theory of infinite sets. When
first put out (in about 1870} this theory caused a revolution in Mathematics,
with many eminent mathematicians of the time refusing to accept it. Sub-
sequently it assumed a place of fundamental importance, being basic to much
twentieth-century mathematics. This material is not directly related to the
pass course. Largely, I have included it for its novelty. I hope you find
it both challenging and interesting. Working through this material will
enable you to assess your ability to handle the H-work. The material also
provides a good opportunity for consolidating the mathematical concept of
"function". As you will soon learn, the function concept is basic to
modern mathematics. For this reason I have collected the material on functions
into an appendix. Unlike the theory of infinite sets, the work on functions
is directly relevant to later courses. Indeed, with the exception of
Theorem 4 the material of the appendix is repeated, in a more specialised
context in §1 of the Notes for Part II of the course on Elementary Real
Analysis.

Chapter II, on Mathematical Induction, should join gn to work you had
at school but will, I hope, extend your previous knowledge.
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At various points the Pass course contents itself with a fairly heuristic
approach. Part II of the H-work will acquaint you with ideas and methods leading
to a more rigorous development of the material, and provide a foundation for
the subsequent study of mathematics at a higher level.

Notes for second-semester H-work will be sent later in the year to those who
submit the First Semester assignment. These notes should cover:
81 Real functioﬁs of a real varilable;
§2 Sequences of real numbers and special properties of R;
§3. Continuity;
§4 Differentiable functions;
and §5 Integrable functions

Part I of the H-work will be examined by means of an assignment (enclosed)
due on Friday, 3rd June.

Part II of the H-work on Elementary Real Analysis will be examined by a
separate 2-hour paper in November. (It will be necessary for external students
to indicate their intention to sit for this paper early in third term.)

External students having any queries or problems with the H work please
feel Free to contact me. If you write out solutions to any of the exercises,
please send them direct to me at the Mathematics Department. (They are
recommended, but in no way compulsory.)

External students should submit the assigmment through the Department of
External Studies, to assist in record-keeping.

Wishing you success and enjoyment in your studies,

Professor R.L.T. Smith
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PURE MATHEMATICS 112-2 (H)

ASSIGNMENT ON COUNTABILITY AND INDUCTION
(Due: Friday, 3rd June)

1. Let @ denote the set of rational numbers, that is, numbers expressible uniquely
in the form p/q, where g is a strictly positive integer, p is an integer and p,
q haveAno common factor.
i) Show that thg mapping f:gq H—é— is a one-to-one mapping of ¥ into .

ii)Show that the mapping

is a one-to-one mapping from ® into M.

iii) Using the Schroeder-Bernstein Theorem deduce that @ is countably infinite.

2. Let Al, Az’ Aa, .-- be a finite or countably infinite family of finite or

countably infinite sets, show that their union 2 = Al u Az u A3 U ... is

either finite or countably infinite.

3. Show that, for all n ¢ N, each of cos nx and Eﬁ%EEE can be expressed

as a polynomial in cos x, that is, that we can write

Il

cOs nx Cn(cos x),

sin nx = sin x . Sn_l(cos ),

where each of Cn and S is a polynomial.

n-1
Show further that

(i) the subscripts give the degrees of the polynomials, and

- . -1.n-1
(idi) Cn(t) has leading term 2" ltn, Sn_l(t) has leading term 2P

«[Depending on how you arrange your proof, you may find it natural to obtain

the results in succession or to obtain them all at the same time,]

4, i) Let £f: X+ Y and g: Z + U be such that gof is defined. show that gef is
1 to 1 if both f and g are.

Is the converse true? (That isg, if gﬁf is 1 to 1 are both f and g

necessarily 1 to 1 functions?)

ii) If £: ¥+ Y is invertible show that £ © is both 1 to 1 and onto.



CHAPTER 1

COUNTABLE AND UNCOUNTABLE SETS

1. Introduction

Our ordinary use of the word "count" is to mean that we have a standard
string of names
one, two, three, four, .... ,
and that we work through this strxing as we point at objects, as sheep go
through a gate etc. Our report is made by giving the name that we stopped

at. Obviously the string

un, deux, trois, gquatre, ... .

would do just as well, and there are plenty of others to use.

OCbviously we could not apply this procedure to an infinite set since
we should never stop. And so there is nothing we can say about infinite sets =
or is there some rearrangement of what we did which will let us say something
useful? In the 1870's the German mathematician Georg Cantor (1845-1318)
recognised that having a standard string of names is not of dominating
importance here: what we need is to be able to say of two given sets A and
B that they have the "same number" of elements or that they do not. He
recognised further that if we can set up what is often described as a "one-
one correspondence” between A and B we can sensibly speak of them as having
the "same number" of elements. (Here "sensibly" means "self-consistently",
that is we do not generate dcntradictions.)

Cantor built a whole theory on this cbservation, a theory which has had
a great influence on mathematics. Although he was the first to exploit the
idea, it had been noticed before, but only as a curiosity or source of

paradoxes. Thus Galileo* (1564-1642) noticed the correspondence

*There is no point in remembering dates exactly, but it dees help your
understanding of mathematics to have some idea of who lived before who,
As an aid to your memory, observe that Galileo died in the yvear that
Newton (1642-1727) was born.



1 2 3 4 5 . N seca.

1 4 9 i6 25 . n< ....
and remarked that there are precisely as many perfect squares among the
natural numbers as there are natural numbers. This struck him as strange,
when we consider how sparsely the squares are strewn. Again the geometrical

construction of Fig. 1 shows that there are as many

Fig. 1

points on a segment of length £ as on one of length 2£.
Before we can start the study of Cantor’'s theory we need some prelim-

inary general remarks and something about the language and symbols for sets.

2. Level of abstraction

In the sort of work that we are beginning, it is often natural to ask
"Where should we start?" or "What may we assume?" It may be helpful to think
of mathematics as a house, which we can easily enter at ground-floor level.
It can be quite difficult to climb upwards, but it can be just as hard to
penetrate to the basement or foundations. Going upwards means constructing
more and more complex theories and prcobably developing more and more
complicated formulae. Going downwards means analysing our basic concepts,
introducing fine distinctions which may seem fussy for a long time!and giving
attention to making the weakest possible assumptions.

You should be aware, that just as a first-year course does not study
the most complex topics, so also our analysis of cur bases will not go wvery
deep. For example, what we say about sets in 8§83 to 5 can be further refined

(in the downward direction: we could start from fewer concepts, weaker
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axioms). This does not mean that we proceed illogically. Rather we can
say that we start from a redundant set of axioms and work carefully
from there. |

If the previous paragraph seems vague, you can find an example in
what we shall do about the natural numbers. In this chapter we take them
as familiar and do not try to analyse our assumptions. In Chapter IT we
introduce Peano's axioms, as a way of exhibiting mathematical induction as
part of a logical development rather than a piece of black magic, and we
could at that stage work through the steps by which that set of axioms
leads to the propositions familiar in elementary arithmetic. Although we do
not do this (it needs care rather than any very difficult proofs), the
possibility is there. At a further stage we could set out to cbtain
Peanc's axioms from more primitive ideas.

It is important to realise we must start from something and that the

choice here is not the only one. It is time to get moving.

3. Sets

We shall take an intuitive approach to the concept of set. What is
important to us is that when we are considering a set of numbers, of points,
or any other sort of objects, we are able to determine whether an object
does or does not belong to the set. (That is, we have a test. In some
cases we may find that our test is indirect and is laborious to apply, but
this makes no difference of principle.)

We want to introduce language and notation. Most often we use capital
letters to denote sets and, quite often, small letters for their members.
Thus we may have

x is a member of &,

which is symbolised#*

*It is nowadays almost universal to distinguish e and £, the first used
as here, the second for epsilon as a symbol to be employed in a calculation.
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If we want to list the elements of a set we use curly brackets as in
a={x, y, =z} , B=1{1, 3,5 7, «vau },

and, by an extension of this,

1l

c={2n:nan integer}

for the set of even integers,

D={x:0<x< 1},
or, more generally,

H

{t : t has property P} .
The colon which occurs here can be read "such that".
There i1s an important algebra of sets concerning, in particular, the

symbols U and n. We write

AUB for the wunion

and

A n B for the intersection
of the sets A and B, which we can define by
AuB={x:xehA or xce B}

and ‘
AnB={t: ted and t g Bl.

Note well that there is no question of counting points twice if they are common

to & and B (that is, in A n B}. Note well that here, and in all mathematical

writing, "or" is interpreted in the dinclusive sense to mean "x € A or x € B
or possibly both".

The combination A U B is often read "A cup B" and also often "A union
B"; similarly An B is read "A cap B" or "A intersection B. A style of

lettering that has become very popular for denoting sets is

N, Z, 0 etc.

These three letters are just about standard as symbols:



N for the set of natural numbers,
Z  for the set of integers,

)] for the set of rational numbers.

It is easy to see why N is selected; for 7, the reference is to the
German word Zahlen (= numbers) and, for (, the reference is to the word
"quotient", since every rational number can be written in the form a/b, the
quotient of two integers. (One of the maddening features of this style of
lettering is that one cannot easily get a neat version of X or ¥, which is
so often wanted.}

We shall not be making serious algebraic calculations with sets, but

vou should notice that, in excellent analogy with + and %, they satisfy

AUB=BUA, AnNnB=BnaAa,

the two commutative Laws,

(ARuB)uCc=3av (BucC), (AnB) nc=2Aan(BnC),
the two agsociative laws and, very clearly not analogously with + and X

for numbers, the two distvibutive laws

it

An (BucC (AnB)u (AncC)

and AU (B nCQC)

(A uB) n (A uUC).
You have probably seen these, and other, relations illustrated with

Venn diagrams. (Compare the figure on page 7.)

4. Set inclusion

The symbols < and < are used much as < and £ between numbers.
Thus to say that
AcBHB
is to say that every member of A is a member of B, whilst to say

that



is to say that C c D but C # D, that is, there is at least one element x
which is in D but not in C. BAs with inequalities between numbers, to
make the distinction between < and < sometimes seems a piece of fussiness
but is often to be recognised as a help in saying what we mean. Both for <
and < , experience shows that it pays to be strict with ourselves. Notice

that we have, for all A and B,

AnBEcgA, A c AU B.

There is an important point about the ways of proving two sets equal.
Suppose R and S have been obtained in roundabout ways and that it is not
obvious that they are equal but we suspect this. Of course, we say R and 5
are equal if they have exactly the same members, and only if this holds. (This
could have been said explicitly before now, but it didn't arise.} In symbols
we want

RcS (1)

S cCR {2)
It is nearly always the case that the only feasible way of showing R =5 is

to establish first (1), which means that we show that

XeR ™ xe S,
and then to establish {2). It often happens that one of (1) and (2) is very

pasy to prove and the other hard, but we still need to prove them separately.

5. Some other set-theoretic notations

If A and B are two sets, we write

AXB
for theirCartesian product, the set of all couples formed with a member of A

and a member of B or, in symbols,

AxB = {{a,b) : aeA and b e Bl.
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If the name seems strange, notice that the plane with Cartesian coordinates
can be regarded as the set of couples (x,y) where each of x and y is
a real number. Here A = B, each being equal to R , the set of real numbers.

We could write

RxR=1{(x,v) : x & R and v € R} .
When A = B, it is quite common to write A%? for A % A; thus we could

denote the real plane by RZ.

A hatched Zﬁd?
B hatched QQQS}

A simple Venn diagram.

Here A U B is the hatched set
A n B is the doubly hatched set
'@(A@yB)is the set left unhatched
{(Note that there it is in no way compulsory to use circular discs for the
given sets but that you should plan your diagram for easy reading. Except

in the simplest cases, give a clear statement of what your hatchings mean.)

If A is a set, we describe as the complement of A the set of
elements not in A. Here it is essential to know what "largest" set we
are working in. For example, the complement of the set of boys in the
set of all males is different from the complement in the set of all humans.
| The order of business is not as just described. Rather we decide
what our "largest" set is; it is usually called the wuniversal set, with
I and U as frequent symbols in general discussions. (Of course, in a

special discussion we could easily have N or R as our universal set.)}



Then

Complement of A = {x : x € I and x ¢ A}.
Unhappily there is difficulty over symbolism here. Although A and A’
will be often met with there are other important uses of these labels.

In these notes we shall write

€A or I - B.

The minus sign between sets is used as follows:

P-0=1{x:xe?P and x £ 0Q}.

It is often convenient to write

P-g="Pn {¢0.
It is of great algebraic convenience to introduce as a symbol for the
empty set a modified 0. Various modifications have been tried; the version

which has finally been adopted is

g .
The essential property of @ is that for any element x we can assert
x £ @.

Observe the consequences

Q= I, I = 13.

Observe the very convenient way of writing down "A and B are disjoint" as

EXERCISES (Whenever possible, illustrate with Venn diagrams. You will probably
find that you need two or more diagrams in some questions.)

l. Show that AULA=2aA and AnNA~=A4A.

2. Prove the two distributive laws.

3. Show that

¥(a uB) = $an 8B, €(an nB) =6a u EB.



6. Counting

Basic to our ideas about counting is the set N of mnatural mumbers.

The elements of N are ordered 1 < 2 < 3 < ..., thus we can speak of

"the first n natural numbers", meaning {1,2,3,...,n}. To say that some

set lB has n elements means that we can imagine, at least in principle,
selecting an element of B and "marking" it with the number 1, then
selecting an unmarked element of B and marking it with 2, then marking
another with 3 and so on. When there are no elements of B left unmarked
wa should find that we have used up each of the numbers 1,2,3,...,n and
no others. For example the set

{Malphas, the dog; Mephisto, the cat; Aidan, the boy; and Sims, the lecturer}

has 4 elements, since we could "paint™ 1 on Aidan, 2 on Malphas, 3 on
Mephisto and 4 on Sims. More formally, this set has 4 elements since we

have been able to find a one-to-one function from {1,2,3,4} onto it, wviz

1+ Aidan 2 b Malphas 3 » Mephisto 4 F Sims.,
And in general we can say that a set B has n elements i1f there exists a
one-to-one function from {1,3,...,n} onto b.

The number of elements in a set B is termed the Cardinal number of

B and is sometimes denoted by #B or |B|. Thus, the cardinal number of
B equals n if there exists a one-to-one and onto Function fﬁ{l,2,3,...,n}-+B.
This is very similar to what we said about counting in §1. As was
indicated there, our point of view is clearly suggested by the description
"one-one correspondence" between two sets A, here {1,2,...,n}, and B.
However, since this terminology leaves guite vague whether we are going from
A to B or from B to A, we shall avoid it, and talk always of Ffunctions,
whose domains and target sets are clearly specified. ({Compare Appendix 1.)
It may seem unnecessary and pedantic to point out that we need to check
that #B 1is well defined. However, as far.as we have seen, there might be
a one-to-one function £ from {1,2,3,...,n} onto B and another one-to-one
function g from {1,2,3,...,m} onto B, where m # n, and then to say

#B equals both m and n ! To see how we might exclude this, note that
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g-1 exists and is a one-to-one and onto function from B to ‘{1,2,...,nﬁ
{(Cor. 3 of page A9), and so the composite g_l 0o f would be a one-to-one and

onto function from {1,2,...,n} to {1,2,...,m}(Cf. the Exercise on page A9).
£ -1
{1,2,3,...,m} =L {1,2,3,...,m

1

g~ af
Our feeling is that this is impossible unless m = n, and we shall
construct a proof in Chapter 2. You should be able to get a feel for the sort
of proof required (apart from the necessary induction) by trying to construct a
one-to-one and onto function from {1,2,3,4} to {1,2,3} .
We now consider two sets A and B, without the specialisation that 2
is {1,2,...,n}, but in the case when the sets have the same cardinal number n.

The following theorem gives us as foreshadowed in El, a rearrangement owhich

allows of an extension to infinite sets.

THEOREM 1: Two finite sets A and B have the same number of elements 1Ff and
only if there is a one-to-one and onto function £ from B to B.

REMARK
This L8 the §inst of many results we shall meet whose enunciation

Anvolves the phrase "if and only L4". Let p stand for ithe statement "A and
B have the same number of elements" and Lef q stand forn "there 45 a one-fo-one
and onto function 4 from A to B". 1& 48 Important o recogndise that our
theorem, which has the form "p L4 and only if q", 45 really fwo theorems:

(1} "o only if q",

(2) np iﬁ Q"-
We stant by newriting (2} as

"I’é q ’ :the'n pll U}L nq =>pﬂ’
where the arrow-headed equals sign can be read "implies”. Next we tecognise
that if (1) holds and p 48 thue then q must be thue, which allows us Lo
rewrite (1) as
il'p = qll.

Thw.s to prove oun theorem we must establish the fwo statements:

(7) p=gq
and (2} q =p.
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1§ as a purely notational point we rewrite (2) as

p<q
we get useful shorthand which we use here and in other places.

Proof of Theorem 1

(=) If A and B have the same number of elements n then there are one-

to-one and onto functions f£: {1,2,...,n} = A and {g: 1,2,...n} - B.

Now, ful: A *{1,2,...,n} is one-to-one and onto and so the composite g o f-l:

A + B is one-to-one and onto, as reguired.

[

(<) Let A have n elements and let f be a one-to-one and onto funetion

from A to B. Then there is a one-to-one and onto functions g:'{l,2,...,n} + A.

g £
{1,2,...,n} —+ a—B
| T
fog

The composite f o g is a one-to-one and onto function from {1,2,...,n} to B
and so B has n elements, as required.

O

[The little square "[I" is used to indicate the end of proofs.

What we have done so far has been rather elementary (and perhaps boring ~—
the basic ideas are often introduced, for better or more likely for worse, at a
primary school level). However, it has afforded us the opportunity of introducing
and revising some important material: functions {one-to-one, onto and

composite); the logic of proofs.
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7. Extended counting

We now turn to infinite sets, and join onto the result of Theorem 1 by
introducing the
Definition
Two (infinite) sets A and B have the 'same' number of elements if there
exists a one-to-ome and onto fumetion from a to B.

We are working towards the result that there can be different "infinite numbers"
of elements in sets. Evidently the set of berfect sguares (in Galiled's curious
cbservation in §1} has, in the sense of our definition, the same nunber of
elements as N. More generally, we shall say that any set which has the same
number of elements as N is countably infinite.

We use Np as the symbol for the cardingl number of any eountably
infinite set, (8 , pronounced "aleph" is the first letter of the Hebrew alphabet.)
Thus B has N elements (4B = Ng) if and only if there exists a cne-to-one and
onto function from N to B,

REMARKS. (i) In some works "denumerable" is used as a synonym for countably
infinite.
{ii) We will say a set is countable if it either hds a finite number

of elements or is countably infinite.
Some other EXAMPIES of countably infinite sets are:

(1) The set of positive integers‘{0,1,2,...,n,...}, to see this consider the

function
1 2 3 4 ... n e
¥ T T T T
0 1 2 3 ... n-1 ..., .

{2} The set of integers Z:='{....,—n,...,—2,—1,0,1,2,...,n,....}.

Consider the function

1 2 3 4 5 ... 2n 2n+l ....
¥ T ¥ ¥ ¥ ¥ ¥
0 1 -1 2 -=2...n -n .... .
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(3) The set of even natural numbers

Consider
1 2
¥ ¥ T ¥
2 4
As an EXERCISE you should convince yourself that in each case the suggested
mapping is both one~to-one and onto. The details for (3) are as Follows.
We have the mapping f£: N + {2,4,6,....}: n » 2n. Now if £({n) = f(m)
we have 2n =2m or n=m, so f is one-to-one. To show f is onto we
must show that every even numnber is the image of some element of N under F.

If m is any even integer, then m/2 is a whole number, that is m/2 ¢ N and

f(m/2}) = m, so f is onto.

Convention
In (1) we classified 0 as positive. 1In doing this we adopted the

convention that

"x is positive" means "x = 0",

Correspondingly, "x > 0" would be expressed in words as "x is strictly
positive"”. We shall use this convention also in the case when =x iz a
real number.

There is of course the possibility that we interpret "x is positive"
to mean "x > 0", If we do this we can express "x 2 0" in words as
"% 1is non-negative" or "x is positive‘in the wide sense". You should be
prepared to find either convention in use in bocks you consult. Of course,

we can often be offhand about the distinction but not always.

8. Some countably infinite sets

If we consider a set whose definition is more complicated than (1), (2),
(3) above and suspect it to be countably infinite, it may be difficult to

find a convenient one-one and onto function. The following specialisation
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of the Schroeder-Bernstein theorem (Appendix 1, Theorem 4} is often useful.

THEOREM 2: The set B 18 countably infinite if there exists a one-to-one
function £ from N dinte B and a one-to-one funetion B from B into N.
£ g
N—B— N.
1-1 1-1
Proof. If such an f and g exist, then by the Schroeder-Bernstein Theorem

there is a one~to-one and onto function from N to B and so B has

cardinality p . O

Application of Theorem 2 is sometimes facilitated by the following lemma.

[The Lerm 'Lemma' 48 used to describe a mathematical resuld which is not of
gheat A_Lgméﬁ.écahce An Ats own iight and s0 does not menit the Label "Theonem",
but which is important for establishing subsequent results.]

LEMMA 3: The set of ordeved pdirs of natural numbers is countably infinite.

An ondered pain of natural numbers L8 (n,m) where n and meN . For example
(5,3]. The word "ondered' means that the ordern in which the two numbers m

and n appear in the pair is significant. Thus (5,3) i not the same as (3,5].

Proof. To construct a one-to-one and onto function from M to W x N, imagine
N x N arranged as follows

e e T
e e

(1,1)

(2,1)

3,1

(4,1) , 2} 1,4 .

LRI )
R
"
.

and proceed through the arrangement in the order indicated by the arrows,
thus defining the function £ by
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i (1,1
21 (1,2)
3 (2,1)
4+ (1,3)
5 (2,2)
6k (3,1)
7Tk (1,4)
8 (2,3)

etc.

Clearly f is one-to-one and, since we eventually "pass through" any given
ordered pair {m,n), £ is also onto.

[For an alternative proof see exercise (2), below.l Ci

EXERCISES:

1.

(i}

*
(ii)

Show that the inverse of the function f constructed in the proof
of lemma 3 is given by

f"l: N xWN-+N: (mn)+ 5{mn~2) (mn~-1) + m.

{(optional)
Give an "algebraic" proof that the function f_l (and hence £ itself)

is one-to-one and onto.

An alternative proof of lemma 3, which uses theorem 2.

(1)

(ii)

(iid)

(iv)

(1)

*(ii)

Show that f: N -+ N x N: n+ (n,l) is a one-to-cne function into N x M.

[} 1
For m, m', n, n' € N show that 2m3n = 2™ 3n if and only ifm = m'

and n = n'.

Using (ii) deduce that g: N X N =+ N: {(m,n) & 2m3n is one-to-one

{(but not onto).

Conclude from (i} and (iii} that #(N x N) = N%.

Show that the set of ordered triplets of natural numbers
N3=!N XM x®={(m,n,p): m,n,p € M} is countably infinite.
[Hint:; PFirst show that the function {(m,n,p) # (f{m,n),p)

is a one-to-one onto mapping of M3 to mz, where f is any
one-to-one and onto function from N2 to I.]

Use the principle of mathematical induction to show that the
set of ordered n-tuples of natural numbers, mn, is countably

infinite for any n ¢ W.
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By the set of rational numbers @ we mean those real numbers which may be

written uniquely as p/q for some pair of integers p and g with g > 0
where p and g have no common factors {other than £1), that is the greatest
common divisor of p and q is 1.

As a corollary to lemma 3 we have the following significant result.
THEOREM 4: The set of positive rational numbers {;?+ is countably infinite.

+ 1 . .
Proof. Clearly the function f£f: N + @ : n br ;-15 one-to-one, as is the

funetion

+
g: 0 +N XN: %H" {p,g).

Take any one-to-one and onto function h from N XN to N . We have that

. . ) + s
h o g is a one~to-one mapping from () to "N.

!N.._.f.._;, Q+mg__+mxm_1.}_.+m]
| +
heg
The result now follows from thecorem 2. O]

EXERCISES:

l. Give an alternative proof to Theorem 4 along the lines of Exercise 2

above.

[Hint: Consider g: Q+ + [N §4+ 2P3q.]

2. Show that the set of all rational numbers is countably infinite.
[Hint: Consider the type of function used in Example (2) on p.127f
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THEOREM 5: Let Al’Az""’An"" be a countably infinite family of countably
infinite sets, then their union

A=3A UA_  U...UA U....
is countably infinite,.

In Theorem 5, note that we are not given that the sets Ai are mutually
disjoint. If theywere we could simply apply Lemma 3, but if we avoid this

assumption we must employ a proof {(and notation) something like that given.

Proof. Since Al is countably infinite, there exists a one-to-one and onto

function fl: N -+ Al. Clearly £; provides a one-to-one function from W into

A, since A c A.

For each n there exists a one-to-one and onto function f TN+ A 1
and thus, if a € A then a ¢ A for some n and so there is a smallest n,

call it na, with a € An . Further since fn : N > An is one-to-one and onto
a a a

there exists a unique natural number m such that fn (ma) = a (ma = f;l(a)).

a a
Infuitively the {irst appearance of a .4 ithe ma'th clement of A .
[
Define F: A + N x N by F(a) = (ma,na) , then F is a one-to-one function from

A into M X N. To see this, suppose F(a) = F{(b) i.e., (ma,na) = (mb,nb), then

1
g
[l
th

So £ (b} =£f (b) = m (a), i.e. £ (a) = £, (b) and since f
oy Ny a na a na

is one-to-one we have a = b.

Now let ¢ be a one-to~one and onto mapping from N X [N to W (lemma 3), then

g=¢oF: A+ is a one~to-one mapping from A into IN.

The conclusion now follows by theorem 2. O

Corollary 6: A finite union of countably infinite sets is countably infinite.

Proof. If A = Al u A2 U ... Uu An where AI’AZ""’An are a finite number of

countably infinite sets, then A may alsoc be considered as the countable

infinite union

= e A A fren
A AIUAZU UAnUn-I-lUn-[-ZU
where
A T8 T e TR

and so by theorem 5, A is countably infinite.
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EXERCISES:

1. Show that the mapping ﬁ-k>— g—is a one-to-one and onto mapping from

Q+ to Q_ the set of negative rational numbers. Hence, rededuce the
conclusion of exercise (2) above, using Corcllary 6.

2. Show that a countably infinite union of finite sets is either finite
or countably infinite.

*3. B real number is said to be algebraic if it is the root of some polynomial
with integer coefficients.
For exaﬁple: any rational number p/g is the root of gx - p = 0 and so
is algebraic; YZ is a root of x° = 2, s0 Y2 is algebraic, though it is
not rational.

A number which is not algebraic is said to be transcendental.

For each m € N let Am denote the set of algebraic numbers arising as
the root of a polynomial of degree less than or equal to m with integer
coefficients each of absolute value less than or egual to m.
. . - m1
i} Show that Am is finite. [Indeed, there are at most (2m+1) such
polynomials each of which can have at most m roots (fundamental

Theorem of Algebra), so # (Am) < m(2m+l)m+l]

ii) Show that Al uA, uAj U ... 1is precisely the set of algebraic
numbers. Hence conclude that the set of algebraic numnbers is

countably infinite.

9, Uncountable sets

DEFINITION: An infinite set which is not countably infinite is said to
be wicountable. Thus an infinite set A is uncountable if and only if

there does not exist a one-to-one function from [ onto 2.
(Intuitively, an wncountable sef has "infinitely" mone elements than

thene ane natural numbens. )

We now establish the existence of uncountable sets. Once this is

done the trivial observation that an uncountable set is never empty will
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be seen to have massive consequences.

THEOREM 7: The set of real numbers between 0 and 1, that is the open

interval (0,1) = {xeB: 0 < x < 1} . 18 wncountable.

Proof. Oui proof 44 by contradiction, that is, we assume (0,1} .is countably
inginite and show that this Leads #o a contradiction, showing that our
assumption must have been wrong and s0 {0,1) 4s not countably infinite and

A8 theregorne uncountable.

Assume (0,1) is countably infinite, that is, there exists a one-to-cone
function £ from W onto (0,1). Recalling that every real number in (0,1}
has a unique decimal expansion provided we agree to disallow any infinite
sequence of nines (otherwise, 0.5 = 0.4999... for example) , for each
nefN let O.anlan2an3... denote the unique decimal expansion of f(n).
Here, anl represents the first digit in the decimal expansion of £(n)

an2 represents the second digit in the decimal expansion of £{n)
ete.,
thus an, € {0,1,2,3,4,5,6,7,8,9} for i = 1,2,3,... . We now construct
a real numwber r € (0,1) with the property that r # f{n) for any n e N.

Let r = O.blbzb

3eee
3 if aii =5
where bi =
5 if s # 5
Thus, 3 if a11 = 5
b1 = ;SO b1 # ay; -

5 if aj; A5

Since a;, is the first digit in the decimal expansion of £(1) we see
that r # £(1) as their decimal expansions differ in the first place. Similarlyvy,
by = . S0 b2 # a,, and we have r # £(2) as their rsecond
5 if a22 # 5

digits are different.

In general, r # £(n) for any n, as their decimal expansions differ in
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the n'th place.

Further, each of the digits in the decimal expansion of r are either a 3

cr a 5 and so r € (0,1).
The proof is completed by observing that since r # f(n) for any n, r

is not in the range of f and so f is not onto, a contradiction.

O

COROLLARY B: The set B of all real numbers is wncountable, indeed it

contains the same number of elements as the open interval (0,1).

Proof. To see this we need only construct a one-to-one and ontoc function

£ from (0,1) to K.
But, such a function is known from elementary calculus, namely

f(x) = tan T(x - %)

4

v = £(x)

which may be interpreted geometrically according to the followlng diagram.
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DEFINITION: A real number which is not a rational nunber {see p.6) is

termed an irrational number. The exisfence of iwrational numbers has Long

been known. The discovery that v7 is .innational is atinibuted fo Pythagoras
(540 B.C.}, a modern proof being included in most secondary school courses.
Other numbers ane’ also innational, 4on example: Vi , where n 44 any natural

number which is not a perfect square; e, the base of the natuwral Logarnithms;

m

None- the -Less these constitute a mere handful of numbers and the proog

of thein iwationality becomes Aincreasingly more difficult.

The next corollany gives a non-constructive proof of the existence of

anational numbers. That is Fo say, it does not ddentify a 5ing£e numb e
which s inational but does show that there are "infinitely™ mone
Luvational numbens than there are rational ones. Intultively, were we 1o
pick a point at random on the neal Line it would be. "infinitely more Likely"
Lo nepresent an {unational numben than a hational owe.

COROLLARY 9: The set of irvrational wumbers is uncountable.

Proof. Let I denote the set of irrational numbers, then the set of real
numbers [R = T v Q, where Q is the countably infinite set of rational numbers
(Exercise 2) on pP-16 or 1) on pig.

Now, if I were countably infinite, then by Corollary 6 we would have IR
is countably infinite, contradicting the last Corollary. Hence I is

uncountable. 0
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A further Corollary is provided by the following result.

EXERCISE: Recalling the definition of transcendental number given in
Exercise 3 on p.l8, show that
The set of transcendental numbers is wnecountable.

[Hint: Tmitate the last proof.]

The above exercise provides a non-constructive proof of the existence of

transcendental numbers and L4 one of the high points of Cantor's theony.

The proof that any particubar numbern {4 transcendental. 44,05 a huble,
very digfleult, even though our nesult show that "most" real numbers are

Lndeed thanscéndental.

J. Liouville (in  1844) produced the §irst bnown transcendeital numbex,

namely & = } ?0_”1, and 40 proved that not all numbers ane algebraic.
n=0

That e s transcendentalwas proved by Hermite in 1§73,
Based on a considenable nefinement of Hermitfe's angument Lindemann in
1882 was able fo show that v is transcendental ,and so answered one of the

modL famous probLems in mathematics (see Appendix 2).
Gelfond established the transcadentality of ¢ in 1929,

Today several classes of numberns have been shown to be transcendental |(the
work of Baker et al. ), however the count of known franscendental numbers is
ALLEL modest and many problems remain. For example, it appears fo be
unknown whether or not e+m L5 transcendental -(fﬂndeed, whether oh not Lt is

even rnational) !



23.

IT. MATHEMATICAL INDUCTION

10. Proofs step by step

Suppose we are easily able to prove some result when n = 1, and
then, almost as easily, to prove it when n = 2, and then when n = 3,
and so on. The occurrence of the words " and so on” is an almost certain
indication that our proof, if carefully set out, would need to be by

induction.

In that opening paragraph, I have intentionally been sloppy and said
"to prove it when n = 2". In a simple case we may be sure what is meant
by "it", but even in simple cases we help ourselves and readers by
recognising that what we want to prove is of the form "For all n e N, Pn is
true", and saying clearly what we mean by Pn' A typical case is that Pn
denotes the proposition

1+2+ 3+ ... +n= Ei%;ll .

The Principle of Mathematical Induction says that if we have shown

(i) Pl is true, and

.. -
(ii) Pk Pk+l for each k e N,

then Pn is true for all n e N. In (ii), we suppose that we can arrange

a proof in which we carry k as a parameter; we are not thinking of getting
(ii) by an induction. (The use of "each" k ¢ N and "all" n e N above
may emphasise this.) Our experience is, over and over again, that (i) is

50 easy as to be trivial, but that in different problems (ii) may be easy

or quite hard. Nevertheless, a proof (which often amounts to a mere
verification) of (i) should never he omitted, since it ig a protection
against errors. For instance, if Pﬂ is the proposition like Pn above

but with the false right-hand side

n - 1} (n + 2)
2 I

then the step from Pﬁ

never true. OQur step-by-step argument, starting from nowhere, has got

P! is g £ P' i
to kel S Just as easy as before, but n 1S

nowhere.

11. The Tgogical status of the P.M.I.

Set out as above, our principle forms a good working tool but it looks
like magic, and indeed for many centuries it had been recognised as a method

without being eclearly understood. We can say now that during those centuries
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nobody had realised that what was being exploited was a property of N,
the set of natural numbers, and that this was at last recognised by Peano

{1858-1932).

Suppose we want to use N, and want the logic of our work to be clear.
We shall need to pick out some simple properties from which all other
properties of N can be deduced and either adopt these outright as axioms
or deduce them from something else. For our purposes we shall adopt
Peano's 5 properties as axioms, but the essential thing is to see what

they are. (See the box.)

Axiom 1. 1 is a natural number.

Axiom 2. To every natural number n there
corresponds just one natural number

n', the successor of n.

Axiom 3. 1 is not the successor of any
natural number, that is, we always

have n' # 1.
Axiom 4. ITf m'" =n', then m=n.

Axiom 5. Suppose 5 is a set of natural

numbers which satisfies:

{1) 1l e 5,

(ii) k € 8= k' € S.

Then S includes all natural =

numbers, that is, & = N.

Peano's Five Axioms fon N

It is convenient, in Peano's arrangement, to have written n' here
for what will later be called n + 1. Once we accept this, we see that
Axiom 5 corresponds to the P.M.I.: we need only define 5 +to be the
subset of N consisting of those n for which Pn is true. (It might
be good to mention here that, in Peano's arrangement, Axiom 5 is used in
obtaining the standard results about N: his Axioms 1 to 4 are not a
sufficient basis for these results. A clear treatment will be found in

Ch. 1 of Landau, E. Foundations of Analysis.)
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12, Alternative forms of the P.M.I.

We should look at two variants of the P.M.I. as it was set out abova.
The first is almost triwvial, but worth noticing; the second is more

interesting and desexves attention for its use and for its logical status.

First, consider as Pn

, +
sin 2n 1 o
n+l

n
cosocos 20 cos 40 ... COS 20 = -
2 sin o

Obviously Pn is true when n = 0, and this would be a natural place to

start from. If we insist on joining onto the form of the P.M.I. we had
above, we need only write Q. = P, and show Q, true for all meN .

Tt is good to see how easy this is, but it is usually unnecessary even to
comment about beginning our induction from some place other than 1. {This
might be a good place to remark that there are two conventions about N .

With the setting-out of Peanc's axioms we used, O does not belong ta N,

but more recently, some books have adopted the convention that 0 is considered
a natural number. The point is of no great importance but you should be

aware of it.)

Secondly, consider as Pn the assertion that if un is defined by

= >
u un—l + un_2 ‘ n =z 3,
ul = u2 =1,
7 . ey
then un < Z}n. Evidently Pl and P2 are true, and it is easy to check

that P3 is true, but if we want to set out a clear inductive step we find

we need to say

=
Fiep &P T By -

This is valid; indeed we can enunciate what locks like a greatly modified
version of the P.M.I., namely
"If we have shown
(i') Pl is true, and
(ii') PI &P, & ... & P ﬂ‘Pk+l for each ke N,

then Pn ig true for all n."

That this is valid follows quickly from the standard version if we write

Q =P Q, =P &P, & ... &P .

We can now say that if (i') and (ii') hold for P, then (i) and (ii) hold
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for Q. This is because mere rewriting changes (i') and (ii') into

; =
Ql is true and Qk Pk+l r

from the second of which, after the trivial remark Qk ﬁ’Qk, we can deduce

that is, Qk =0

=
Qk Qk & Pk+1' k+1"

Our guestion about u above is guite typical of a class of problem
for which we need to use the modified version of the P.M.I, but the most
important applications come in algebra and number theory. There are many
questions in those subjects where we need to make a step from Ph to Pk+l'
not with h being less than k + 1 by 1 or 2 but with h a divisor
of k <+ 1. For example, if we have defined a prime as an integer 22 which
has no divisor except itself and 1, we may well hope to establish Pn for

all n =z 2, where Pn is the proposition
"n can be expressed as a product of primes".
We can deal withthe above question as follows. Evidently

(i) P2 is true.

Suppose PZ""'Pk are true. If k + 1 is a prime, Pk+l is trivially
true, whilst if

k+1=af,
with 2=0<k+1 and 2 <8 <k+ 1, weare free to appeal to Py and
PB and say that each of o and £ can be expressed as a product of primes.

This of course gives us
k+1 = gB = plpz...pr - pipé...p;:
(Remark. We have not shown that n can be expressed as a product in only

one way. This reguires rather different considerations.)

13, "Induction" and "Mathematical induction"

The word "induction" has been a popular one. To say nothing of its
use in electromagnetism, we should notice that it is used as a philosophical
term to describe the step from special to general as in: "Since the sun
has risen every day for thousands of years, I conclude that it will rise

to-moxrrow,"

The reasons that "mathematical induction® is used to describe a method
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of deduction are of course to be found in the history of language. For
us, as helrs to and sufferers from this history, it is necessary to regaxd
“mathematical induction" as a compound technical term which, for our work
here, we can often abbreviate to plain "induction". We should, though,
remember that in any but a mathematical context this abbreviation might

be dangerous.

14, Some applications of induction

The most impressive uses of this method come in algebra and number
theory, and would require too much subsidiary material to be bPresented here.
You have probably seen inductive proofs of the summation formulae in Exx.1

and 2 below; you may or may not have seen the results in Exx. 3,4,5.

Even if we have to forgo the best number-theoretic applications we can
deal with such as:

Show that, for all nelN , Rl R divisible by 7.

Write
u = 62n_l + 1,
n

and Pn for the proposition "un is divisible by 7". Then

(i} Pl is true

and if Pk is true we can say

err T W Tyt

+ 62]{"1 (62—1) ,

which is evidently divisible by 7. Thus we have

(ii) Pk =‘;~Pk+l .

We deduce that Prl is true for all n. N

EXERCISES. Each of the statements is asserted for all =n eN . Harder
questions are starred.

n{n+l) (2n+1)
3 !

1. 12 + 22 4+ 32 4+ . 4+ 2 =
2 rzl r3 = ——-----—------—-...-]:l2 (n+l) 2

: 4

r=1

_ n{n+l) (n+2)

3. 1.2+ 2.3 + 3.4 + ...+n(n+l) 3 .

that is, if we write
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10.

11¥

r(2) rix + 1},

)

‘Z‘ L(2)

r=1

Similarly, show that

1.2.3.+ 2.3.4 + ...+n(n+l) (n+2) z'n(n+l}(2+2)(n+3) )

More generally, if we write’

r(t) =r{r+ L)(r+2)...lr + t - 1),
show that n r(t) _ n(t+l)
lr;l . t+1
. - £ __Xt+l
[Compare the result fd y dy = =1 -]
20714 571 i divisible by 11.

[Hint: In an obvious notation, express Wy W as the sum of

multiples of 24k_l and 5k+l .1

n+2 22n+l

11 + 1 is divisible by 133.

In the U.S.5.R. the currency notes do not go 1,2,5 roubles but 1,3,5.
Show that, if n > 7, an amount of n roubles can be paid using notes
of denominations 3 and 5 only.

[Once you have thought arcund this question for a while you will probably
be able to persuade yourself of its truth, but you might feel it would

be difficult to persuade anybody else. Oné of the virtues of a formally

set out inductive proof is that it is easy to explain to others.

Be prepared to find a case division.j

n

& (2n)!

n+1 (n')=

1 2 4 2" P

Tom + + + ... + = = ) AL -
1+x?  1+xh 1+x2 1-x%2

From the 2n numbers 1,2,...:,2n an arbitrary choice of n+l numbers
is made. Show that among these there is at least one pair, one of which
is divisible by the other.

[Be prepared to find a division of cases. ]
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15, A deferred result

In Chapter 1, we said that it is impossible to have a one-one and onto
mapping from"{1,2,...,h} to {1,2,...,m} if n # m. We could hardly have
given a proof at that stage since we had not brought properties of N clearly
into our discussion. We have now done this. Remenmbering that the natural

numbers are ordered
l <2 <3 <.,...,

we can say that if n # m then one is smaller than the other. We suppose the

notation chosen so that m < n.

THECREM 10

If 1 £ m < n, there cannot be a one-one function Ffrom '{1,2,...,n} into

| {lrzr---rm} .

Remark., We shall call the above proposition Pn. For each n, we make a
finite number (in fact n-1) of assertions but we carry m as a parameter

in our proof. There is no thought of inducticn on  m.

LEMMA 11

If n > 1 there cannot be a one-one function from '{1,2,...,n} into

{1}.

There is only one possibility for a function into {1}, namely that with
£(1) = £(2) = ... = £(n) = 1,

and the equality £{(1) = £(2) excludes the possibility of having a one-one

function. 0

Proof {of Theorem 10)
(i) We start our induction from n = 2. There is only one assertion
included in P2, namely that with m = 1, and this is covered by Lemma 11.

Hence P2 is true.

(ii) Suppose P holds, and suppose if possible that g is a one-one

k
function from

{1,2,...,k¥1} into {2,2,..., 2},

where £ <k +1 and, by Lemma 11, 1 < £ .
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Case a. If g(k +1) = &, write h for "g restricted t0<{l,2,...,k}",
that is, define h :{1,2,...,k} » (1,2,..., & - 1} by

hir) = g(r) for l1=sr=£k.

Then h is a one-one function and, evidently 1 £ § - 1 < k. But this is to

say that h is a function having the property prohibited by P It follows

K
that there cannot be such a function as g, and that Pk+l holds.
Case fB. If

gk + 1) =x ¥ &,

define ' | .
B = {1,2,...,£}+{l,2;...,2} by

8lr) = & ,
g{g) =« ,
(i) =i, 1 #L, i#r,

that is, the function, evidently cne-one and onto, which interchanges £ and r

and leaves the other elements unshifted.

Define g*: {1,2,...,k+1} + {1,2,...,8} by h=10o0g. Then h has the
properties used in Case (@), and here also we may assert that there cannot be

such a function as ¢, and that Pk+l holds.

Thus, in both Case o and Case B ,

P = Py,

and the Principle of Mathematical Induction gives us that Pn holds for all n.

O
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Appendix 1
FUNCTIONS

The modern definition

The word "function" is now used more generally than when it was
first introduced (by Leibniz in the 17th century). But itsmeaning has
not changed: we might better say that the word is now used without imposing
distracting requirements.

The first examples that we meet are of functions defined by simple
formulae such as

2
+ 7
(x) = %2, glx) = 221

x* + 3
where the notation suggests that we are concerned with real-valued functions
of a real variable. WNothing we say about wider interpret%tions will change
the fact that functions like this turn up often and are very important, but
it will help us to take a wider view. Let me throw the modern definition
at you and then make some comments.

By é function we understand two sets X, ¥ and a "rule" which
associates with each element of X an element of Y. That is, for each
element x of X the rule produces a unique* element y of Y, which we
call the image of % under the function. It is usual to denote the rule by
a single letter £, g, h etc., although this is by noc means always the case,
for example we use Sin to denote the trigonometric function sine, log to
denote the ordinary logarithmic function. The image of x € X under f is
then denoted by £{x).

We indicate such a function by writing
f:Xx+Y [read: "§ such that X goes to V),

and refer to it as a function from X to Y.

~When it is necessary to specify the rule explicitly we may write

* In mathematical jargon "unigue" is the opposite of "ambiguous". There
is no suggestion of "special" or "remarkable".



A2

£F:X+Y: xb Fix) (read: "§ such that X goes to Y
such that the efement x L5 tahen
fto the element §(x).")

For example, f : G#:+5{: x b Vx indicates the function which takes
positive* real numbers to real numbers by assigning to eachpositive real number
x 1its positive sguare root.

The set X 1is referred to as the domain of f£. The set Y 1is referred

to as the codomain or target set of f.

When the domain and codomain are clearly understcod from the context we

may indicate the function hy writing
x b Fx) or v = £(x).

REMARKS: 1) The specification of a function involves all three ingredients,
the domain, the target set, and the "rule". If any one is changed a different

function results. Thus, we say that

f:‘ﬂ-’-(ﬂ:xl'*xz

-

@L+§ﬁ: X b x?

g

and h: &R: x b x?

are three different functions (with different properties, as we shall see
shortly) even though they all share the same rule.

2) While it is frequently the case in very elementary mathematics,
there is no regquirement that the domain and target set be subsets of the real

numbers. (A restatement of the remarks above!) For example:

(i) Let F be the set of all real valued functions of a real
variable and let [ denote the subset of differentiable

functions, then the operation of differentiation.
D: £k £

defines a function from 0 to F.

Similarly, for any fixed real number rg,

*Remenber that we are following the convention that "y is positive" means

"y = 0" and "y is strictly positive" means "y > 0." (Compare Page 13)
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Ero: F+8: £ f(xrg)

defines a function from F +to # which associates with each

function f € F its value at rp.

{ii) Let P denote the set of all points in the plane and let
| be a given line in the plane,

then

R: P> P: Pbp'

is a function from P to P which

takes each point to its "reflection" in L.

3) An important change in point of view is concealed in the statement
that we "denote the rule by a single letter". If, as in many books on
Calculus, there is talk of "the function f(x)" we should interpret this
to mean "the function £ defined on some domain whose typical member is
called x". You may see the reasonableness of this point of view if you
notice that the formulae

I b . i t

1+ x2 1+ t2
define the same rule, which we call £f.
You might look again at the definition of E. in 2) (i) above, and
0

make sure you see what is going on.
4) Note the use of the ordinary and tailed arrows

- and =2
in the above. The first is used between the domain and the target set
whilst the second is used between typical members of these two sets. You
will not find them in all books, but they are being used more and more
widely and you should reagard them as the modern standard. (The untailed

arrow alsoc has the important meaning "tends to" but the two meanings do not
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cause confusion.)

Another useful word is the range (or image set) of a function £ : X = Y,

the set of all images of peoints in X under £. We shall denote the range of

£f by £{(X). Obviously (being only an exercise on our notations)

£(X) ¢ Y,
but it is very likely that £(X) is a proper subset of Y. For example, if as

in Remark 1) we write
£F:H+RK: xH—xz,

then 9 ¢ F(®), since 9 is the image of 3 (and of -3) under f£. However,
-1 is not in the range of f (although it is in the target set) since no real

number has -1 as its sguare. Indeed, here
+
£(R) = &,

2. Properties of functions

We wanted to define the word "function" in the most general way. Having
done so, we shall distinguish functions which have convenient special pProperties.
(i) A function £ : X + ¥ is said to be onto if £(X) = Y.
For example, the function

F:R+8: xp x2

s

is not onto but the function

ﬂ+ﬁ+: x b x2

]

has this property.

(ii) A function f : X + Y is said to be one-to-one (sometimes written 1-1)
if no two distinct points in the domain have the same image under f. We can
write this requirement as

(@) 1f x; # xp , then £(x1) # £(x2)
or, eguivalently, as

(B) if x; and x5 have £(x;) = £(xp), then xj = x5 .
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In diagrammatic form, the following situation does not occur:

il
f y = f(xl) = £(x,).
%2
For example, g: ﬂf+ﬂ+: x I+ x? is not one-to-one since g(-1) = g(i).

i ;
On the other hand h: G& +®: x =+ x? is one-to-one. (Why?)

(iii)For functions £: X + ¥ and g: Z + U where Y £ Z we may define

the composite function gef (xe2ad "g of 4") by

gef: X+ U: x b g(£(x)).
(Note: geof is sometimes written as simply gf.)

Diagrammatically we have:
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For example, let f: ﬂn+(R+: x b x* and let g:(ﬁt+ f: x ‘& x+1, then
gef: R+ @ x b x2+1. This same example shows that the operation
of forming composites need not be commﬂﬂétive, that is gof need not
in general equal feg. In the above example,

+ + Il 2 .
fog: @+ @ : x b (x+1)° = x* + 1 + 2x and so feg # gof (indeed, not

only are their rules different, so are their target sets.)

In fact it frequently happens that fog is undefined even when
gef is defined. For exaﬁple, let f: @f.+ i x l+_ﬂ§ and let

g: d{++(ﬂ: x b -x then

gof: @ + @& x & —Vx

while feg is undefinéa as for any x e ﬁf, Y-¥ is not a real number.

EXERCISE: Let f: X+ Y and g: 2 + U be such that gof is defined (that
is ¥ £ %), show that
i) gof is onto if both £ and g are onto and Y = %,

and ii) gef .is one-to-one if both F and g are one-to~-one.

ions

3. Invertible funct

A function f: X + ¥ is said to be invertible if there exists

another function g: ¥ + X such that

gof(x) X for every x ¢ X

It

and Fog(y)

N4 for every v € Y.
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For example, f£: ] -+ {(0,11: x & ;%I is invertible (take

1

g: (0,11 + & x w = -1).

LEMMA 1: If £: X +Y 15 invertible then there is a UNIQUE fumetion
(that is, there is only one function) g : Y + X with

Il

gof(x) x for every x e X

and fogly) =y forevery y e v .

Proof. Assume that g*: ¥ + X is also such that

g*of(x)

X for every x € X

and fog*(y)

b'g for every v ¢ ¥,

then for every y € ¥ we have

g*(y) g*(£(gly))), as fog(y) =y or £lgly)) = y.
= g*of(g(y)), by the definition of "ot
= gl(y), as g¥ef(x) = x for every x € X and g(y) e X.
Thus
g¥ (¥} = gly) for every y € ¥, or g* = g. .

If £f: X ~Y is invertible the unigque g: ¥ -+ X satisfying

gef(x) = x for all x e X
and fog(x) =y forallye Y
is termed the inverse of £ and is usually denoted by f_l. Thus

f_l: Y + X is the unique function such that

f_lnf(x) = x for all xe X

and fof L(y)

¥ for all v € ¥.

EXERCISE: 1) If f: X + ¥ is invertible show that f L is invertible

—l)—l -

with (f £.

2) If £f: X+ Y and g: Y + % are invertible, noting

that gof is defined, show that gof is invertible with (gof)_l = f—lﬂg_l
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Theorem 2: £ : X + Y i85 tnwertible if and only if £ 4is both one-to-one

and onto.

NOTE that the occurrence of "if and only if" in the enunciation shows us
that we must construct two proofs, that is, one in each direction. A
convenient piece of shorthand is to write (®) and () respectively as
labels on the two proofs. (Exercise. Check that this shorthand does make

sense!)

Proof. (=) Since f_l exisgts, if X, Xy € X are such that f(xl) = f(xz},
we have
x = £ NEE)) = £ N EE)) = x, ,
so £ is . oche-to-one.
To show f is onto, we must establish that each v € ¥ is the image
of some % € X under f£. Thus, given v € ¥, let x = fbl(y), then

£(x) = f(f_l(y)) =vy, so f is onto.

{+}) Since f is onto, given any v € Y there exists an x ¢ X
with f{x} = y. Further this x is unigue, otherwise there would be two
points x;, X, € X with %) # x, and y = f(xl) = £(x,) which is

impossible as £ is one-to-one.

For each v ¢ ¥ let us denote by xy this unigue point in X for

which y = f(xy)-

it

Define g: Y + X by gl(y) xy for each v € Y.

Then, feog(y) = £(g(y)) = f(xy) v for all vy € Y. Further, for each

xe X gof(x) = glf(x)) = x the unigue point in X whose image

£(x)
under £ is £(x). Clearly x itself is such a point, hence, by the

unigueness, = x and so gof(x) = x for every x ¢ X.

(%)

It therefore follows from the definition that f is invertible.
' il
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COROLLARY 3: If £ 18 a one-to-ong and onto funetion from X to Y, then

£ " ewists and is a one-to-one and onto funetion from Y to X.

EXERCISE: From Exercise 2) above deduce that if f: X + ¥ and g: Y + Z
are both one-to-one and onto functions, then gof is a one-to-one and onto

function,.

Note: PFrom this theorem we readily see that the double condition

gef(x) x for all x e x

and fog(y)} v for all v e ¥

in the definition of invertibility is necessary., The function

f: -+ R%: x b %2 is ontoc, but not one-to-one, hence f is not
invertible. None the less the function g: ﬁ+ +~®: vy b vYY is such
that feg(y) = y for all Yy & ﬁ+ and so one of the above two conditions

on ‘'f is satified!

REMARK. The word bijection to mean a function which is both 0ne¥to~one
and onto will be guite often met with. This is cne of the new words

introduced by Bourbaki, the pseudonym of a group of French authors., The
words injection (for a one—to-one function) and surjection (for an onto

function) come from the same source but have not been as widely adopted.

4. The theorem of Schroeder and Bernstein

The result of this section is important when we want to establish
the existence of an invertible function between two given sets. Note that

there is no suggestion that there is a unigue F with the asserted

Properties, and this for two reasons. First, starting from fFf and g as
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here, we might think of some other procedure for constructing an F. Secondly,
we might start from‘another pair of functions £ and gj, which had the
properties required of f and g.

When I talk of using f and g(or £; and gj) I sheuld point out a
feature of the enunciation of the theorem, one that arises elsewhere. We
suppose S and T +to be such that there exist an f and a g with certain
properties. In any application we start with the sets S and T, and look
for two such functions. In fact, the rewording “"Suppose that S and T are
two sets and that we havé found functions £ and g with properties ...."
might seem better. (But what has been used here is probably more typical of
what you will find in bocks.)

The idea of the following proof is simple, and well indicated in Figs.
1,2,3. However, it 1s necessary to introduce notation which may give you
trouble at first. If it does, work Exercises 1 énd 2 before going through the
whole proof. B

The sets & and T are
indicated by the wvertical
~lines; the thickened parts

;denote g(T) and £(S)

respectively.

The arrowsgoing from left
to right show the action of
giT) f on typical points; those
from right to left the action
of g. (Note that arrows
start from every point of

the lines; they can only

end inside the thickened parts.)

Fig. 1. 'The effects of f

and’ g




5" has no ancestor

_1 <:::f\ s has no fifth ancestor

Fig. 2. The ancestors of a point s belonging to 54

Dotted arrows from left to right show the action of Y-l, those from right
to left the action of ¢_l.

: 3 R ! 1 n
In this fiqure: s ¢ 54, t e TB’ s' e 52, t! e Tl and s" ¢ SO'

If we follow descendants of s, we have u e T ;s VvV &8 ete, {(The "Etec."

5 6’

on the figure indicates these descendants.)

All
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(b}

Fig. 3. Two ways in which points can belong to Se (and-
corresponding points to T.)

In Fig. 3(a), the arrows u to v to w to x to y to =z
te u form a closed cycle. (The "descendants" of an element are also

"ancestors"!) We have u, w, y in 8, and v,x,2z in T_ .

@

In Fig. 3(b), the indication is that the thickened lines extend
upward indefinitely and the arrvows showing the actions of Y_l and ¢ul

continue upward indefinitely.

THEOREM 4. (Schroeder-Bernstein). If S and T are two sets such
that there exists a one-to-one function £ : S + T and a one-to-one
function g : T + S, then there exists a one-to-one and onto Ffunetion

F ;51T
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Proof (due to Garrett Birkhoff*). We may assume that neither f nor g
is onto (since if £ is onto we need only take F = £ and if g is onte
need only take F = g“l).

We organise the work by talking about "ancestors" of points. For

any 5 € 5 we ask whether

(0} s e g{T) or (B) s ¢ g(T).

If (o) hblds, there is a +t, indeed, a unique t, such that

g(t) = s,
and we call t the first ancestor of s. If (R) holds, we can say s

has no first ancestor.

We write
SD = {s €8 : s has no first ancestor} ,
that is
S0 =5 - g{T).
Similarly we can define
TO = T - £(8},

as the set of points in T which have no first ancestor.
We are especially interested in points which have a first ancestor
and ameng these we aim to pick out those which have higher ancestors. We can

help ourselves by defining#**

¢ : 8+ £(8) : s b £(s)

and

L3

Y : T+ g(T( : th glt),

* We need to give the Christian name to distinguish Garrett (1911~ )
from his father George David {1884-1944).

** The introduction of ¢ and v may seem very fussy, and we might say that
we could write £~ and g~l and remember where these were usable and where
not. Indeed we could, but it is easy to get muddled. Experience this
century (some of it with very subtle work) has shown that the fussiness pays.
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two functions for each of which the target set and range agree. Since each
is 1-1 (Check!) we are justified in using the notations ¢_l and Y_l in
labelling the figures. If s e g(T), so that it has a first ancestor t,

we ask whether t has an ancestor. If 50, we call it the second ancestor

of s, and so on.
Now we define

'{5 € 5: 8 has a first ancestor but no secon&}

i
i

5 {s € 5: s has a second ancestor but no third},

2

Il

and so on, and similarly we define Tl, T2 etc. Also we define

S,=1{s e85 : s has an infinity of ancestors}

and,similarly, Tw. [Note that our metaphor may break down here: see Fig 3(a).]

This classification by number of ancestors leads us to the equations

S

I

S, USpuS; uSy U ..... (1)

and
T

I

T, UTgUTy UTo U cuunn , {2)
and to the result that in each of the equations the sets on its right-hand

side are disjoint. Further, we can make the essential remarks that

i
mn

£(S) =7T_, g(T_) (3)

o=

and, for n = 0,1,2,...

f(Sn)

Il
=

g(T) : (a)

n+l Sn-l-l
Now write

H=50U52US]+U----;

the subset of S consisting of points having an even number of ancestors.
(Note that although 0 is an even nwber, © is not a number, even or odd,

but a useful piece of shorthand.) Similarly, write
K=TpUuTy UTy U .... .

Evidently we obtain, from (4),

£(H) = T UT3 UT5 U .... .
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and
g (K) = 5 U 53 USg U .... .

We can now write (1) and (2) much more briefly a=

§=5_uvH v g(X), T=T_ u £f(H uvK,
where in each of the equations the sets on its right~hand side are disjoint.
Finally, define F : S + ¥ by
F(s) = [ £(s) if ses_U &

y"l(s) if s € g(K)

Then, as required, F is 1-1 and onto. (Check!) a

EXERCISES: (1) If

s=1{0, 1, 2, 4, 5, 6, 8, ..., 4n, 4ntl, 4n+2, 4n+4, ....}

{0, 2, 3, 4,6, 7,8, ..., 4m, amt+2, 4dmt+3, 4m+4, ....} ,

=
It

we take
f{s) = 2sg, g({t) = 2t,

Find Sp, Tor 53, T1 and show that

s =T = {0}.
Remarks (i} Obviously we do not need to appeal to the Schroeder-Bernctein
theorem if we want to set up a bijection from S to T. The point of this

exercise, and of Ex. 2., is to help you sort out the notation.

(ii) Recall that {0} is the set with just one member, the number 0.

It is not the empty set.

(2) If S =17, the set of all integers, and
f(s) =5 + 1, gl{t) =t + 2 ,

show that Sm =T =5,
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{(3) Show that if

§=1[0,11 and T = [0,1),
the closed and half-open intervals respectively, and

£ls) =%s, o(t) =t

show that
: 1
Sg = {1} ' Te = G 1),
1 el
§; = (Ev L, T = {54
and that

s = .Tm = {0}.

==l

{4) In the notation of Ex. 3, determine F, as defined in our
theorem. (You will need to use a broken definition, that is, you can define
F by using formulae but there will be different formulae on different subsets.)

Illustrate with a diagram.

(5) Show that if, in the notation of the theorem, we define

G: T—=+5 by
g(t) if t e Tm U K,
Glt) = | _
I if t e £(H),

then G 1is a bijection from T to & and that F¥*, defined as G_l,

satisfies the requirements of the theorem.
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Appendix 2

CONSTRUCTION PROBLEMS

1. The geometrical background

To understand wha£ is being attempted here, and why, you need to know
certain points of mathematical history.

Greek geometry, as typified by FEuclid's textbook "The Elements”, is
concerned first and foremost with straight lines and circles. Correspondingly
they preferred constructions which used only a straight edge and a compass,

the straight edge being ungraduated. You have probably seen constructions,

satisfying these requirements, for the bisection of a given angle and for
the construction of perpendiculars. There are many others, one of the most
interesting being that of a regular pentagon. But, in spite of many attempts
in Greek times and later to find constructions (subject to the restrictions)
for |
(1) trisection of a given angle,
(ii) duplication of the cube,

(iii) squaring of the circle,

none was successful. The suspicion gradually arose that these constructions
are impossible if we cobserve the restrictions. However, as you can gee, to
show that no construction is possible we must find a way of surveying all
permissible constructions. This was achieved during the 19th century.

The key was to classify the "constructible numbers" and to show that
they can all be found by solving chains of gquadratic equations and that
all are expressible in a form involving nested square root signs. (CE.
page A2l .) If now we can show that the solution of one of our problems
would determine a length (in terms of a convenient unit) which is not of
this form, we can assert that the Problem cannot be solved.

What we can do here is to show that the constructible numbers can be
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expressed as finite sums of numbers using nested square root signs and how the
transcendentality of 7 excludes the solution of (iii). But of course, we have
not shown that 7 is transcendental.

It might be useful to make some comments on (i} and (ii). If we could
solve these, our construction would determine a length given by a cubic
equation and (except for the special angles 900, 600, 45° etc.) the cubic
equation is one which cannot be solved by using a chain of guadratic equations.
The proof of this requires a loﬁg discussion, of a quite different character
from our work here. We must leave this for the futﬁre.

Another construction problem or, rather, class of pProblems which the
Greeks (and their successors in modern times) looked at was the extension of
the method of constructing a regular pentagon to the construction of a regular
n-gon, for any value of n. This does not seem to have captivated imaginations
as much as our (i), (ii), (iii) and since nobody had any success with the cases
n=7, 9, it was not much talked about. Hence, the discovery by Gauss that the
case n = 17 is tractable came as a tremendous surprise. To achieve this
positive result, it is necessary to show that the equation

16

. E zn = 0

n=0
can be solved by using a chain of guadratic equations. The calculations are not
difficult, but it is impossible to motivate them unless we use some facts from

number theory. Hence this too must be left for the future.

2. Constructible numbers

A number r 1is said to be constructible (in the Greek sense) 1if, starting

with a given line segment, nominally of length one, it is possible to construct
a line segment of length r in a finite number of precise steps using only a

straight edge and a compass.
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We have the following results.

1} If r and s are constructible numbers so are r+s and r-s (provided

r>s) .

Let AB be a line segment of length x. Extend AB to the right. Open
the compass to a width s and using it locate the point € on the

extension of AB with BC = 5. AC iz of length r+s5 (the construction
of r-s is similar) |

&T-5 —H— 5 —
. B C

A o= - © )
< x >&— 5 —5

T r+g ——

2) If r # 0 18 constructible so is 1/r.

S e

/L\ v

:1\ ®
-»

1/r
N

A N Txi

v ol

r
Let A, B, C be marked on a 1line as shown with BB = 1, AC = r. Construct
perpendiculars to the line at B and C. Using the compass, open to width
AB, locate the point D on the berpendicular at C such that D = 1, join
DA. Let E be the point of intersection of Da with the perpendicular at
B, then triangle BER and ADC are similar so AR:AC = ER:CD

or 1l/r = EB/1 ,

that is EB is the required segment of length 1/r.
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3 If r, s ave both constructible numbers, then their product rs is

constructible.

The construction is similar to that given in 2 and may be found in

the following diagram.

E

A

4) If r is constructible so is vt .
Locate the three points A, B, C on a line
such that 2B = 1 and BC = ¥, Bisect the

line to find D. With D as centre draw

' 4 r\uj

a circle of radius AD (= DC} . Construct

4
L5

the perpendicular to AC at B and let it

intersect the circle at E. Then BE is of length Vr .

EXERCISE: Prove that this construction works.

COROLLARIES

3) Any natural number n is constructible.

Use the construction given in 1 a sufficient nuwber of times to

L+l 41+ .., +1 = n .
N A

'y
n times

construct.



A2l
p

6) Any positive vational number g is constructible.
Construct p and g by 5). Using 2) construct é , then using 3} construct

1 _p
XK = == _
P g g

7) Any number which is a finite sum of numbers of the form

sn x vh, + /o x n, ...t A E/m

is constructible, where m, ny, n,, ..., n, are positive integers,

provided none of the subtractions leads to the square root of a negative no.

The construction is done using successively: 4) to find Ny 1) to find

+ ¥n ; ind v} LY ;0 ivi
nk~1 nk' 4) to find -1 nk ete;  2) and 3) to divide by m.
After each term has been constructed in this way thelr sum is obtained
from repeated application of 1.

The purpose of what follows is to show that:

8) The only numbers which ave comstructible arve of the form given in 7).

9} Any number of the form given in ?) is the root of some polynomial with
integer coefficients.

and hence

10) Every constructible number ig an algebraic number.
From this and the Exercise on p.12 we then deduce

11) The set of constructible numbers is countably infinite and so the set
of non-constructible numbers is wncountable. In particular, non-

constructible numbers exist.

10) and 11) follow readily from 9) and so are left as EXERCISES.

9) itself is an easy EXERCISE. [As a hint consider the case where

nl - !/1'!.2 +v n3

m

i =

Then, mr - n, = - /nz +¥ny squaring gives
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2 = /o

(mr - n )% -n, = n,
squaring again yields

(( )2 = ny” - 0

my n n, n, =
or
(mq)rl+ ~(4m3n )r3 +(6m2n2 - 2m2n )r2 - (4mn (n2 -n,)lr + ((n2 - n )2 -n.) =0
1 1 2 1Y 2 1 2 3 )

So we see r is the root of a fourth degree polynomial, whose coefficients are

all integers as m, n,, n, and n, are integers.]

We therefore concentrate on 8).

Let C denote the set of all real numbers of the form given in 7) - such

numbers are sometimes called guadratic surds.

EXERCISE: A) For any r, s ¢ C show that

i) r + s e C and, provided r > s, rs e C,
ii) rs ¢ C,
iii) provided s # 0O g ¢ C [Hint: "“rationalize" the denominator,
and use ii)],
and iv) Yr ¢ C.
That is C is closad wunder the operations of +, -, x, + and vV .

3.Constructible points

Choose a set of rectangular coordinate axes in the Plane such that the

line between (0,0) and (1,0) is the given line of unit length.

Y
/ (%) ,¥)

(xz,yz)
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Say a point in the plane is constructible if it can be located, using
straight-edge and compass, in a finite number of precise steps starting
from the two points (0,0) and (1,0).

Clearly a point is constructible if and only if hoth its x and

y coordinates are constructible numbers.

Let PC denote the set of points whose x and ¥ coordinates are in
C . By 7) the points in PC are all constructible.

Further, since (0,0) and (1,0) « PC it is possible to locate any
constructible point, using straight-edge and compass, in a finite number
of precise steps starting from the points in PC .

The first step in such a construction will be the location of a
new point as either

a) The intersection of two lines, both of which are constructed

by joining points in PC

ox
b) The intersection of twe circles whose centres are points in PC
and whose radii are the distances between pairs of points in
Pe
or

c) The intersection of a line of the form described in a) with a

circle of the form described in b} .

The purpose of the final exercise B) below is to show that the
result of any of a}, b) or ¢) is to Produce another point in PC'

Hence the first step in our construction Produces nothing new, and
so the second step, being of the same form and still starting from PC’
also produces no new point. The same is true of the third, fourth,

fifth, etc. steps, and so any finite number of such steps will not
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produce a point outside of PC‘ We therefore conclude that the constructible

points are precisely the points in PC from which 8) follows immediately.

EXERCISE B) Using the results of exercise A) show that:
a) the line ax + by = ¢ passes through two points in PC’ if and only
if a, b and ¢ may be chosen from C.
Hence conclude that the intersection of two such lines is a point
in PC'
b) i) the distance between two points in PC is a number in C.
ii) if x% + y2 + 2ax + 2by + ¢ = 0 is a circle with centre in PC
and radius the distance between two points in PC' then a, b and
c are in C.
iii) the intersection of two circles

x% + yz + 2ax + Zby + c =0

and

x% + y2 + 2a'x + Zb'y + e =0

is the intersection of the-line
2Z(a - a')Jx + 2(b -b'Y)y + {c - c") =0
with either of the circles.

Hence conclude that the points of intersection of two circles
with centres in PC and radii the distances between pairs of
points in PC are also the peoints of intersection of a line
passing through two points in PC and one of the circles (that

is, case b) reduces to case c).)

c) Show that the points of intersection of a line passing through two
points in PC with a circle centred on a point of PC and with
radius the distance between a pair of points in PC are points in
'P

c [Hint; use the characterizations of such a line and cirecle,

found in a) and b) above.]
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SQUARING THE CIRCLE. The classical Greek problem of "squaring the cirelfe”,
that .8, constructing a squane of area equal to that of a given circle may
be translated as follows:

Take the radius of the cincle to be the unit of Length, then the circle
has area mx? = m, s0 the required squane has side Length /7 . Since V7 is

constructible Lf w .is {(4) above )| we have

The cincle may be squared if and only if © 4is 4 constructibile number.

We have not proved w L& non-consitructible, only that non-constructible numbess
exiat.  None the Less we have seen that any comstructible number {4 algebiraic
and 40 we can now appreciate how Lindemann's result that m .is ,f‘fr.anécen.d@nta,e
Led to the conclusion:

1L (8 impossible 1o square the cincle in a finite numbér of precise steps

using only a straight edge and compass.




