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An image of the plane where radial distances might have been distorted
according te the metric

__dx oyl
dls,y) = 1 + IX — Yl
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'TABLE QF NOTATIONS

the set of natural numbers, {1,2,3,...,n,...}.

- the field of raticnal numbers.

the ordered field of real numbers
the field of complex numbers.,

the Cartesian-product of the two sets X and ¥

“i.e. the set {(x,v): x € X, v € ¥} of all ordered

pairs with first element a member of X and second

element a member of Y.
The Cartesian product of R with itself n times - the

set of ordered n-tuples of real numbers, usually
regarded as a vector space over R with respect to
component wise definitions of vector addition and

scalar multiplication.
an element (vector) of r"

x = (xl,x2,...,xn)

the closed interval {x € R: a < x < b}

(Note: it is implicit in the notation that a < b).

the open interval {x € K: a < x < b}

(Note: it is implicit in the notation that a < bh).

Half open intervals in K.

the vector space of step functions on [a,b].
the space of regqulated functions on [a,b].

the vector space of bounded functions on [a,b].

the set of continuous real valued functions with
domain the interval I, usually regarded as a vector
space over R with respect to point-wise defined

operations of vector addition and scalar multiplication.

a speecial case of C(I).
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‘ ) <
the absolute value function x - { %'lf"x =0
r = if x < 0.

a metric function.

the metric space consisting of the set X egquipped

with the metric function d.
a norm function

the noxrmed linear space consisting of the vector

space X equipped with the norm function I.}.
an inner-product.

the norm function on R defined by

I = {If |xi|P]% .

i=1

Note: lIxll_ = limit HgHP = Max {[x,]:i=1,2,...,n}
P+m

the norm function on C{a,b] defined by

b
el = U |f|P] S
P a B

Note: Hf”m = Sup lf(x)l may also be defined
xefa,b]
on Bla,bl.
the metric induced by .l , d_ (x,v) = llx-vll .
Y p’ “p ¥ Y p

the finite dimensional normed linear space

R0,
P

the infinite dimensional analogue of Eg; the

space of all p-summable sequences with

(5 1,7

i=1

Il
-'p

Wwhere X = X_ ,X_ ,eee X seee =
ple ll’ 21 r n!

the subspace of &_ consisting of all sequence which

converge to O.
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the sphere centre x and radins r,
s_(x) = {yex: dly;x) = r}
the open ball centre x and radius r,

Ef(X) = {yeX: d(y,x) < r}
the closed ball centre x and radius r,
Er_['x] = {yeX: dly,x) < r}

the (closed) unit ball of the normed linear space

.0
B[X] = B1[0) = {veX:liyl < 1}

the interior of the set A.

the diameter of the set A, Sup di{x,v).
X, VEA

the closure of A, the set of all limit points of A.

the boundary of B, A n (X \ A)

the sequence . ,X_,..0 ;X renes
q1'1 ll 2’ F n'

an indexed family of sets.

the intersection of the indexed family of sets

{3X:AEA} ;

for all A}

na =. N
ix xeél

eh A

Scmetimes written
[+e]

nilAn when the indexed familyA{Al,AZ,...,An,...}

is countable.
the union of the indexed family of_sets'{Ak:heA},
consisting of all x which belong to at least one Al'
The complement of A in,X'i;g, the set

{xex: x { a}.

the symmetric difference of A and B,

AAR = (AuB) \ (AnB)
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f:X+Y ~ & mapping from the set X into the set Y.

f:@xe £x) - a notation for the function £ which maps x to £ (x)
{x € some implicit domain X). Sometimes combined
with the previous notation to give £:X + Y:x b f(x),

specifying both the domain and range of f as well as

the "rule".
£{a) - -~for f : X+ Y, AcC X, the set {f(x) : xeA¥ c Y.
f_i(A) -—for f : X+Y,Ac Y, the set {xeX : f(x)eAl}.
p=q - p implies g, or q if p.
P ¥g - p if and only if g, or (p= g) and (g < p).
Sup A - for A <R the supremum (least upper bound} of A. |
Inf A : - for a CJR the infemum (greatest lower bound) of A,

Commoni symbols not used in the notes, which may be useful in your working -

q - there exists.
bl - for all.
iff — if and only if.



ABSTRACT amo FUNCTIONAL ANALYSIS

Chapter 1 : BASIC THEORY

§1.1 Definitions and Examples - Metric spaces, Normed linear spaces and

Inner-product spaces.
METRIC SPACES
In both mathematics and common language the notion of distance is
often used figquratively, for example:
'Orange is a colour nearer to red than violet.'
'When a massive particle moves in a gravitational field
it follows the path of shortest "distance" {(geodesic)
in space-time.’
3
"For x small, x - §—= is a clogser approximation to sin x
than is x.'
Such notions are made precise when it is possible to assign a numeric value
to the distarnce between the objects under consideration. We develop an
extended "theory" of distance (encompassing many cases like those above)
which has proved to be fundamental for much modern mathematics. Except in
specific examples, we will not be concerned with the nature of the objects
or with how the distances between them are "calculated".
Our primitive éoncept will be that of a given set X together with a function
d which assigns to each ordered pailr of elements (x,y}) of X a real number _
d(x,y) which we take to be the "distance" from x to y.
We will require the function d to satisfy certain conditions, which as
the German Mathematician Herman Minkowski (18B64-1909) remarked in 1906,

"any notion of distance ought to possess". These four conditions are:

(ML) d(x,y) 2 0 £for all points x,y € X;

I

(M2) dx,v) 0 if and only if x = vy;

(M3) dix,y) = d(f,x) for all points x,yv € X
That 44, d 48 a sdymmefriic function of Lis fwo cmgumem - the. distance
from x Lo y (s the same as ithe distance from y Lo x. '

dlx,y)

X

0
-~
e Y

&
-
ey

d(y,x}



{M4) di{x,y} € d{x,z) + d{=z,y) for all x,y,z € X.

This inequality .4 usually referned Zo as the triangle dnequality and
may be intenpreted as the statement that the Length of one sdide of a triangle
cannot exceed the sum of the Lengths of the other fwo éx;de,;.

x/ d(x,y) §Y

EQLbLucuﬂen:!:Ey, the distance from x to y via any intermediate point z cannof
be "shonter" than the direct disfance from x Lo y.

A function d:¥xX + R which satisfies the above four properties is termed
a metric {(from the latin metor - measure) on X. The set ¥ together with

a metric d is referred to as a metric space and denoted by (X,d). (M1l) to

(M4) are the axioms for a metric space. For any particular % and d, to
prove (X,d} is a metric space it is necessary to show d is a metric on X;
that is, to verify that d satisfies each of the axioms (M1) to (M4). When
developing the general theory of metric spaces we build from the axioms.

All results must ultimately be consequences of only the four axioms.

EXAMPLES (1) The set of real numbers R with the usual metric

dl(x,y) = Ix - y|, for all x,v € R, 18 a metric space.
Proof. (M1), (M2) and (M3) are easily verified (do so). To establish (M4)
we use the well known inequality |a + b| £ [a| + |b| and observe
that

d(.fo) [X - Y|

|x -z 4+ 2 - yl {(The z's cancel )

I(x -z} + (= —-y)|

1A

]x - zl + |z - y|

dix,z) + d(z,y).
(2} The set of ordered paivs of veal munbers R? - the set of points

on the plane identified with their coordinates with respect to

a set of Cartesian axes -~ together with the Euclidean metric



do (X,y) = /(x1~y1)2+(x2—Y2)2

where X = (x1,%) ad v = (y1.,v3) € RZ, is a metric space.

This is a special case of a wider class of metrics which arise from
inner-products. Since these will be considered later we omit a direct
proof for the above statement.

[By identifying the point X with the complex number u = xi + ixs; and

y with v = y; + iyp we see that the modulus |u—v| = d{x,y). This shows

that d(u,v) = |u-v! defines a metric on C the set of complex numbers.]

An alternative metric on R? is provided in the following example.
(3) For x, vy e R?

0, if x =y

d(x,y) = {
~ Vx124x92 + Vy1%+ye?, otherwise

defines a metriec on R? which is sometimes referred to as the "post-office”
metric (can you see why.)
B proof of this is more easily given after the notion of a normed linear

space has been introduced and will be called for in a later exercise.

It is indeed possible to define a metric on any set, as the following
example illustrates.

(4)  Any set X can be rendered a metric space by using the discrete

metrie defined by

Qif x =vy
dix,y) = {
lif x# y
Procf (That the discrete metric is a metric). Clearly (M1) and (M2}

are satisfied, while (M3) holds since = and # are symmetric relations.

To establish (M4) for %, y, 2z € X we must consider the following

cases X =y # 2, X =Y =2, XAV =2, E=X#AYy, X#y # 2z £ x.

In case 1, d{x,v} = 0 while d(x,2) = d{z,y) = 1 s0

(0 =) d(x,y)’ﬁ dx,z) + diz,y) (=2).



The other cases may be handled similarly.
NOTE: While the discrete metric is certainly pathological it is of

considerable importance in the construction of counter-examples.

Observation Trom the last three examples we see that the underlying
set does not determine a metric uniquely; many different metrics can
be defined on the same set and so several distinct metric spaces can

share the same sel. For example; -~ for the two points x = (%,0) and

y = (1,0) in R? we have:

Using the Euclidean metric dz(x,y) = L;
Using the post office metric d{x,y) = 1%;
Using the discrete metric dix,y) = 1.

Frequently the appropriate metric to use is determined by the type of
problem under consideration, as the following example illustrates.

(5} In elementary plane geometry the most used metric on R2 is the
Euclidean Metric of example (2). However, for a law abiding motorist,

the distance between site x and y on the map below is 7, not dp(x,y) = 5

:JI N | ] 1 J | | L

——

I
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2l
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‘*he appropriate metric for our motorist to use would be

dy (x,y) = lx1 - vil + [x2 - v2l {(Why?)
The proof that this is indeed a metric on R? will be deferred until
we have introduced the concept of normed linear space.
(6) For any given set A let X denote the family of all finite subsets
of A. That is subsets x of A with only a finite number of elements.
Let x A y denote the symmetric difference of the two subsets x,y of A.
That is;

xAhy=(xuvy)\ (xny)

Define d:xxX + R by d{x,y)} = # (xAy), the mumber of elements in

xhy. Then, d 18 a metric on X. The proof of this is left as an
EXERCISE. (Note, the "points'" of X are themselves sets - finite subsets

of A.)

EXERCISES
1. Prove d(x,y) = min {l,|x—yl} is a metric on R.

2. Let (¥,d4) be a metric space. Show that d* defined by

d(x,y)
* Pl Soic 2 LS
V) = T a0,y
is also a metric on X. (Note that d*(x,y) < 1 for all x,yeX.)
3. (Very useful and important) In any metric space (¥,d) prove the

following inequality
|d(x,z) - d(z,y)| 5§d(x,y) all %2, v, 2 € X
(This may be .interpreted as: the difference .in Lengths of fwo sides of

a trniangle cannot exceed the fLength of the third sdide.]



4. For any set X # @, show that d:X % X + R satisfying
(M1') d{x,y) = 0 ¥ x =y
and {(M2') d(x,y) <d(x,z) + d(y,z) for all %, y, z € X,
is a metric'on X.
E._ The four axioms (M1} - (M4) of a metric space could be
replaced by these two slightly morxe intricate ones due to S. Banach.
REMARKS :

1} A good .informal introduction to the notion of a metric space may
be found in W.W. Sawyer "A Path to Modern Mathematics", Pelican,
Ch.10, pp.7187-221. 1 stnongly suggest you read this. |

2) Because the study of metric spaces .is an abstract one, £t 44
essential that you become completely familiarn with the definitions
and notations as well as some of the mone basic examples.

3) Dnawing diaghams which interpret the various defdinitions, construed-
ions and nesulits in the familian space (R%,d.} is a valuable aid
to understanding, and a practice which you should actively adopt.

4} {HISTORICAL) The concept of metaic space is essentially due to the
French Mathematician Mawiice Fréchet (1878-1973), though cun
defdinition .Ls that given by the German Mathematician Felix Hausdor
(1868-1942) .in 1914. Fadchet .introduced the netion 4in his Doctoral
thesds to the Universdity of Parnis in 1906 and for many years
pioneened the study of such spaces and thein applications to othen
weeas of Mathematics. It was toward the end of Last century that
mathematicians {due to the work of Kfein, Hilbert and many others)
began to appreciate the powern of generalized methods [(such as those
nepresented by the study of metrnic spaces) and s0 initiated the Atudy
of abstract systems - vector spaces, metiic spaces, nommed spaces,
topological spaces,ghoups,iings,categories ete. - which have proved
central Lo much fwentieth century mathematics. Because a profodype
gon many of these structures £s5 'ordinany' 1, 2 on 3 dimensional
space; they are often referred to as spaces and theirn elements as
points. The study of such a structure has proved valuable for several
reasons, some of which are:

(a) By retaining only essential featurnes of a situation their
condequenced can be studied mone simply in a Less cluttered

enviaonment,



(b) Any conclus.ions of such a study are immediately applicable to
any particulan rhealisation of the staucture. Thus a result can
be simultaneously established for a numbern of apparently distinet
Adtuations.

{e) By necognisding the common structure of familiar examples such as
1, 2 on 3 dimensional space and ofher spaces Lt L4 possible fo
Lhansgen  some of our intuiltion about 'ondinany' space fo Less
gamilian sifuations.

WNORMED LINEAR SPACES

For many of the more important examples of metric spaces the metric
is defined in terms of additional structure carried by the space X. Of
particular importance is the case when X is a vector space on which a
norm function is defined.
DEFINITION : A norm on the vector (or linear) space X is a function

X+ R: x & lxll which satisfies the following axioms.

N

(N1) [[%ll 2 0 for all x ¢ X.
(m2) Izl = 0 if and only if x = 0.
w3y laxl = |l| Il xll for all x € X and scalars A ¢ K.
(way Mx + vl < Il + Iyl for all x,y e x.
{(N2) is sometimes referred to as the triangle
inequality.]

- REMARK : It should be apparent that a nomm function (s a generalization
of the absolute value funetion on R (on the modulus function
on C). The nowm of the vecton x, lxl, may be thought of as the
"Pength" of the vector, on the distance grom x fo the origin
{the zero vecton 0 in X).

A vector space X together with a norm, ||l .ll, on it will be referred to

as a normed linear space and denoted by (X, .I}).

The concept of a noumed Linean Apace 45 essentially due to the
Polish mathematician Stefan Banach (1892-1945), who finst consdidered
the Aidea in his doctoral dissentation of 1920. Banach (fogether with
collegues) continued Lo work on the theorny and applications of such
Apaces for the rest of his Life.

Before presenting examples of normed linear space we establish the
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link between them and metric spaces.
PROPOSITION 1 :- If (X, .1) Zs a normed linear space, then

a(x,y) =llx - dl

defines a metric on X which we refer to as the metric induced by the

norm | .Il.

PROOF : Using the fact that || .l is a norm, ie. satisfies (N1) to (WN4)
we must show that d(x,y) as defined ahove satisfies (M1) to
{m4) .

That d{x,y) 2 0 for all X,¥ € X follows directly from (M1).

Next note that

d{x,y) = 0% |lx - y” =0
® x-y=0 (by N2)
¢ x=y
and that
diy,x) =lly - «l
=f-1(x - ¢l
= |-1tix - vl (by N3)
= llx - yll
= dix,y).

To establish (M4) we argue as follows.

il

d{x,y) lx - v Il

I

lx - 2 + 2z - 4l

= ”(x -z} + (=2 - y)”

IA

hx -zl + llz - Al (by N4)

di{x,z) + d(z,y).
A metric induced by a norm has several special properties. For example
1) ftranslation imvariant ; that is,

d(x+z,y+z) = d(x,y) for all x,y and z € X

[Proof. d{x+z,y+z) =llx + z - (y -+ 2l = llx - y“ = d(x,y)].



2) Provided X is a non-trivial vecior space (ie. , X # {0},or X contains
at least one non-zero point), the wvalue of the induced meiric ranges
pver all positive wnumbers. |
[Proof. Choose x &€ X, x # 0, then [l # 0. Given any positive number

c let 2 = ¢/ll4dl and observe that

ol

RALE

e/l =l -l =l

d{xx,0) = llax - d

il

= c.]
Not all metriés have these properties.For example; the Post-office metric
of Example 3 is not translation invariant d{(%,0),(1,0)} = 1% while d(1},0), (2,00 =
1
The discrete metric (values 0 or 1)} or the metric of Exercise 2 (values e
Setween 0 and 1) do not assume all possible positive values. These metrics
cannot therefore be induced by a norm. Thus the concept of a metric space

is a more general one than that of a normed linear sbace. Every norm

induces a metric, however not all metrics arrise in this way.

EXERCISES.
1) Let (X,0.l) be a normed linear space, establish the important
inequality
“lﬂl - ”yﬂ| < llx - il for all x,y € X.
2) Tf x is a non-zero element of the normed linear space (X, .l)

show that vy = Wiﬂ-x is an element of norm 1.
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3) Show that the metrics of Example 6 and Exercise 1 are not

induced by any norm.

EXAMPLES: (Note, each example of a normed linear épace also provides
a further example of a metric space.)
1) Finite dimensional spaces.
In order to fix notation we mention a large family of norms for
Rn, we will however only be interested in three particular cases.
Let X = R° the vector space of all ordered n-tuples of real numbers
(with addition and scalar multiplication defined component-wise).

For any real number p with 1 £ p < =

I = [El Ixiip]l/p

je=

where x = (xl,xz,...,xn)e X

defines a norm on X.

.,lxnl} (can you prove this)

Further, %igit ”§”p = Max{|xl|,|x2|,..

and this last expression alsc defines a norm on X which, for consistency,

we denote by llxll (= Max lxil).
- = i=1,...,n

Throughout this course we will only consider R" with one of the three

norms H§Hl = |xl|+ |x2| oL+ [xn]
”§"2 = /x12+x22+...+xn2 (known as the Euclidean norm on R'.)
and “f”m = ‘_lMax lxi| (Sometimes referred to as the uniform
e or Tchebyscheff norm on Rn.)
We now prove that ”.”1 and ”.Hm are indeed norms on Rn, the proof for

l.lg will be given after the notion of an inner-product has been

considered.
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oo 15 easily verified

That (N1), (M2) and (N3) hold for both II.II1 and | .l

(do so). To establish (N4) in each case we proceed as follows.

n
For x = (xl,x ,...,xn) and y = (yl,yz,---,yn) e R
+ = + - +
g + gl =l ep +ypox, + yy,eax + v
= + + oL+ +
[, + vy |+ Iy oy, %, + v,

S P2 R P I P IS Py ey
(the triangle inegquality for the absolute value function)

e P I P N e e O I R R Py

Il

+
gl + Uyl -
Also,

Il % +7¥“&:= Max |xi + v |

i=1,..,n i
Q..MELX (|xi| + Iyil)
i=1,..,n

<Max x| + Max |y.]|
i=1,..,nl i=1,..,nl

—lxll o+ gl

The normed linear space (Rn,”.HP), where p=1,2 or °° is sometimes denoted

by &7 .
Y o

. . n
The metrics induced on X = R by these three norms are :-

ol

W

=
|

10y = llx -yl

Ixl - Yll IXZ - Y2 oot |xn B yn

[Note; the "taxi-cab” metric of Example 5 of metric spaces is the parti-~

cular case of this corresponding to n = 2,1

2 2
-y, )+ L.+ (xn - Yn)

2
d_ (x,y) = »/(xl - yl) + (x2 5

2 =
[This is the Euclidean metric for Rn, of which the metric in Example 2 is

the special case with n = 2. R" equipped with this metric is known as

n-dimensional Euclidean space.]
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dm(}jfy) = MaX{]xl - Yl|’|x2 - yzl""’lxn - Ynl}'

The uniform or Tchebyscheff metric on Rn.]

8) Sequence spaces

The set of all (infinite) sequences of real numbers is a vector space

under "term-wise" definitions of vector addition and scalar multiplication:

X X

5 2r---rxnr-~- + Y1:Y2r---ryn""

= + + . + e
Xl yl'XZ er :xn an

and

Afx ,xz,...,xn,...) lxl,kxz,...,lxn,...

Formally, the sequence X = xl,x2,...,xn,..- is the function

x : N+ R :n~ X s it is also a generalization of an ordered n-tuple

(to an "ordered co-tuple"), accordingly it is possible to define norms
(==}
analogous to those of the last example on various subspaces of R .
(2} Let X be the subspace(in the vector space sense)of all bounded sequences;

that is, sequences x = xl,xz,...,xn,.._ for which

Sup{|x1!,l |,...,|xn|,...} is finite, then

%2
”g”m = S§p|xn|

is a norm on X. X together with this norm is usually denoted by

L {or m).

[=2e]

Since all convergent sequences are necessarily bounded (see first year

or latexr) ‘an important subspace of &x is ¢ the set of all sequences

o
which converge to 0 together with the "sup-norm", |l.ll_, defined above.

(b) For p = 1 or 2 {indeed, for any real number p with 1 S<p <9, EP is

the normed linear space of all "p-summable" sequences (that is,

sequences X = Xl'x2""'xn"" for which fj|x |P < ) together with
n=1 n
the norm
- P P B 1/p
= bLe +
”§”P ( ll |x2| + ... +|xn[ + o..a)
[That the spaces ﬂp (p =1,2 and °9 are indeed normed linear spaces

follows by "passage to limit" from the finite cases and the proofs are

left as an (optional) EXERCISE.]



