3)

13.

Funetion spaces. (These are perhaps the most imporitant examples
and the ones to which our ensuing theory has the most important

and immediate applications - some of which will be taken up in

later chapters.)

Recall that the set of all real valued functions with common
domain D © R, usually a closed interval [a,b], forms a vector space
with respect to the point-wise defined operations:

"f4g":D + R : %+ £(x}+g(x)

"AE": D+ R o ox b AF(x) .
Let B denote the vector subspace of all bounded functions on D; that
is, functions f for which there exists a constant M_ such that

lf(x)l < M, for all x € D.

Defining a norm on B amounts to providing a measure of the proximity
of a function £ to the zero function 0[0(x} = 0, all x € D]. Now
at any % € D the function £ differs in wvalue from the zero function

by lf(x)]. In many applications it seems reasconable to take the

"largest" such difference in wvalue to be the norm of F.

Accordingly we define the uniform (or Tchebyscheff) norm on B by

I€l = sup |£(x0)]
- xel[a,bl

44
NPl

5:=ﬁﬁﬁx9

P = T R

0
e
C
gy

. S S———

&i=0(x)>_x
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This is the analogue of the ”-”m in the last two examples. To see that

it is indeed a norm function we proceed as follows.

Clearly: llell =z 0; Il =0+ |fx)| =0 al1 x
< £ = 0;
el = sup [Af(x)| = sup [A]|£ea)| = |a]Uel_;
xeD %xeh
I£+gll | = sup |£(x)+g(x) ]
XeD
< sup ([E(x)] + |gx)])
xeD
< Sﬁp”lf(k)1 + Sup |g(x)l
®xeD xeD
=l + gl
and so ll.ll , is indeed a norm on B, inducing the uniform metric
d_(£,9) = lf-gll _ = sup [£(x) ~ glx}].
xeD

I cdatfg)

We will later show that any continuous function defined on a closed
interval [a,b] is bounded. Thus an important subspace of (B, ”.”m)

is (Cla,b], ”.”m) where ([a,b] denotes the space of all continuous real
valued functions with domain [a,b]. By replacing summation with

integration it is possible to define other norms on Cla,b] in analogy
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with ”'“p {p=1, or 2} of the last two examples. Thus for C[a,h] we

have the uniform norm defined above,

Nell = max  [£(x) ]
xe[a,b]
and in addition:
b
fhelly = I |£(x) |ax ;
a
. b '
el = [ l£60) |2 ax
a
A proof that ”.Hz is a norm will be given in the next section on innexr-
products. That ||.ll] satisfies (N1) to (N4) is left as an easy EXERCISE.
NOTE: |l.|ll] takes the "absolute area" between f and the zero function

0 {the x-axis) as a measure of the distance between these two functions.

The metric induced by this norm,

b
a (f,9) = f £ - g
a

is represented by the area of the shaded region in the following sketch

J 1 ,
q =$(=)

1
p) AT Y
T =c
of ai b7
l y=9g (;zc)
i

EXAMPLE: TFor f£(x) = x34x+1 and gix) = x> + x2 + %% + 1 in C[0,1]

we have d_(f,g) = Max hx - x2|

O=x=<1

= 1 {check this)
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while,

1

1 L el
a; {(£,9) = J [%x—ledx ' J {(Lx-x2)dx + (x2-Y%%) dx
0 0

W —

1

g -

EXERCISE: (a) In C[0,1] determine the values of d_(£,9) and

dy(f,g) when f(x) = sin x and g(x) = x, and also when g(x) = x - x3/6.

(b} Using Taylor's Theorem with remainder, obtain estimates

For 4,(£,p) and & (£,p ) in C[0,1]

when

n
f = exp and pn(x) = Z xm/m!
m=0

INNER PRODUCT SPACES.

Just as metrics are induced by the richer structure of a NnOrm, a norm
itself sometimes results because of other structure carried by the
space. In particular this is so when the space has an inner-product
defined on it.

DEFINITION. BAn inner-product for the vector space X is a wapping from

ordered pairs of elements of ¥ into the real field:

X x X+ R: (x,y) b <x,y>, which satisfies:

(IP1) <x,x> > 0 for all x € X and % # 0. (positivity)

(IP2} <x,¥> = <y,x> for all x,y € X. {symmetry)

(123) <Ax,y> = A<x,y> for all x,v € X and AeR {homogeneity)
(IP4) <X+y,z> = <x,z> + <y,z> for all x,y,z € X. {additivity)

EXAMPLES
n
(1) On X = R the usual "dot" or scalar product of two vectors

+ x T ... Yy

X, is inner- T < > o=
(w g) an inner-product XY X 27, -

1¥1

where x = (xl,xz,...,xn) and y = (yl'Y2'°"'yn)

[You should verify this as an EXERCISE.]
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s . . , n
This is not the only inner-product which can be defined on R,
indeed for any set of n strictly positive mumbers t«I]_,mJ",...,x,\;I.1

an inner-product is defined hy

n
ey = Lowxy,
i=1

Such "weighted" .innen-products are of considerable importance .in some
areas of statistics.

(2) BAn inner-product on %, the space of all square summable
sequences (see Example 2 of normed linear spaces) may be defined by

< = =
XY ngl Fn¥n

[That this expression is finite, for all sequences x = x_,x X

2777 n'

@ (==} l
. 2 2 .
and Yy = yl,yz,...,yn,... for which Z b4 and I Yn are finite,

n=1 " n=1
follows from the Cauchy - Schwarw - Bunyakowski inecuality to be
established below. That it satisfies the four axioms of an inner-—
product is readily checked and so is left as an (optional) EXERCISE.]
(3) Tor X = Cla,bl] we can define
Jul
<f,g> = J E(x)g(x)dx for all f,ge Cla,bl.
a
With the exception of (IP1l) the axioms of an inner-product are easily
verified:
(IP1) 1If £ « Cla,b] is not the zero function, then there exists some
xg € [a,b] for which f(xg) # 0. By the continuity of £ there exists
§ > 0 such that for x ¢ [a,b]
|x—xg| < 8 = |F)-£xg)| < | £(x0) [/,

Consequently, for xp~8 < x < ®xp + § we have

f(x)2 > %—[f(xo)|2 >0,
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and so

b 2
<€, = I £ (x) “dx

=}

®x. -6 2 x +68 5 b 5
= f{x) dx + L £f(x) dx + i F{x) dx
‘a 0—6 0+6
x0+6 9 2
2=l f(x) ax (as £(x)” 2 0 for all x)
-8
1 2
>‘Z+f(xo)] X 28
>0 .

{IF2) For f,g-e-Cla,bl we have

b
C g, = [ g (x) F (x)dx
a

b
= J fix}g{x)dx
a

= <$,g> .
{IP3) For f,9 € Cl[a,b] and A ¢ R

b
<QUf,g> = I Af (%) g (x)dx
a

b
= AJ fx)glx)dx
a

= A<E, g
{IP4) For £,g9,h ¢ Cla,b]
b
<E+g,h> = | [f+g] (x)h{x)dx
‘a
‘b

= [f(x)+g(x)I1h(x)dx
“a

) b
= flx)hix)dx + J g(x)h(x)dx
a

‘a

= <f,h> + <g,h> .

The following useful properties of an inner-product are immediate

consequences of the above axioms, which you should prove for yourself
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as EXERCISES.
(1) <x,y+z = <, v + <x,2>
(2) <Ay = A<,y
(3) <x,x>=0 if and only if x = 0
(4) vy =0 if and only if <x,y> = 0 for all x e X.
A vector space X together with an inner-product <. ,.> will be referred to

as an inner-product space.

Innen-phoduct spaces werne {mplicitly studied by many mathematicians

[For example; the two Gemman mathematicians, David Hilbert [1862-1943) and
Enhand Schinidt (18§76-1959) and the Hungarian Frledenich Riesz (1880-7956)1
dwring the st thiee decades of the twentieth centuny, howeven, the axioms
were not made explieit until 1929 when they were expounded by John

von Neumann (1903-1957) as a basis {or his axiomatic dévelopment of quantum

mechanics.
fhe importance of an inner-product space for our purposes is that
the formula
Nl = V<3
defines a noym on ¥X. The axioms (N1}, (N2) and (N3} are easily established:
(N1) <x,%” is greater than 0 if x ¥ 0 and equals 0 if x = 0
consequently, for all x, <x,x> =0 and so Ilxll =0 .

m2) llxll =0 ® <x,x>=0 © x=0

m3) = Kok, > = A, 2>
= A s
= |h|“xﬂ

Thus, it only remains to establish (N4), the triangle ineguality. This is
done as part (ii) of the following theorem.
Theorem 1. In any imner-product space the following arve true:
(i) | <, v < =iyl (Cauchy-Schwarz-Bunyakowski inequality)
(ii) = + it <=l + Nyl (triangle inequality)

(1ii) If <k, v =0 lx + 9l% = 12 + Hy”2 (Pythagorean identity)
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(Av) Ix o+ vl 4l - gh? = 202 4+ 2fiyh 2 (Parallelogram Taw)

Proof.

“A{3}If vy = 0 both sides are zero and so the result is immediate.

If vy # 0 we proceed as follows. For any scalar o we have

I

0 < lx+ouyll? = <xtay, x+ay>
=<K, X b <ay,x> 4 <x,0y> + <oy, oy

= ||xll2 + a<x,y> +of<x,y> + u”y“z]

So, choosing a = —<x,y>/lyll? (possible as llyll # 0) we see that the
. . 2 9 <X,y>
term in square brackets is zero and O = [Ixl|2 + a<x,y> = |x]2- I ERR

Rearranging we therefore have
<x,v>2 = (I« 2 yll 2
Taking sguare roots we therefore have

|<x,y>| < ”x””y” as required.

(1) Hx + Y% = by, xiy> = <> 4 2<%, y> + <y, 5>
= 1d® + 24x,y5 + N1yl
<Ul® + 2Axlligh + 1512 (by i)
= dixll + Nyl)?
S0 taking the square root of both sides we obtain the triangle

inequality, which is otherwise known as Minkowski's inequality

in this context.
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(1ii) Follows immediatély from the first two lines of the proof in
(ii) with <x,y>= 0. |
(iv) Trom the first two lines of the proof in ({ii)
Ix + vI1% = 112 + 2,55 + iIyll
Similarly by expanding <x-y,x-y> we obtain
T ~ gl = el ® = 2,5+ Igll2 .
Adding these two identities yields the parallelogram law.
1
The Euclidean norm in R and the norms denoted by H.H2 in ﬂz and in Cla,b]
arise from the above formula for the appropriately defined inner-products.
Thus, we have finally arrived at a proof of the fact that these are indeed
norm functions. All of these norms have special properties; for example,
they satisfy the parallelogram law, which are not satisfied by all norm

functions;

2
For example in Ei the norm ”§”l = xl| + !x2| does not satisfy the
parallelogram rule. To see this observe that for ¥ = (1,0) and y = (0,1)

we have

8 .

2 2 , 2 2
20ll” + Hylt™y = 4 while llx + ¢ll° + lIx - yl
This shows that ”'”l does not arise from any inner-product according to

the formula v<x,x”, Diagrammaticallywe have the following situation.

Metric .
Normed linear spaces

Spaces Inner-product spaces

Indeed, any nowm satisfying the parallefogham Law may be shoum #o arise
frrom a suitably defined inner-product. Thus the parallelogham Law
chanaeternizes inner-product spaces [the Jordan-von Neumann characterization).

Honouns students may Like to attempt proving this as an exencise. (See exercise ?
on the next page for a hint. |

EXERCISES
1) Motivated by (iii) of the previous theorem and the ordinary idea of

. . . n . . .
perpendicularity in R, viz. X.y = 0, we define two vectors x,vy in

the inner-product space X to he orthogonal if <x,y> = 0.
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i) Show that x and v are orthogonal if [and only if - by iii) of the
theorem] they satisfy the Pythagorean identity

2 2 2
lx + vll™ = xl" + [yl

*ii) Show that x is orthogonal to y if and only if IIxll < lx+Ayll  For
all scalars AeR. (Can you give a geometric interpretation to this
result.)

The condition Izl <llx+ryll all A .is offen used as a generalized
definition of x being onthogonal to y in any nowmed Linear space
(R.C. James, 1947].

iii) If x#0 and v are elements of X verify that =x and

<X,y>
Yo o<x,x>

x are orthogonal.

2} For any inner-product space, verify the "polarization identity":
<x,y> = Y(lx+yll 2 - Il =yl 2)

3) In the space C[0,1], show that

dy (x,sinx) =y<x - sinx,x - sinx >
+ 2
= J (%x-sinx)dx = 0.061
0}
while
X3 .
dzfx—g': sinx) = 0.002.
4) In terms of the Euclidean norm Il.ll, on R? note that the "post-office™

metric is given by

dix,y) =

{ 0 ifx=y
”xﬂz + Nyl otherwise.

Use this to verify that d is indeed a metric.
[Hint. When proving (M4) consider the cases: ¥ =2 X=Yor

Yy =2; X, ¥, & are all distinct.]
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§1.2 Geometry in Metric spaces. Balls, convexity and boundednezss.

In ordinary (Euclidean) geometry a circle (or sphere) is defined to
be the set of points equidistant from a given point - the centre.
It is possible to generalise this notion into any metric space.

DEFINITION: Let (X,d) be a metric space. The sphere of radius

r > 0 and centre x is the set {yeX:d(x,y) = r} which we denote by Sr(x).

NOTES 1) Under this definition we continue to use the term sphere
2

regardless of the dimension of the space. Thus for example, in f5

(R? with the Euclidean metric) the "sphere" centre x = (x7,%) and

radius r is what would conventionally be referred to as the circle

with centre x and radius r:

wn

W

o
!

= {¥=(Y1,Y2)ER2:62(§,¥) = r}

{ (YI tyz) H {Y]_-;Xl ) 2+ (Y2_-XZ) 2=I'2]'

> l-axis
While, in R with the usual metric, dj (x,y) = Ix—y[, we see that

the "sphere" Sr(x) consists of two points

5.(x) = {yeR: |x-y| = x}
= {x-x,x+r]}
—& + ——+ R
X-r bld X+r

2) The "shape" of a sphere varies with the particular norm

2
used. For example, in %, the sphere (circle) with centre (1,1) and

radius % is
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2 1
S, (1 1) = {x = {x;ux) e R™ ¢ 4, (x,(1,1)) = Ilx - L uly, =33
1
= {(xl,xz) : |xl - 1] + |x2 - 1] = Eﬁ
which is the diamond illustrated below
Y
~
LY
S AN X2
[\ ;
N :
\\ ' xl’ x2 > 1
N .
14 ceamanae
~
AN + 2%
N X X, =
5 " Y M X
1 N
[To see this; consider the case X3 0%, 2 1 then
le -1} = xl - 1 and |x2 - ll = x2 ~ 1 and so we need
1
—_ - —J—" + =21_ d 3 1
x, 1+ X, 1 5 or xg X, & Similarly consider the other
three cases: % =1, X, < i; x, <1, X, = 1; X%, < 1.1

EXERCISES: 1} For any set X with the discrete metric d, show that, for

any x £ X we have
. _ )
5 (x) = {Q (the empty set) if r # 1
N{x} if =1

2
2) In £ sketch the sphere s, (1,1).

Y
2
3) In R" with the "post-office" metric sketch each of the
following spheres:

5,10,0), s,{(2,0), 5, (1,0), 5, (1,0

Of particular importance when (X,ll.ll) is a normed linear space is the

unit sphere of X, S,(0) which we sometimes denote by 5(X). Thus
s(X) =1x e x :ilxll = 13 .
Once the unit sphere S(X} is known all other spheres in the normed
linear space (X,l.l) are essentially determined. Indeed all other sphe¥es

are translates of dilates of the unit sphere.
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In {X,”.”)
vy £ Sr(x) € ly -« =<
“ y=x+w where w (= v - %) ¢ SI(D), ie. Hwll = r
¢ y=x+ru where u (= w/r) has [[ul =1 ie. ue 5, (%)

Thus if we write rS5(X) for the dilate {ru : u e 8(X)} and % + r3(X) for
the translate {x +w : w £ rS{X)} we have

Sr(x) = r$(X) + x
EXERCISE: Sketch the unit sphere in ﬂi . Hence deduce that the sketch

of 5%(1,1) obtained above is essentially correct.

More important than the concept of a sphere for the study of metxic

spaces is that of a "ball".

DEFINITION: Let (X,d) be a metric space. The open ball of radius r

and centre ¥ is

Br(x) ={y e x : dly,x) <r}.

The closed ball of radius r and centre x 15

Br{x] ={yex :dly,x) Sr}

2
Thus in R with the Euclidean metric Br(y) is the "“disk"

2 2
Ty vy) = (yy - X"+ (v, - )7 <o)
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In R with the usual = fietric Br(x) is the open interval (x - r,x + x)

- verify this.

X— 4 x+r

[Note, Br[x] Br(x) U Sr(x) or equivalently

B (x} B IxI\Ng (x).]
r r r

The (closed) unit ball of a normed linear space (X, .l) is

B[X] = {x e x :Mxll <1} (= B, [0]).

As with spheres, in the case of a normed linear space we have

rBE[X] + x

H

B [x]
r
={yeX:y=ru+x foruceB[X]} .
Similarly, Br(x) = rBl(O) + X.

EXERCISES:

1) Verify the claim that in the normed linear space (X,l.])
Br[x] = x+rB[X]

2} {(a) Sketch the (closed) unit ball for E% and 22

(b} Sketch the (closed) unit ball in the normed linear space
resulting from R2 equipped with the inner-product
<i{,¥> = xX1y1 + 2K2Y2

where
x = (x1,%p) and y = (vi.v2)-
{c} Show that the (closed) unit ball in (C[a,b},ﬁ.mm) consists of
all continuous functions on {[a,b] whose graphs lie entirely
between the two lines y = 1 and vy = -1.

3) sgketch the ball Bg(1,1) in each of the following spaces.

2%,2%,22, RZ2 with the "post-office™ metric.

=2

Because of the vector space structure present when (X,}.ll) is 2 normed
linear space, we can define the notion of a line as well as those of

spheres and balls.



