3) Function spaces. (These are perhaps the most important examples and the ones to which our ensuing theory has the most important and immediate applications - some of which will be taken up in later chapters.)

Recall that the set of all real valued functions with common domain $D \subseteq R$, usually a closed interval [a,b], forms a vector space with respect to the point-wise defined operations:

"f+g":D
$$\rightarrow$$
 R : x \mapsto f(x)+g(x)

"
$$\lambda f$$
": D $\rightarrow R$: $x \mapsto \lambda f(x)$.

Let $\mathcal B$ denote the vector subspace of all bounded functions on D; that is, functions f for which there exists a constant $\mathcal M_f$ such that

$$|f(x)| \le M_f$$
, for all $x \in D$.

Defining a norm on $\mathcal B$ amounts to providing a measure of the proximity of a function f to the zero function O[O(x) = 0, all $x \in D$]. Now at any $x \in D$ the function f differs in value from the zero function by |f(x)|. In many applications it seems reasonable to take the "largest" such difference in value to be the norm of f.

Accordingly we define the uniform (or Tchebyscheff) norm on B by

$$\|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

This is the analogue of the $\|.\|_{\infty}$ in the last two examples. To see that it is indeed a norm function we proceed as follows.

Clearly:
$$\|f\|_{\infty} \ge 0$$
; $\|f\|_{\infty} = 0 \Leftrightarrow |f(x)| = 0$ all x

$$\Leftrightarrow f = 0;$$

$$\|\lambda f\|_{\infty} = \sup_{\mathbf{x} \in D} |\lambda f(\mathbf{x})| = \sup_{\mathbf{x} \in D} |\lambda| |f(\mathbf{x})| = |\lambda| \|f\|_{\infty};$$

$$\mathbf{x} \in D \qquad \mathbf{x} \in D$$

$$\|f + g\|_{\infty} = \sup_{\mathbf{x} \in D} |f(\mathbf{x}) + g(\mathbf{x})|$$

$$\leq \sup_{\mathbf{x} \in D} (|f(\mathbf{x})| + |g(\mathbf{x})|)$$

$$\leq \sup_{\mathbf{x} \in D} |f(\mathbf{x})| + \sup_{\mathbf{x} \in D} |g(\mathbf{x})|$$

$$= \|f\|_{\infty} + \|g\|_{\infty}$$

and so $\|.\|_{m}$ is indeed a norm on B, inducing the uniform metric

$$d_{\infty}(f,g) = \|f-g\|_{\infty} = \sup_{\mathbf{x} \in D} |f(\mathbf{x}) - g(\mathbf{x})|.$$

We will later show that any continuous function defined on a closed interval [a,b] is bounded. Thus an important subspace of $(\mathcal{B}, \|.\|_{\infty})$ is $(\mathcal{C}[a,b], \|.\|_{\infty})$ where $\mathcal{C}[a,b]$ denotes the space of all continuous real valued functions with domain [a,b]. By replacing summation with integration it is possible to define other norms on $\mathcal{C}[a,b]$ in analogy

with $\|.\|_p$ (p=1, or 2) of the last two examples. Thus for C[a,b] we have the uniform norm defined above,

$$\|f\|_{\infty} = \text{Max} |f(x)|$$

 $x \in [a,b]$

and in addition:

$$\|f\|_{1} = \int_{a}^{b} |f(x)| dx$$
;

A proof that $\|.\|_2$ is a norm will be given in the next section on inner-products. That $\|.\|_1$ satisfies (N1) to (N4) is left as an easy EXERCISE. NOTE: $\|.\|_1$ takes the "absolute area" between f and the zero function 0 (the x-axis) as a measure of the distance between these two functions. The metric induced by this norm,

$$d_1(f,g) = \int_a^b |f - g|$$

is represented by the area of the shaded region in the following sketch

EXAMPLE: For
$$f(x) = x^3 + x + 1$$
 and $g(x) = x^3 + x^2 + \frac{1}{2}x + 1$ in $C[0,1]$
we have
$$d_{\infty}(f,g) = \max_{0 \le x \le 1} |\frac{1}{2}x - x^2|$$

$$=\frac{1}{2}$$
 (check this)

while,

$$\begin{split} d_1\left(f,g\right) &= \int_0^1 \left| {}^1\!\!\!\!_2 x - x^2 \right| dx = \int_0^{1_2} \left({}^1\!\!\!\!_2 x - x^2 \right) dx + \int_{1_2}^1 \left(x^2 - {}^1\!\!\!_2 x \right) dx \\ &= \frac{1}{8} \ . \end{split}$$

EXERCISE: (a) In C[0,1] determine the values of $d_{\infty}(f,g)$ and $d_{1}(f,g)$ when $f(x) = \sin x$ and g(x) = x, and also when $g(x) = x - x^{3}/6$.

(b) Using Taylor's Theorem with remainder, obtain estimates

for

$$d_{\infty}(f,p_n)$$
 and $d_1(f,p_n)$ in $C[0,1]$

when

$$f = \exp \text{ and } p_n(x) = \sum_{m=0}^{n} x^m/m!$$

INNER PRODUCT SPACES.

Just as metrics are induced by the richer structure of a norm, a norm itself sometimes results because of other structure carried by the space. In particular this is so when the space has an inner-product defined on it.

DEFINITION. An inner-product for the vector space X is a mapping from ordered pairs of elements of X into the real field;

 $X \times X \rightarrow R$: $(x,y) \leftrightarrow \langle x,y \rangle$, which satisfies:

(IP1)
$$\langle x, x \rangle > 0$$
 for all $x \in X$ and $x \neq 0$. (positivity)

(IP2)
$$\langle x,y \rangle = \langle y,x \rangle$$
 for all $x,y \in X$. (symmetry)

(IP3)
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$
 for all $x, y \in X$ and $\lambda \in R$ (homogeneity)

(IP4)
$$\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$$
 for all $x,y,z\in X$. (additivity)

EXAMPLES

(1) On $x = \mathbb{R}^n$ the usual "dot" or scalar product of two vectors $(\underbrace{x.y}) \text{ is an inner-product: } \langle \underbrace{x,y} \rangle = \underbrace{x_1y_1} + \underbrace{x_2y_2} + \ldots + \underbrace{x_ny_n}$ where $\underbrace{x} = (\underbrace{x_1,x_2,\ldots,x_n})$ and $\underbrace{y} = (\underbrace{y_1,y_2,\ldots,y_n})$

[You should verify this as an EXERCISE.]

This is not the only inner-product which can be defined on \mathbb{R}^n , indeed for any set of n strictly positive numbers $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ an inner-product is defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} \mathbf{w}_{i} \mathbf{x}_{i} \mathbf{y}_{i}$$
.

Such "weighted" inner-products are of considerable importance in some areas of statistics.

(2) An inner-product on ℓ_2 the space of all square summable sequences (see Example 2 of normed linear spaces) may be defined by

$$\langle \bar{x}, \bar{y} \rangle = \sum_{n=1}^{\infty} x_n y_n$$

[That this expression is finite, for all sequences $x = x_1, x_2, \ldots, x_n, \ldots$ and $y = y_1, y_2, \ldots, y_n, \ldots$ for which $\sum_{n=1}^{\infty} x_n^2$ and $\sum_{n=1}^{\infty} y_n^2$ are finite, follows from the Cauchy - Schwarz - Bunyakowski inequality to be established below. That it satisfies the four axioms of an innerproduct is readily checked and so is left as an (optional) EXERCISE.]

(3) For X = C[a,b] we can define

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x)dx$$
 for all $f,g \in C[a,b]$.

With the exception of (IP1) the axioms of an inner-product are easily verified:

(IP1) If $f \in C[a,b]$ is not the zero function, then there exists some $x_0 \in [a,b]$ for which $f(x_0) \neq 0$. By the continuity of f there exists $\delta > 0$ such that for $x \in [a,b]$

$$|x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| < |f(x_0)|/_2$$
.

Consequently, for $x_0 - \delta < x < x_0 + \delta$ we have

$$f(x)^2 > \frac{1}{4} |f(x_0)|^2 > 0$$
,

and so

$$\langle f, f \rangle = \int_{a}^{b} f(x)^{2} dx$$

$$= \int_{a}^{x_{0}-\delta} f(x)^{2} dx + \int_{x_{0}-\delta}^{x_{0}+\delta} f(x)^{2} dx + \int_{x_{0}+\delta}^{b} f(x)^{2} dx$$

$$\geq \int_{x_{0}-\delta}^{x_{0}+\delta} f(x)^{2} dx \qquad (as f(x)^{2} \geq 0 \text{ for all } x)$$

$$\geq \frac{1}{4} |f(x_{0})|^{2} \times 2\delta$$

$$\geq 0.$$

(IP2) For $f,g \in C[a,b]$ we have

$$\langle g, f \rangle = \int_{a}^{b} g(x) f(x) dx$$
$$= \int_{a}^{b} f(x) g(x) dx$$
$$= \langle f, g \rangle.$$

(IP3) For f,g
$$\in$$
 $C[a,b]$ and $\lambda \in R$

$$\langle \lambda f,g \rangle = \int_{a}^{b} \lambda f(x)g(x)dx$$

$$= \lambda \int_{a}^{b} f(x)g(x)dx$$

$$= \lambda \langle f,g \rangle$$

(IP4) For f,g,h
$$\in$$
 C[a,b]
 $\langle f+g,h \rangle = \int_a^b [f+g](x)h(x)dx$

$$= \int_a^b [f(x)+g(x)]h(x)dx$$

$$= \int_a^b f(x)h(x)dx + \int_a^b g(x)h(x)dx$$

$$= \langle f,h \rangle + \langle g,h \rangle.$$

The following useful properties of an inner-product are immediate consequences of the above axioms, which you should prove for yourself

as EXERCISES.

(1)
$$\langle x, y+z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

(2)
$$\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$$

(3)
$$\langle x, x \rangle = 0$$
 if and only if $x = 0$

(4)
$$y = 0$$
 if and only if $\langle x, y \rangle = 0$ for all $x \in X$.

A vector space X together with an inner-product <...> will be referred to as an inner-product space.

Inner-product spaces were implicitly studied by many mathematicians [For example; the two German mathematicians, David Hilbert (1862-1943) and Erhard Schmidt (1876-1959) and the Hungarian Friederich Riesz (1880-1956)] during the first three decades of the twentieth century, however, the axioms were not made explicit until 1929 when they were expounded by John von Neumann (1903-1957) as a basis for his axiomatic development of quantum mechanics.

The importance of an inner-product space for our purposes is that the formula

$$||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

defines a norm on X. The axioms (N1), (N2) and (N3) are easily established:

(N1) $\langle x, x \rangle$ is greater than 0 if $x \neq 0$ and equals 0 if x = 0 consequently, for all x, $\langle x, x \rangle \ge 0$ and so $||x|| \ge 0$.

(N2)
$$\|\mathbf{x}\| = 0 \Leftrightarrow \langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = 0$$

(N3)
$$\|\lambda \mathbf{x}\| = \sqrt{\langle \lambda \mathbf{x}, \lambda \mathbf{x} \rangle} = \sqrt{\lambda^2 \langle \mathbf{x}, \mathbf{x} \rangle}$$

$$= \sqrt{\lambda^2} \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

$$= \|\lambda\| \|\mathbf{x}\|.$$

Thus, it only remains to establish (N4), the triangle inequality. This is done as part (ii) of the following theorem.

Theorem 1. In any inner-product space the following are true:

(i)
$$|\langle x, y \rangle| \leq ||x|| ||y||$$
 (Cauchy-Schwarz-Bunyakowski inequality)

(ii)
$$\|x + y\| \le \|x\| + \|y\|$$
 (triangle inequality)

(iii) If
$$\langle x, y \rangle = 0$$
 $||x + y||^2 = ||x||^2 + ||y||^2$ (Pythagorean identity)

(iv)
$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$

(Parallelogram law)

Proof.

(i) If y = 0 both sides are zero and so the result is immediate.

If $y \neq 0$ we proceed as follows. For any scalar α we have

$$0 \le \|x + \alpha y\|^2 = \langle x + \alpha y, x + \alpha y \rangle$$

=
$$\langle x, x \rangle + \langle \alpha y, x \rangle + \langle x, \alpha y \rangle + \langle \alpha y, \alpha y \rangle$$

= $||x||^2 + \alpha \langle x, y \rangle + \alpha [\langle x, y \rangle + \alpha ||y||^2]$

So, choosing $\alpha = -\langle \mathbf{x}, \mathbf{y} \rangle / \|\mathbf{y}\|^2$ (possible as $\|\mathbf{y}\| \neq 0$) we see that the term in square brackets is zero and $0 \leq \|\mathbf{x}\|^2 + \alpha \langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 - \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2} \langle \mathbf{x}, \mathbf{y} \rangle$.

Rearranging we therefore have

$$\langle x, y \rangle^2 \le ||x||^2 ||y||^2$$

Taking square roots we therefore have

 $|\langle x,y \rangle| \le ||x|| ||y||$ as required.

(ii)
$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$= \|\mathbf{x}\|^2 + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2$$

$$\leq \|\mathbf{x}\|^2 + 2 \|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^2$$

$$= (\|\mathbf{x}\| + \|\mathbf{y}\|)^2$$
(by i)

so taking the square root of both sides we obtain the triangle inequality, which is otherwise known as Minkowski's inequality in this context.

- (iii) Follows immediately from the first two lines of the proof in (ii) with $\langle x,y \rangle = 0$.
- (iv) From the first two lines of the proof in (ii) $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 .$ Similarly by expanding $\langle \mathbf{x} \mathbf{y}, \mathbf{x} \mathbf{y} \rangle$ we obtain $\|\mathbf{x} \mathbf{y}\|^2 = \|\mathbf{x}\|^2 2 \langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 .$

Adding these two identities yields the parallelogram law.

The Euclidean norm in \mathbb{R}^n and the norms denoted by $\|.\|_2$ in ℓ_2 and in C[a,b] arise from the above formula for the appropriately defined inner-products. Thus, we have finally arrived at a proof of the fact that these are indeed norm functions. All of these norms have special properties; for example, they satisfy the parallelogram law, which are not satisfied by all norm functions;

For example in ℓ_1^2 the norm $\|\mathbf{x}\|_1 = |\mathbf{x}_1| + |\mathbf{x}_2|$ does not satisfy the parallelogram rule. To see this observe that for $\mathbf{x} = (1,0)$ and $\mathbf{y} = (0,1)$ we have

$$2(\|x\|^2 + \|y\|^2) = 4$$
 while $\|x + y\|^2 + \|x - y\|^2 = 8$.

This shows that $\|.\|_1$ does <u>not</u> arise from any inner-product according to the formula \sqrt{x} . Diagrammatically we have the following situation.

Indeed, any norm satisfying the parallelogram law may be shown to arise from a suitably defined inner-product. Thus the parallelogram law characterizes inner-product spaces (the Jordan-von Neumann characterization). Honours students may like to attempt proving this as an exercise. (See exercise 2 on the next page for a hint.)

EXERCISES

1) Motivated by (iii) of the previous theorem and the ordinary idea of perpendicularity in \mathbb{R}^n , viz. $x \cdot y = 0$, we define two vectors $x \cdot y$ in the inner-product space X to be *orthogonal* if $\langle x,y \rangle = 0$.

- i) Show that x and y are orthogonal if [and only if by iii) of the theorem] they satisfy the Pythagorean identity $\|x+y\|^2 = \|x\|^2 + \|y\|^2 \ .$
 - *ii) Show that x is orthogonal to y if and only if $\|x\| \le \|x+\lambda y\|$ for all scalars $\lambda \in \mathbb{R}$. (Can you give a geometric interpretation to this result.)

The condition $\|x\| \le \|x+\lambda y\|$ all λ is often used as a generalized definition of x being orthogonal to y in any normed linear space (R.C. James, 1947).

- iii) If $x \neq 0$ and y are elements of X verify that x and $y = \frac{\langle x, y \rangle}{\langle x, x \rangle} x \text{ are orthogonal.}$
- 2) For any inner-product space, verify the "polarization identity": $\langle x,y \rangle = \frac{1}{4} (\|x+y\|^2 \|x-y\|^2)$
- 3) In the space C[0,1], show that

$$d_{2}(x,\sin x) = \sqrt{x - \sin x, x - \sin x} >$$

$$= \sqrt{\int_{0}^{1} (x-\sin x)^{2} dx} = 0.061$$

while

$$d_2(x-\frac{x^3}{6}, \sin x) \doteq 0.002.$$

4) In terms of the Euclidean norm $\|.\|_2$ on \mathbb{R}^2 note that the "post-office" metric is given by

$$d(\underline{x},\underline{y}) = \begin{cases} 0 & \text{if } \underline{x} = \underline{y} \\ \|\underline{x}\|_2 + \|\underline{y}\|_2 & \text{otherwise.} \end{cases}$$

Use this to verify that d is indeed a metric.

[Hint. When proving (M4) consider the cases: x = z; x = y or y = z; x, y, z are all distinct.]

§1.2 Geometry in Metric spaces. Balls, convexity and boundedness. In ordinary (Euclidean) geometry a circle (or sphere) is defined to be the set of points equidistant from a given point - the centre. It is possible to generalise this notion into any metric space. DEFINITION: Let (X,d) be a metric space. The <u>sphere of radius</u> r > 0 and centre x is the set $\{y \in X : d(x,y) = r\}$ which we denote by $S_r(x)$. NOTES 1) Under this definition we continue to use the term sphere regardless of the dimension of the space. Thus for example, in ℓ_2 (ℓ_2 with the Euclidean metric) the "sphere" centre ℓ_2 = ℓ_1 , ℓ_2 and radius ℓ_2 is what would conventionally be referred to as the circle with centre ℓ_2 and radius ℓ_3 .

While, in R with the usual metric, $d_1(x,y) = |x-y|$, we see that the "sphere" $S_r(x)$ consists of two points

$$S_{r}(x) = \{y \in R: |x-y| = r\}$$

$$= \{x-r, x+r\}$$

$$x-r \qquad x \qquad x+r$$

2) The "shape" of a sphere varies with the particular norm used. For example, in ℓ_1 the sphere (circle) with centre (1,1) and radius $\frac{1}{2}$ is

$$\begin{split} \mathbf{S}_{\frac{1}{2}}(1,1) &= \{ \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2 : \mathbf{d}_1(\mathbf{x}, (1,1)) = \| \mathbf{x} - (1,1) \|_1 = \frac{1}{2} \} \\ &= \{ (\mathbf{x}_1, \mathbf{x}_2) : |\mathbf{x}_1 - 1| + |\mathbf{x}_2 - 1| = \frac{1}{2} \} \end{split}$$

which is the diamond illustrated below

[To see this; consider the case $\mathbf{x}_1, \mathbf{x}_2 \geqslant \mathbf{1}$ then

$$|\mathbf{x}_{1} - \mathbf{1}| = \mathbf{x}_{1} - \mathbf{1}$$
 and $|\mathbf{x}_{2} - \mathbf{1}| = \mathbf{x}_{2} - \mathbf{1}$ and so we need $\mathbf{x}_{1} - \mathbf{1} + \mathbf{x}_{2} - \mathbf{1} = \frac{1}{2}$ or $\mathbf{x}_{1} + \mathbf{x}_{2} = 2^{\mathbf{1}_{2}}$. Similarly consider the other three cases: $\mathbf{x}_{1} \ge 1$, $\mathbf{x}_{2} \le 1$; $\mathbf{x}_{1} < 1$, $\mathbf{x}_{2} \ge 1$; $\mathbf{x}_{1}, \mathbf{x}_{2} \le 1$.

EXERCISES: 1) For any set X with the discrete metric d, show that, for

any x & X we have

$$s_r(x) = \begin{cases} 0 \text{ (the empty set)} & \text{if } r \neq 1 \\ x \leq x \end{cases}$$

- 2) In ℓ_{∞}^2 sketch the sphere $S_{\frac{1}{2}}(1,1)$.
- 3) In \mathbb{R}^2 with the "post-office" metric sketch each of the following spheres:

$$s_1^{(0,0)}, s_3^{(2,0)}, s_{l_2^{(1,0)}}, s_1^{(1,0)}$$

Of particular importance when $(x,\|.\|)$ is a <u>normed linear space</u> is the unit sphere of X, $S_1(0)$ which we sometimes denote by S(X). Thus

$$S(X) = \{x \in X : ||x|| = 1\}$$
.

Once the unit sphere S(X) is known all other spheres in the normed linear space $(X,\|.\|)$ are essentially determined. Indeed all other spheres are translates of dilates of the unit sphere.

In $(x, \|.\|)$

$$y \in S_r(x) \Leftrightarrow ||y - x|| = r$$

- \Rightarrow y = x + w where w (= y x) $\epsilon S_r(0)$, ie. $\|w\| = r$
- \Rightarrow y = x + ru where u (= w/r) has $\|u\| = 1$ ie. u $\in S_1(x)$

Thus if we write rS(X) for the dilate $\{ru:u\in S(X)\}$ and x+rS(X) for the translate $\{x+w:w\in rS(X)\}$ we have

$$S_r(x) = rS(x) + x$$

EXERCISE: Sketch the unit sphere in ℓ_1^2 . Hence deduce that the sketch of $S_{\underline{i}}(1,1)$ obtained above is essentially correct.

More important than the concept of a sphere for the study of metric spaces is that of a "ball".

DEFINITION: Let (X,d) be a metric space. The open ball of radius r

and centre x is

$$B_{r}(x) = \{y \in X : d(y,x) \le r\}$$
.

The closed ball of radius r and centre x is

$$B_{r}[x] = \{y \in X : d(y,x) \leq r\}.$$

Thus in \mathbb{R}^2 with the Euclidean metric $\mathbf{B_r}(\mathbf{x})$ is the "disk"

$$\{(y_1,y_2) : (y_1 - x_1)^2 + (y_2 - x_2)^2 \le r^2\}$$

In R with the usual metric $B_r(x)$ is the open interval (x - r, x + r) - verify this.

[Note,
$$B_r[x] = B_r(x) \cup S_r(x)$$
 or equivalently
$$B_r(x) = B_r[x] \setminus S_r(x).$$

The (closed) unit ball of a normed linear space (X, ||.||) is $B[X] = \{x \in X : ||x|| \le 1\} \quad (= B_1[0]).$

As with spheres, in the case of a normed linear space we have

$$B_r[x] = rB[X] + x$$

= $\{y \in X : y = ru + x \text{ for } u \in B[X]\}$.

Similarly, $B_r(x) = rB_1(0) + x$.

EXERCISES:

l) Verify the claim that in the normed linear space $(x,\|.\|)$

$$B_r[x] = x+rB[X]$$
.

- 2) (a) Sketch the (closed) unit ball for ℓ_1^2 and ℓ_∞^2
 - (b) Sketch the (closed) unit ball in the normed linear space $\text{resulting from } R^2 \text{ equipped with the inner-product}$

$$\langle x,y \rangle = x_1y_1 + 2x_2y_2$$

where

$$x = (x_1, x_2)$$
 and $y = (y_1, y_2)$.

- (c) Show that the (closed) unit ball in $(C[a,b], \|.\|_{\infty})$ consists of all continuous functions on [a,b] whose graphs lie entirely between the two lines y=1 and y=-1.
- 3) Sketch the ball $B_2(1,1)$ in each of the following spaces.

$$\ell_1^2, \ell_2^2, \ell_2^2$$
, R^2 with the "post-office" metric.

Because of the vector space structure present when $(X, \|.\|)$ is a <u>normed</u> linear space, we can define the notion of a line as well as those of spheres and balls.