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DEFINITION (See your first year work on two and three dimensional

vector geometry for motivation):

The line, £ (x,y), through the two points x and y of the normed linear

space (X,|.ll) is

v + Ax-y) for A e R}

il

=E(K;Y) {ZEX:Z

I

{zeX:z

Ax + (1-M)y for A e R}

I

The line segment, [x,y], between the two points x and y of (X,ll.ll) consists
of all those points on £(x,y) = {zeX:z=Ax+{1-A)y, A € R} which correspond

to values of A between 0 and 1 (see above diagram). Consequently we have

[x,y] = {zeX:z = Ax+(1-A)y whexre 0 < A < 1}

an important concept in the study of normed linear spaces is that of

a convex set.
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DEFINITION: A subset C of the normed linear space (X,ll.|l) is said +to be
eonver if whenever x and vy are two points of C the line segment between

¥ and y lies entirely in C.

2 2
A convex subset of R A non-convex subset of R

Thus C is convex if and only if x,yeC = [x,y] < €, or equivalently
C is convex if and only if

Ax + (1-X)yeC whenever x,yeC and Ae[O,1].

PROPOSITION: Amy ball in a normed linear space is a convex seb.

Proof. We will prove the result for open balls. The proof for closed
balls is similar and left as an EXERCISE. Let BI(XD) be a ball in the
normed linear space (X,|l.l). Then if z = Ax+(1-A)y where x,y « Er(xo)

and Ae[0,1]

Il z—xqll
l haet (1-2) y =2l

d(z,xn)

1A (x=xg) + (1-2) (y=xp)ll

IA

A =) 141 (1-2) (y-xg) ]

|2 [Hx—xqll + | 1-2 |l y—xqll

A

IR3E: + |1-A[r (as x,ysEr(xo), s0

lx-xpll < r and ly-xpll < x)

Ar + (I-A)r {as 0 A £ 1 so A and 1-) are
both positive)
= ¥

and so z ¢ Br(xo), as required to establish convexity.
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Note : The conclusion of the above propeosition is not valid in general
. 2

for meitric spaces. For example; let (X,d) denote R” with the “post—

office" metric, then the hall

is not convex.

To see this, observe that (0,0) and (1,0) £ B

[ a((o,0},{(1,0)) =1 <1% and d4({(1,0),{(1,0)) =0 < 1% ]
while z = %%O,D) + 3%0,1} = {U,EJ £ B
[ a((0,3),(1,0) =12 213 1.
EXERCISES., 1} Sketch the set
B = {(x).x,) € R? . le £ ]x2|lj = 1}

and show that it is not convex. Hence conclude that
1 1 2 . 2
h=ll, = (lelj + |x2|i) does not define a norm on R,
b ¥ ot

n

1
[This shows that the forwmula of page 10, ||35|]P = [izllxi|p]g ,
does not define a nomm for p=% . A similar conclusion appliecs fox
0 <p<1 ., However, .t can be shown that forn this range of p
values n
= - b ; ;
dp(g.g) = izl|xi yi[ 44 a metrhice.]

2) i) In any normed linear space (X,]|.ll), if
z€ [X,y] show that lx-zll + lly-zll = llx-yll.

*%31) Show that the converse of i} holds in any
inner-product space. That is, if =l = /Z;T;;-for some inner-product
€.r-> then if z is such that |lx-zll + lly-zl = l|lx-yll we have ze[x,v].
[Hint: You may need the fact {which you should try to prove) that
equality holds in Minkowski's inequality |[x+vll < x|l + Ivli, if ana

only if x and y are related by v = fx or x = By some B = 0.]
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iii) The condition in i) and ii) has been used to extend the idea
of a line segment into general metric spaces. Thus one takes as the
"line-segment" between x,y the set

{zex : d(x,z) + dly,z) = d{x,y)}.
Using this definition sketch the "line-segment" between (1,0) and (0,1)

2 2
in £; and f&_.

DEFINITION: A subset A of the metric space (X,d) is bounded if A is
contained in some ball. That is A is bounded if and only if there exists

xpeX and rg > 0 such that A& c Brg[x0]

Y o

%0

THEOREM. For a subset A of the metric space (X,d) the following are
equivalent .
i) A is bounded.
ii) there exists M > 0 such that d(a),ap) < M for all aj,agch,
iii) Sup {d(aj,ap):aj,apeA} < =, in which case we say
diam(A) = Sup {d(aj,as):ai,aper} is the diameter of A.
iv) For every point xeX there erists an r > 0 such that A ¢ BI[XJ_
If in addition d(x,y) = llx-yll where .|l <8 a norm on X,
then the following is equivalent to each of the above conditions.

v) There exists m > 0 such that llall £ m for all aea.
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Proof. We first show that i} ™ ii) ffiii) é‘iv) = i).
If (i) holds, then for some xpeX and rp > 0 we have A c Bro[xo].
Let aj), ag be any two points of A, then we have

d(aj,ap) < dfap,xp) + d(xg,as) (triangle inequality)

£ xg + rp (as aj,as A < Brﬂ(xD))

So taking M = 2rp establishes ii).
If 1i) holds, then by the definition of supremum ( or least
upper bound) we have diam{(a) £ M, establishing iii)
Now, assume iii} holds, then for all aj,azeA we have d(aj,as) £ diam ()<=,
Choose an element aj from A, then given any xeX for a«A we have

d®,a) £ dix,a;) + d(aj,a)

A

d(x,ay) + diam (a).

Since d(x,a;) is a fixed real number, taking r = d(x,ay) + diam{d), we
therefore have, for all acA that d{x,a) < r or equivalently that
A ¥
c B, Lx] N

and so iii} = iwv). \

\
|
I
I
; Br[x]

/

That iv) = i) is immediate from the definition of boundedness.
To complete the proof we observe that
v) = Bc Bm(O) =1i)
= iy) (by above)
= v) (taking x = 0 and m equal to the appropriate

r.)
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EXERCISES. 1) Observe that any ball Br[x] in {X,d) is bounded and show

that diam Br[x] £ 2r. (Need equality always hold hexe?)

2) If A is bounded, show that for any point aeA we have

[al

c B
A Byiam(a)

Remark: pethaps surprisingly This cannot .in general be .improved upon.

For example in .an arbitrary nommed Linear space Lt 46 not thue that fon
each bounded convex set A thene (s an a e A such that

Ac tA}

B .
= "Ldiam{a}

[Can you give an example?]
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§1.3 Convergent sequences, Cauchy sequences, Completeness and
Closed seta.

By a sequence (of elements) of the set X we mean a function
N + X:nbhx ; here as usual we write x for the image of n e N
under the function instead of x{(n).

NOTATION. The sequence N+ Xrx - is denoted by

xl’ xz, XB; . on xn; e

[when the context makes it clear we will sometimes write (xn) instead

of (xn)n—':l:]'

DEFINITION. A sequence (xn) of peoints of the metric space (X, d) is
convergent if there is a point x ¢ X for which, given any € > 0 there

exists an N € N such that
n>N="d(xn, x) < e.
or equivalently, if

X € B (x) for all n = N.
n £

In this case we say the sequence {xn) converges to (has limit) x and
write d(xn, ®) + 0. Provided the metric space within which we are

working is clearly understood we may write Limit X =xor simply X, + X
e

to mean the sequence (xn) converges to x. (Scmetimes, to emphasize the

. . . . d
metric w.r.t. which convergence is taking place we may write x =+ x.)

%
NOTE. This definition of convergence corresponds to the definition of

convergence in R with our general concept of distance replacing the

usual one in R, i.e. |xn - ¥| bhecomes d(xn, X) .

EXAMPLE '1
In the space C[0,1] with norm "le = J if| the sequence (fn) where
0
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£ (t) = e—nt is convergent to the zero function 0(t} = 0. To see this

observe that

1
- 1 -
”fn - 0”1 = J e ntdt = H—[l -e™ 20 as nes .
0

However, the same sequence is not convergent with respect to the
. -nt
norm [l £l _ = Max [£(t)]| , since anHu,= Max e = 1 for all n.
te [0, 1] tel0,1]

This shows that the property of convergence is not inherent in a

secquence but depends on the metric used. It also depends on the space

X as the following example illustrates.

For X = R and dl the usual metric on R,

X = }-ﬁ’O e X.
n n

3 |

However, if we take X = (0,1] , with the =ame metric xn = does not

converge, as the point toward which the sequence is "tending" (0) is

not a member of X. In a more general situation it may be difficult to

identify the "missing”™ limit point and so this can represent a real

problem.

THEOREM l: A convergent sequence (xn) of the metric space (X,d) has
a wnique Limit.

Proof. Assume X -+ x and xn + vy, then for any € > Q there exist

N, ,N_ & N such that

1" 2
n 2=N1‘ﬁ d(xn,x) < %— (use g—in place of g in the
n 2=N2 =‘~*d(xn,y) < g— definition of convergence)

But then, for any n 2=Max{Nl,N2}
dix,y) < d(x,xn) + d(xn,y), by the triangle inequality
< E

and, since £ is arbitrary, this implies d(x,y) = 0 or x = y.
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THEOREM 2: In a metric space the points of a convergent sequence form a
bounded set.

Proof. Let X + x in {¥X,d), then there exists NeN such that d(xn,x) < 1
for atl n > N. (Note, the use of 1 here is for convenience any other
positive number would do.)

So, let r = Max {d(x,,x), d(x,,x), ..., a(xN;x),l} (<=, why?)

then d(xn,x) £ r for all neN

whence d{x ,x )} £ d(x ,x) + d(x,x )
n m n pi!

1A

2r For all n, meN
That is, the points of the sequence form a bounded set of diameter less

than or equal to 2r. =

EXERCISES:

1. BShow that in (C[O,l],dm) the sequence of Taylor polynomials

n
pn(x) = 2 xm/m! is convergent to exp. Is the same true in (cl[o,1),d;3)>?
m=0

[Hint: see the exXercise on p.l16.]

2. (d) In any metric space (X,d} show that a constant sequence

X;Xy.--sXy.... 1s convergent with limit x.

{(ii} Show that the same conclusion holds if it is only assumed that
the sequence is "eventually" constant; +that is, there exists

some Ny € N such that for all n > Ny we have X = X,

3., Show that in a metric space (X,d), where d is the discrete metric,
a sequence (xn) is convergent if (by 2ii above) and only if it is

eventually constant.

4. TUsing the discrete metric, give a further example to show that

converdence depends on the choice of metric.

5. In a normed linear space (X,li.||} show that for «,8 € R

+ -+ + - + v.
ox Byn ox By whenever X x and Y, v
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6. ILet x -+ x  and Y, + Yy in the metric space (X,d}.

Show that d(xn,yn) + dlx,y) in (R,d;).

We now introduce a property for sequences which is independent

of X(but not of d).
DEFINITION. A sequence (x of the metrie space (X,d) is a Cauch

q { n) ric sp (X,.d) a Cauchy
Sequence if given & > O there exists an NeN such that

m, n2Nd{x ,x ) < g,
m' T

We frequently abreviate this by writting

d(xm,xn) -~ 0 as m,n =+ o,
Intuitively, in a Cauchy sequence the points in the "tail" of tha
sequence become arbitrarily 'close' together.
THEOREM 3: Every convergent sequence of a metric space is a Ceauchy
seqierice.
Proof. Let xn + x in (X,d), then given £ > 0 there exists NeN such

that

£
Py -9
d(xn,x) < 5 allnzN

whence, for m,n = N we have
d(xn,xm) < d(xn,x) + d(x,xm) (triangle inequality)
< E + .E_:. = E
2 2

as required.

The converse of this need not be true. For example:

). For X = (0,1] with the usual metric d) (x,y) = |x—y| the sequence
111 1 . .
1,5}5323-..,;) --+ 15 a Cauchy sequence (although from above it

is not a convergent sequence). To see that {%} is a Cauchy

n=1
1 1y . . 1
sequence, note that [E-- 51 % E wnenever m, n > -
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2). The sequence defined hy

f - bta

£t £ —
0 for a 5
' a+b ‘bta - bta 1
t = -— _— < — 4 =
fn( ) _ 3 n(t 5 ) for 2 t 5 -
‘b
1 for 1—)—é--l- l—s t £h
_ 2 n

is a Cauchy segquence, in C(la,bl with dy as metric, since for m > n

dl(fn'fm) - an - fm"l
ab, 1
b+a bta
= [ m(t - —5—) - n(t - - Y dt
a+b
2

1
<., —=+0asm, n+ =
2n

To see that it does not converge in Cla,b] assume the contrary. That
is, assume there exists a continuous function £ such that

b
e ~gll, = J‘ |£-€l =0 (as n =+ «)

2
Then we have
a+h a+b 1 b
2 2 n a+b
| £(e) [at + Inte - =2 -gce)[ae + | |1 - £(e)]at + 0
a a-t+h a+hb " 1
2 2 n
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Since each of the three terms is positive this requires that each of

them tend to zero separately. Thus we must have:
'J»El-l-b

f1) 2 If(t)ldt + 0 (as n + =), which clearly requires that
a
. a+b
f(t) = 0 for all t with a < t < ~-

[{idi} For the middle term we have, by the continuity of each fn and

of £ and the fact that each fn is between 0 and 1, that

ath | 1 |

2 n 1
J Inte - 25 -~z fae <|1 + max [£@)].S
a-tb ﬂt{ﬂ +_1_
EN PR

-+ 0 as n >+ o,
S50 this term automatically tends to zerc and imposes no
constraint on f£.]

iii) By the continuity of f we see that

b b
J |1-£(x) |at + [ |1-£(t) |dt, as n + =,
§i§_+ 1 a+tb

2 n 2
For this limit to be zero, we clearly require that 1-f{t) = 0 {or f£(t)=1)
for all t with E§E-< t < b.
Thus we have that f must be such that

{D for a < £ < Egh

E(t) =

1 for E%E <t <b

which is impossible for a continucus function f and so we cenclude that
no such £ can exist.

Spaces for which the converse of Theorem 3 does hold are particularly
important in analysis and its applications.

DEFINITION: A metric space (X,d) in which every Cauchy sequence is

convergent is said to be complete. Thus (X,d) is a complete metric space

if, whenever the seguence (xn) is such that d(xn,xm) = 0 as n and m + =,

then there esists an xeX with xn—g—+ X.
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A normed linear space, (x,Il .Il) which is complete with respect to the

induced metric is termed a Banach space. [x,l.ll} is & Banach space if

Hxn—me + 0 implies there exists xeX with Hxnfo + 0.]

Bn inner-praduct space X which is complete with respect to the metric
induced by the inner-product generated norm (=l = v<x,x>) is

known as a Hilbert Space.

EXAMPLES

1} We take it as an assumed property (axiom) of the real number system
that R together with the usual meiric d(x,y) = |x;y| 18 a complete space.
Fon any metric space (X,d) ALt is possible fo find a minimal complete

superspace (X,d) known as the completion of (x,d). (L.e. X c x and
d(x,y) = dix,y) for all x,y « X.)

One constrwetion of (X,d) from (X,d), due fo Cauchy, allows, as a special
case, the real numbers R to be axiomatically derived from the rational
numbers as thein completion Q.

EXERCISE. Show that (0,d) the metric space of rational numbers eguipped
with the usual metric d{p,q) = ]p—ql is not complete.

)

2) The previous two examples show that neither of the spaces ((o,11, dusual

or {C[a,bl, dl) is complete.

Indeed, none of the spaces (Cla,bl ,dp) for 1 £ p < = gre complete. In
particulan (Cla,bl,d,) is not a Hilbent space. The problem of adjolning
additional functions {and extending the definition of the metric fo coven
these new functions) so as to "complete" these spaces .t a major motivation
for Lebesgue's theony of {nteghation and measure.

3} EXERCIS®E. For any set X equipped with the discrete metric d and for
“the space of Example 6 on page 5. show that a sequence is a Cauchy sequence
if and only if it is ewventually constant. Hence conclude that in both

these cases the space is complete.
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4) Trom the completeness of R follows the completeness of the finite
dimensional spaces 2; where p = 1,2 or =. There results follow from a
more general result; that all finite dimensional normed linear spaces
are complete, which will be established later in the section on compactness.
Consequently we will omit direct prdofs for the results at this stage.
5) The sequence spaces £P{l < p £ ») agre Banach spaces. These results
may be established by a careful "passage to the 1imit" from the finite
dimensional cases, however we will omit details from this course.
{Honours students should attempt to prove that 2o is indeed a Hilbert
space. )

6} We now establish the completeness {and hence the importance) of the

space (C[arb],dm).

The space (Cla,bl ll.l ) ©is a Banach space.

To see this, it suffices to show that a uniform limit of cantinuous
functions is continuous.
et {f }m 1 be a Cauchy sequence in ({'[a,b], dm). i.e. Given
n n= —

E > (0, there exists N € N such that

- - B - f < E

d (£« £) e - g0l Max  |£_(x) - £_(x)]
xe [a,b]

whenever n, m = N.
'Consequently, for each x ¢ [a, b}

|f {x) - £ (x)l < g for n, m=N,
n m

i.e.

is a Cauchy sequence in the complete metric space (R,dl)

(fn(x)) n=1

and so is convergent to some unique limit which we choose to denote

by f£{xz).

Define a function £ on fa, bl by xt £{x). Then, for every
fal .
x € [a, b] fn{x) ! f(x) and we say f 1is the point wise limit of

the sequence {fn}. . (This type of convergence - point wise convergence -

is important in real analysis but peripheral to metxic analysis, since
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it does not represent convergence with respect to any of the metrics
on ([a,bl.)
[In genmeral point wise convergence is 'weaker' than uniform convergeance

(convergence with respect to the uniform metric dm) i.e.

{uniform convergence) = (point wise convergence)

however, it may happen that fn <+ f point wize but fn # uniformly. Give an
example illustrating this.]
Because of the particular construction of f above,

(F(x) = Limit £ (x) where {f } is a Cauchy sequence in (C[a, b], d )]
- m m [==]
we have, for n, m = N
Ifn(X) - fm(x)[ < g for all x ¢ [a, b]
and so

L%Eitlfn(x) - £ = [£ (x) - Limit £ = [£(x) - £(x)] < ¢

for all x ¢ [a, b] and n = N.

Whence Maxb] Ifn(x) - £(x)| < & whenever n = N, or f  converges uniformly
a, ;

to £, i.e. dm(fn - £) + 0.

We now show f ¢ Cla, b] and so establish +he complileteness of (Cla, b, dm).
To do this we must show £ is continuous, i.e. given e > 0 and any

®g € [a, bl we must find § > 0 such that
|x - xg] < & = |£(x) - f(xg)| < e (x e [a, bl).
Now

|F(x) - £(x) = |£(x) - F () + £.00) - £ (%) + £ (%) - f(xo)l

< [£(x) - fn(x)l + ffn(x) - fﬁ(xo)] + Ifn(xo) - f(x0)|

d
and since fn +"F there exists N e W

n N R - £ 0], £ (x0) - Fx )| <a(F, D) <=

So for any fixed n > N

%) - < £ _F (s 23
| £(x) f(xO)J St [fn(x) fn(xo)[ * 3
but fn € ('[a,b] s=so there exists § > 0 such that
£
lx - xgl < 8= 0g 0 - £ (x| <5
, £ E € -
and so for this & we have lx - fo < 9 =="]f(}:) - f(x0)|=€-§ + 3 + 3= £,

as required, to show f is continuous.



