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7) EXERCISE. Show that the space (Bl .l ) of all bounded functions on
[a,b] with the uniform norm - see pages 13 and 14 - is a Banach space.

[Hint: It is similar to, though easier than, the proof in &) above.]

DEFINITION: Let (X,d) be & metric space and A a given subset of X. We
say that x £ X is a limit point of A if there exists a sequence of
points of A, (an), which converges to x.
EXBMPLE. Since in the space (C[O,l],”.”l) we have fn(t) = e + 0
[ The Example on page 33), we see that the zero function is a limit
peint of the set A of all strictly positive continuous functions

on [0,1]

a={fe C[O,1] : £(t}) > 0 £or all t e [0,1]}.

F

[Is the same true if [[.l_ is replaced by | .II_Z]

1
From this example we see that a limit point of & need not belong to A.
Intuitively, limit points of A are those points which can be

approached (approximated) arbitrarily well by points of A.
REMARK. Fvery point of B ig a limit point of A. To see this note that
for a £ A the constant sequence a,a,a, ... [a, -.. converges to a.
We now give a useful characterization of limit points, which

avoids the use of sequences.
LEMMA 4. Let (X,d) be a metric space.xeX 18 a limit point of A C X

if and only if,

for every € > 0 there exists ae A with d(x,a) < ¢.

Proof. (=) If % is a limit point of A, there exist (an) with a e A

and an'+ ¥X. So given £ > 0, there exists Ne N such that

d(an,x) < g for any n > W.
. 1 .
(=) For n g N, taking € = ;—there exists an element of A, call
. . 1
it a_: with d(x;an) < o The seguence {an)'thuS'constructed

converges to x and so x is a limit point of A.
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DEFINITION. The set of all limit points of A, denoted by A is termed the
elosure of A.

Prom the preceding remark we see that always A C a.

DEFINITION. & subset A of the metric space (%,d) is elosed if a = ﬁ;
that is,if it contains all its limit points.

Thus A is closed if and only if its complement X\A contains no limit
points of A. Now by Lemma 4 above, a point x is not a limit point of A
if and only if there exists some Eq > 0 such that for all a £ A we

have d{a,x} 2 E., or equivalently BE (x) N A =@, and so we have the

r
0 0

following.

PROPOSITION 5 : The subset A of the metric space (X,d) is closed if

and only if for each point x in the complement X\A of A there exists

e, > 0 such that B_ (x) C X\A.
b4

EXERCISES.

1) Let A be the open interval (0,1). In the metric space R with the
usual metric d(x,y) = Ix - yl show that : both 0 and 1 are limit
points of A; that no other peoint x ¢ A is a limit point of A, and
hence conclude that the closure of A is the closed interval [0,1].

2) i) If d is the discrete metric on any set X show that every subset

of (X,d) is closed.
ii) Show that every subset of the metric space in Example 6 on page 5

is closed.



3} Show that in any metric space (X,d) the {(clcsed) ball Br[x] is in
the above sense a closed subset of X.

#4) In any metric space chow that any finite subset (a subset containing
only a finite number of points) is a closed set.

5) Let (X,d) be a complete metric space and A a closed subset of X.
With d restricted to A show that (aA,d) is a complete metric space
[indeed a subspace of (X,d)].

6) Prove that the intersection of two closed subsets of a metric space

is itself closed.

We conclude this section with a useful characterization of the
closure of a subset A.
THEOREM 6 Let (X,d) be a metric space and A c X. Then A is the smallest
closed subset of X containing A. That is A 18 a closed set and if B
i5 any closed set containing A then A c B.
Proof. We first show the closure of A, i, is a closed set. Thus, let x
be a limit point of A, then for € > 0 there exists a; € A with d(x,ay) <-§
and further since aj € A i.e. a] is a limit point of A there exists

as € A with d(aj,as) < %—, whence
di{x,az) < dx,a;) + dlaj,as)

<E+_E_.
273
= e, where ap € A
and so by the lemma X% ¢ a.
Now let B be a closed set with A ¢ B and let a be a limit point
of A, so there exists a sequence (an) with an €A c B and an -+ a,

thus a is a limit point of B, but B is closed and so a ¢ B. Therefore

ae¢B=aceBoricB.
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EXERCISES *1) For any subset A of the metric space (X,d) show
that & = N B where the intersection is taken over all closed subsets
of X which contain A,

*¥2) For any subset A of the normed linear space (X,d), let

A + B1(0) = {at+x:aeA and xeBy(0)}
n n

Thus A + B7{(0) is the set of all points which are closer to a point of

n
A than l—.
n

Show that

a =N (a+87(0))
n =

n
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§1.4 The Elements of Topology. in Metric spaces - open sets, interiors

and boundaries

In proposition 5 of §1.3 we saw that the complement of a closed set

is characterized by the property that each of its points is the centre

of an {open) ball which lies entirely in it., We will refer to such points
as "interior points".

DEFINITION: For any subset A of the metric space (X,d) the point x is

an interior point of A if there exists r_ > 0 such that

B (x) © A.
r =

a non-
interior peoint

The set of all interior points of A is known as the interior of A, and will
be denoted by Int A.

A subset A of (X,d) is said to be opern if int A = A. That is, if every

point of A is an interior point of A, or equivalently, if each point of

A is the centre of some {open) ball which is contained in A.

EXERCISES
1) In R with the usual metric d(x,y) = |x-y|, show that the open interval
(a,b) = {xeR:a<x<bl is an open subset of (R,d} in the above sense.

[Hint: PFor xe(a,b) consider rx = Min {x-=a,b-x}.]
2) In any metria space (X,d) show that an open ball, Br{x) ='{yeX:d(x,y)?r},

is an open subset of X in the above sense. .
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3) Let d be the discreté metric on any set X, show directly that every
subset of (X,d) is an open set.. Prove a similar result for the metric
space of Example 6 on page 5. Give alternative proofs for each of

these results based on the following theorem.

In terms of the above definitions proposition 5 of section 1.3 may hbe

restated as follows:

THEOREM 1: In any metric space (X,d) a subset B is closed if and only if
its complement X \ A is open.

In much of analysis open sets appear more fundamental than closed sets.
The above theorem provides an important bridge between the two concepts.
It is however essential that the two concepts are not seen as mutually
exclusive properties for a set A. Indeed any of the following can happen.
(i) A is open but not closed [e.g. {(a,b) in (R,d;) - prove this]

(ii) A is closed but not open [e.g. [a,b]l in (R,d47) - prove this]

{1ii} A is neither open ox closed [e.g. [a,b} in (R,d;) - prove this]

(iw) A is both open and closed [e.g. every subset of any set equipped with

the discrete metric is both open and closed].

Thus, in general, from a knowledge that A is open (closed) nothing can be

inferred as to whether or not A is closed (open).

We now collect together a number of useful characterizations of an opén
set.

THEOREM 2: In gny metric space (X,d) the following are equivalent
statements about the subset A.

i) A 18 open
BB s e L
iii) every point of B is an interior point of A

iv) for every xeA there exists r. > 0 such that B, (x) ¢ a

pd
v) X\ A <8 closed



+ vi) A 78 a union of open balls.

Proof. It is immediate from the definitions that

i) <""(:i.:i.)"‘*’(iii) < (iv), while the equivalence of (i} and (v) has been given
in Theorem 1. Thus it is sufficient to establish the equivalence of

(vi) with each of the others. To do this we show that (vi)= (iv) = (vi).

To prove vi) = iv) we first establish the special case when A is itself

an open ball, Er(xo).

LEMMA, If xeBr(xD) - an open ball in the metric space (X,d) - , then

x ¢ Int Br(xo) i.e. there exists r > 0 such that BIX(X) c Br(xo);

Proof (of lemma). Since xeBr{xo), d(x,xo) < r set rx = r - d(x,xo) (> 0),
then for any yEBr (x),d(y,x0)=§ diy,x) + d(x,xo)

< ¥ - d(x,xo) + d(x,xo)

= r . s0 yEBr(xO), all yEBr (x),

X
wﬁence Br {x) ¢ Br(xo) as required

% O

Returning to the proof of (vi) = (iv), since A = X%hBl for some family

of open balls {BA: A e A}, if x € A then x € B, for some A € A . Whence
by the lemma, there exists r > 0 such that B {x) Q_Bl C a, as required.
To see that (iv) = (vi) it suffices to note that, if for each x € & we
let r_ > 0 be such that B_ {x) € A, then we have
x
= U C u C
A xEA{X} — XEA Brx(x) =2

and so A is a union of open balls.

We now develop what might be called a "set theoretic Algebra" for open

sets.
THEOREM 3:
Let (X,d) be a metric space, then
WY b and xEveopER BEEs e e

(ii) A wunion of open sets is an open set, and

(iii) the intersection of a finite number of open sets is an open set.
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Proof.
(i} Since ¢ contains no points, it is clear that every point of ¢
is the centre of an open ball contained in ¢.
wWhile, for any % e X, Er(x) C X for every r > 0, thus

X = ;éx Bl(x) and so X is open.

{(ii) Let {Gl: A e A} be a family of open sets of (X,d).

Then, since each G, is open we have

A

Gl = ¢éFhBY where BY is an open ball {(all vy & Fl)'

Thus, the union of cpen sets,

= U = UJ
€= 2en B T amn [¢érl3y]
is a union of open balls and conseguently is itself open.

{iii) Let {Gk: k=1,2, ..., n} be a finite family of open sets,

xE G M G,= Xt G {all k=1,2, ..., n) then,

= k=1,2,...,n k k

since each‘Gk is open, there exists T > 0 such that
Brk(x) E_Gk {(k=1,2, ..., n).

et r = Miﬁ[rl,r i rn} (which exists and is strictly

2!’

positive, since there are only a finite numbher of the rk),
then clearly

Xe B (x) C B (x) (all k) and so B_(x) C G = ne .
iy - rk r — k 'k

But x was any point of G, so G is open. &

The finiteness condition in (iii) above cannot be dropped.

EXAMPLE.

{Bl(O): ne M is an infinite family of open sets in (R,dl) such
=

that their intersection

N
neN Bl(o)

.t Y

{o} (prove)

which is mot an open set (prove).
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REMARK.

Any family of subsets T of the set X which have the properties (i),
{ii) and (iii) of Theorem 4.2,
(That :i.é(i) ¢, X e T;

(i1) U 7 7T whenever T, € T, all X e A;

A TA A
{iii) AE% T, E T whenever TA e T, all A € F- a finite index set)

is termed a TOPOLOGY for X, and X equipped with T iz called a Topological
space.

The notion of a topological space .is due fo Hauwsdonff (in 1974) who built
on an Ldea used by Hitbert .in 1902 while developing an axtomatic approach
to plane Euclidean geometry.

Theotem 3 shows that the familfy of open subsets of a metrhic space
L6 a Topology for the space X.
In general, howevern, there are fopologies which do not codncide with the
family of open sets generated by any possible metric on X. Thus Lopological
spaces are more genenal than metiic spaces and theirn study forms an
Amportant branch of medenn mathematics. The question of characteriz.ing
those topologies which do arnise from a metnic 4s known as the metrization
problem, which was completely answered only in the lafe 1940's.

Using de Morgan's Rules of set theory and Thecorem 1 the algebra of open sets
{Theorem 3) leads to a corresponding algebra for closed sets.
THEOREM 4 (the 'algebra' of closed sets):
Let (X,d) be a metric space, then
(i) ¢ and X are closed;
(ii) An intersection of closed sets is a closed set;
(iii) The union of a finite number of closed sets is a closed set.
Proof.

(i) *N\d = X is open, so ¢ is closed

similarly X\X = ¢ is open, so X is closed.
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fii) Let {Fa: aeh} be a family of closed sets, then
= N Fp = U 'g T
F A %\ DLEA(X\FDL) (deMorgan's Theorem)

" - U - .
but, x \ F, is open, and so o (x \ Fa) is open, whence F is

the complement of an open set and so F is closed.

(iii) Let {Fl, For wenr Fn} be a finite family of closed sets, then
n n
= U = n
F= U F =X \m=l x \ Fm) (de Morxrgan)

and so, since finite intersections of open sets are open
n

M (X\ F ) is open, whence ¥ is closed.
m=1 m

NOTE: Consistency demands that as with finite intersections of open
sets, the finiteness condition in (iii} cannot be dropped.

EXAMPLE. In (R, dj)

o

1 1
=5 [E’r 1 - ;ﬂ = (0,1) (prove)

which is not closed {prove).
EXERCISES:
1) Prove that in any metric space the complement of any singleton set
is open, and hence or otherwise show that the complement of any finite
get is open. |
2) In a given metric space (¥,d) prove that every subset of ¥ is open if
and only if every singleton set is open.
*3) (a) Show that the singleton subsets of any non-trivial normed lineax
space cannot be open sets with respect to the metric induced by
the norm.

(b} Show that except for'{g} all other singleton sets of R? are open

e WiEN e S peEE—to-the—Post-0ffice--Matidea;

This gives an alternative proof that there is no norm on R2 which

induces the Post Office Metric.
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4) DEFINITION. A c X 25 a dense subset in the metric space (X,d) if & = %

{e.g. 0Q is dense in R.)

Prove the following statements are equivalent in (X,d).

(i) A S_X is dense;

(i1) the only closed superset of A isg ¥;

(iii)  the only open set disjoint from A is ¢;

{(iv) A has a non-trivial intersection with eévery non-empty open
set of (X,d).

*5) Two metrics d, 4' on the set X are said to be equivalent metrics if

they give rise to the same family of open sets.

(i) Prove that for any metric space (X,d) d and d* are eguivalent
metrics, where d* (x,y) = SAx,y)

I+d(x,y)

[Hint: First observe that it is sufficient to show that for any ball
B;(x) in (X,d*) there exists + > 0 such that the ball Bt(x) in (x,d)
is contained in B;(x), and similarly for any ball Bt(x) in (X,d) there

exists a ball B;(x) in (X,d*) which ig contained in Bt(x}.]

(ii} Show that two norm functions, |l.l| and “.”*, on the zame vector space

X induce equivalent metrics (are equivalent norms) if and only if

there exist positive constants m and M such that for all xex

mllxll <l % << palf el

**6. For a normed linear space, show that the only sets which are both open

and closed, with respect to the metric induced by the norm, are the

whole space and the empty set.
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Our next theorem provides a characterization for the interior of any

set.

THEOREM 5: For A c X, (X,d) a metric space, the interior of A, Int A
18 the 'largest' open set contained im A, i.e. if G is any open set
contained in &, then G c Int A.

Proof. We must first show that Int A is open for any set & c X.
Accaordingly, x € Int A = there exists r > 0 such that Br(x) c A,

Now Br (x) is an open set so for y € Br {2) there exists ry # 0 such
% X

that Br (v} < Br (x) which is contained in A, Thus each y e Br {x) is an
Y x X

interior point of A or Br {x) € Int A. Bu? x was an arbitrary point of
. .

Int A so every point of Int A is the centre of an open ball (Br (x))
%
contained in Int A which is therefore open. Now, let € € A be an open

subset of A, then x ¢ G = there exists rx > 0 such that

Br (x) e Gc A= x e Int A s0 G c Int A, establishing the maximality of
b's

Int A. EE
EXERCISES:

1} For any subset A of the metric space (X,d) prove that X \ int a =x\ &
2) The 'algebra' of interiors

In a metric space (X,d) with &, B € X prove

(i) if A < B then Int A c Int B;

I

{ii) Int (A n B) {Int &) n (Int B};
(iid) Int (& U B) 2 {Int A) v (Int B);

(iv) Construct a counter-example to show that the reverse

“inclusion to that of part (iii) need not hold in general.



Corresponding to this we have an analogous Algebra of closures.

Show that,

(i) AcB=AcH

(i) A UB=2AUB

(iii) E"E_E'E A n B, what can you say abkout the reverse inclusion?

A derived concept of importance in general analysis is that of

the "boundary" of a set.

DEFINITION. For (X,d) a metric space and A < X, the boundary of A, denoted
by bdry A is given by

bdry A =2 1 (x\ B).

Thus bdry A consists of all those points which are arbitrarily close to
both A and its complement X \ A.
EXAMPLES. In (R,d;) the boundary of an open interval (a,b) is what we

might expect, viz

bdry (a,b) = {a,b}

—
I

{a,b) N (R\ (a,b))

[a,b] N {(-=,a] U [b,®)),
as R\ (a,b) = (-=,al U [b,=)
is the complement of an open set and so
is closed.
However this is not always the case, e.g.
bdry Q = 0 N (R\Q)
=RNR=R.

while, for 2 € X, X any set and d the discrete metric

bdry A = A N (X\&) = 2 N (\A) = .
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Despite these cbservations the boundary of a set does behave in an
intuitively pleasing way as the following exercise illustrates.
EXERCISE:
Let A be any subset of the metric space (X,d) show that
bdry A = A\Int A.
Hence conclude that;

{i) {Int A) N (bdry &) = ¢ , and

(ii) A = (Int A) Y (bdry a).

We conclude this section by characterizing the open subsets of (R,dl).
The proof of the following characterization need pnly be studied by
honours students.
THEQREM 6:
In (R,d,) every open set 18 the union of a countable family of
disjoint open intervals.
[Note. Since open intervals correspond to open balls, it is true by
definition that every open set is a union of open intervals.]
Proof,
Take G an open subset of (R,dl) and x any point in G. Let Ix
equal the union of all open intervals (open balls) which contain

X and are contained in G.

Then

(i} IX # ¢,since G is open and so there exists an r. > 0
such that
X & Brx(x).g G, i.e. (x - L rx) gfIx.

(ii) cClearly IX i= an open set (why?). In fact Ix is an open

intervaier0“showmthismit—suffices‘tb“prov@r-ﬁﬁiﬂngﬁig*
whenever a < b and a,b ¢ Ix' Now, if a,b e Ix then, by the

definition of IK‘r there exist open intervals {(c,d) and



(iii)

{iv}

EXERCISE:
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(c',d') in Ix such that
x £ {c,d) N(c',d'}) with a € (c,d) and b £ (c',d") hence

a,b e {(c,d) U (c',d") E:Ix but (e¢,d) U (c¢',d') is an apen

interval and so {a,b) € Ix'

If v € Ix then Iy = Ix' for Ix is an open interval (by (ii))

containing y and contained in G, so by definition of Iy’
I €I and similariy I C1I .

x v v X

For X,y € G, either Ix = Iy or Ix N Iy = ¢.

Assume z € I NI then z € I_ so by (iii) I = I . Similarly
X i x X Z

z el sol =1, whence I I . We have therefore proaved
Yy Yy Z X ¥
that the family of sets {Ix: X £ G} is a family of disjoint
open intervals and clearly
6= U 1 {as x € I © G for all x £ G)
xEG X X -
it therefore only remains to prove that there are only a
countable number of distinct Ix's.
Let QG = 1 MG (the countable set of rational numbers in G),

define £: -+ {Ix: x € Gl by fl(g) = Iq (which is unique

Q
G
by (iv)), then clearly f is onto, since each Ix' being an

interval, contains a rational point qx and so Ix =TI = f(qx)

whence {Ix: X € G} is countable.

Give a similar characterization for the closed subsets of (R,dl).




