57.

§1.5 Mappings between Metric spaces and Continuitly
DEFINITION. A mapping (function) from the metric space (X,d) into the
metric space (Y,d') associates with each point x € X a unique point
v € ¥ which is often denoted by £(x).

It will be convenient to use the following suggestive
NOTATIONS.

(1) £: X+ v, f:xl+ £(x) or even £: X + Y : xb f£(x), indicates

the mapping f from X into ¥ 'ecarrying' x to £(x).

(2) For A C X

N

£{a) {£(a) : a £ B}

{y £ Y : there exists an x £ X with £(x) = y}.
f(A) is termed the image of A under E.

(3) For B Cvy
f—l(B) ={x e X : F({x) £ B},this is not to be confused with
the inverse function of £ which may or may not exist.
f_l{B) is known as the pre-image (or inverse image) of B

under £

DEFINITION. For metric spaces (X,d) and (¥,d') £ : X =+ Y is continuous

at Xg e X if, given € > 0, there exists § > 0 such that

d(x}xa) < § = d'(f(x),f(xo)) < e,
or equivalently,

X E B (xo) = f(x) ¢ Bé(f(xo))

§
or
f(BG(xO)) EiBé(f(xD)).

NOTE. This definition extends the familiar definition of local

continuity for a iR+ R WHichH 18§ the special case (¥X,d) ﬁ*TRTﬁi).
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Local continuity in metric spaces can be characterized in terms of
sequences, as the next theorem shows.
THEOREM 1 (SEQUENTIAL CONTINUITY) -
Let (X,d), (Y,d") be metric spaces, then £ : X + Y is continuous
at X, € X 1f and only 1f for every sequence {xn} with g
Proof.
(=)} Since f is continuous at X for any € > 0 there is a § > 0
. C 1
with f(BG(XO)) - BE(f(xO))
Now if X -+ xo, there exists N € N such that
d(xn,xo) < 8§ for all n >N and so
F(x ) e B' (f(x.)) for all n 2 N
n £ 0
or fi{x ) + £(x_).
n 0
(*) Assume f(xn) -+ f(xD) whenever Xﬂ+ xD, but £ is not continuous
at ¥ i.e. there exists an € > 0 such that £{B {(x_.)) ;?ZE'(f(x 1)
0 —— r 0 E 8]
for all r > 0. Thus in particular for each n e N, there exists
an xn E B}}xo) such that
n
£ B' (f .
(xn) [:4 E( (xo))
1
The sequence {xn} so constructed is such that d(xn,xo) <5
so X X,, but d(£(x ),flxg)) > & all n,s0 £lx ) # £ix))

a contradiction to our assumption.

DEFINTTION: TFor metric spaces (X,d}, (¥,d'), £:X + Y is continuous it
f is continuous at each x € X

(This is sometimes referred to as f being globally continuous.)

COROLLARY (to Theorem 1): If (X,d) and (Y,d') are metric spaces, then

f: X+ Y 15 continuous i1f and only if f preserves convergent sequences

i.e. for any sequence‘{xn} convergent to x we have f{kn) -+ F(x).

NOTE. (1) It is not true, that for continuous £ : X + ¥ if f(xn) =+ fx)

then X + x. [E.G. in (R,d1) for £ : x+ x2 and xn = (-l)n, f(xn) =1+ £(1}

but -1, 1, -1, 1, -1, ..., 7# 1.]
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(2) This corollary often provides the simplest way of proving
a mapping is discontinuous at x; viz.'! by selecting a seguence

x =+ x for which £{(x ) # £(x).
n n

EXERCISE. The Corollary to theorem 1 asserts that convergent segquences
are preserved under continuous mappings.‘ Show that this is not
necessarily true for Cauchy sequences, i.e. it may happen that {xn}

iz a Cauchy sequence in (X,d), £ : X + Y is continuous and‘{f(xn)}

is not a Cauchy sequence in (v, a").

(Hint: Consider T : (G,=) + (0,%) : x> 1/%.)

EXAMPIES :
1) Lipschitz Mappings

Tet £ : X + Y, where (X,d) and (¥,d') are metric spaces, be such
that d'(£(x),f(y)) < Md(x,y) for all x, v ¢ X and some M > 0,
{Such an f is said to satisfy a Lipschitz condition with Lipschitz
constant M), then f is continuous.
[Clearly given & > O,f(ﬁe(x)) = BE(f(x)) for all x € X.]

M

[Remarl: The mean value theorem for derivatives asserts that every

differentiable functions on (a,b) satisfies a Lipschitz condition with
(x,d) = ({a,b), d;1) and (¥,d'} = (R,d;), can you prove this?)

Of special importance later, will he the case when M< 1, ¥ = Y and
d =d', in which case f is called a strict contraction on {¥,d) - the

effect of f is to every where decrease the distance between points.
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Another particular case of special interest, occurs when

d* (£(x),£(y)} = d{x,y) for all %, y € X. Such an f is called an

isometra from (X,d) into (y,d').

Note: An isometry is necessarily 1 to 1, i.e. £(x) = fly) 5 xz=1y

or £ 1({x}) is singleton [prove this].

If £ is an isometry of (X,d) into (¥,d') we can readily see that

restricting d' to £(X), the metric space (£(X},d") is essentially

the same as (X,d) and we speak of ¥ containing a (isometric) copy

of X, viz £(X).

Note further, that if f is also onto, i.e. f(X) = ¥, then the inverse

map £71: ¥ + X exists and d(£71(x), £ 1y)) = a' (£ (£ (%)), £ (£-] (¥))
= d'(x,y)

so in this case £~1 is an isometry (and so continuous mapping) £rom

Y onto X.

2} Linear Mappings between Normed Linear Spaces
Let X be a normed linear space, with norm W.ll, ana
Y be a normed.linear space with norm || _|I"'.
RECALL. T : X + Y is Ilinear if
T({x + Ay} = T(x) + AT(y) Ffor all X, vy € X and scalars A.
(In this context the term mapping {or function) is sometimes replaced

by transformation or operator.)

DEFINITION. A linear mapping T : X + Y between normed linear spaces

is bounded if for all x ¢ X W7 < Mix] for some M > O.

NOTE: This is not quite the same as the "wsual" meaning of "bounded":
or neal valued functions § is bounded if there exists some constant M
o the—tneguatity
4n the above definition of boundedness depends on x and may become
arbitnatily Large [to see this, for any x # 0 consider Mlinxll where
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neNi. There s however a connection between the two . notions of
bounded. 1% {s an easy EXERCISE to show that the Pinean mapping
T .5 bounded .if and only if lmdl <M for all x € BIX]. Thus, o
45 bounded £in the above semse .if and only .if the mapping x v+ llTxd|
48 a bounded function (in the wsual sense) on the unit ball of
X,B[X].

THEOREM 2: A linear mapping between normed linear spaces 1s
continuous 1f and only if 1t is bounded.

(Here 'continuous' means continuous w.r.t. the metrics induced by

the respective norms.)

Proof. () Given € > 0 and any x € X, if y € BE(x) i.e. Ix-vll < E—,

E M
M
then
lT(x) -~ iyl = Hoix - »II T {by linearity)
< M| x~yll {(by boundedness)
and so T(y) € BE(T(X)), whence T is continuous.

(™) since T is continuous, it is in particular continuous at
0 i.e. given € > 0 there exists § > 0 such that
d{x,0) < § = a'(r{x), T(0)) < &

or Izl <& = Ho@)ll"' <€ {as T(0) = 0, by
linearity).

Now for any x € X,

8 8
llmlxll = Mllxll < 8 (by (M3).)
S0 [T —é—-x I = -—é—-”T(x)”' (by the linearity of T and
2l =l 2l =fl
(N3).)
< E

2€

or et < 5 M=l

2

whence T is bounded with M = 5
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EXERCISES:
1y i) Let (X,d) be & metric space and xg a fixed element of X.
Show that the mapping
f:X+R : x¥ dlx,xg)
is continuous.
ii) Let (X,ll.ll) Be a normed linear space, show the mapping

x # |llxdl is continuous from (X,d) to (R,d1) where d is the

Jra

metric induced by the norm

2} If T is a linear transformation from Rn to Rm then
n n n
Tlepxysex) = | Lot T oty ) mi 1
i=1 i=1 i=1
for some m X n matrix [tji] {refer linear algebra).
Show that T defines a bounded (hence continuous) linear mapping
n m
from 21 to 21.
3) i} Show that the "evaluation functional”
F : Cla,b] + R : £¥ £(xp) (xp a fixed point of
[a ;b} ) ’
is a continucus mapping from (Cla,b],d )} into (R,d;).
Is this still true if C[a,b] is considered with the
metric d.
pid
**ii) Prove that T : C[0,1] + C[0,1] defined by T(f) (x) = I Ft,£f(t))dt
0
is continuous with respect to the metric a_ ifF: R+ R
is continuous.
4) show that, a linear mapping between normed linear spaces is
continuous 1f and only if it is continmuous at 0.
5) Prove that Ker(T) = T_l({D}) is a closed subset if T is a continuous

linear mapping between normed linear spaces.
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6) Let (%,d), (¥,d'), (2,d") be metric spaces and £ : X =+ Y,
g : ¥ -+ Z be continuous mappings.
Show the composite gof : X + Z is continous.

Remarnk: The algebraic structure of any vector space X corresponds
£o a number of "natural' mappings. From the additive striucture we
denive the trhansfations

ty: X+ X: xb x+y (=y+ x), for ecach y € X.
Similanly, scalan muliiplication produces
dy: X+ X: xb+ Ax, fon each scalar X,

and £ : R+ X: A Ax, for each x € x

These fLast two mappings are readily seen fo be Lineanr.

A metrie {on Topology) on X 4s said to be compatible with the

algebaaic structure of X if the above mappings are continuous with
nespect Lo L€ when R has the wsual metnic. _

For a nommed Linearn space (x,ll.1), the continuity of £ toLLows

easily while that o4 a, and £ -4 equivalent to (N3], which assents
boundedness for these mappings.

Thus in a noimed Linear space the algebraic structure and the metric
Anduced by the nowm ane compatible.

The next theorem provides a very general, and powerful characterization
of continuous mappings which is often used as a definition of continuity,
particularly in the setting of topological spaces (see comment on page
50 ).

THEOREM 3: Let (x,d) and (Y,d') be metric spaces, then £: X ~ Y is
continuous if and only if for any open set G < ¥, £ 1(G) = {xeX: F(x)ec}
15 an open set of X.

i.e. the inverse image of open sets under f are open.

PROOF. (7) Let G be an open subset in Y, then for any xef 1(G),f(x)eG

which is open and so there exists T, > 0 with Bé (F{x)) < G.

x

Now there exists a 6x > 0 with f(B6 (x)) < Bé (£f{x)) c G (taking
® X

E =T in the definition of continuity), so B6 (x) < £71(G) and
x

f_l(G) is open.



AT Bince, ffl(G),is open whenever G is, for any x € X and
£ > 0, we have f“l(Bé(f(x)) is an opén set containing x and so there
exists § > 0 such that Bg(x) < £ 1 (B! (£(x)) ox £(Bs(x)) € BL(£(x))
and f is continucus.

NOTE: This theorem does not assert that the image of an open set
under f is open. This is demonstrated in the following exercise.
EXERCISE:

A mapping £: X + ¥ hetween the two metric spaces (X,d), (¥,d") isg
copen if £(A) is an open subset of Y whenever A is an open subset

of X (i.e. f carries open sets to open sets).

Show that not every continuous mapping need be open.

(Hint: Consider £: R + R: x|+ ¢, a constant.)

If £:X + ¥ is a 1-1 and onto mapping (so £-l.yax exists) between

the metric spaces (¥X,d) and (Y,d') such that both £ and 1 are

caontinuous, then f is termed a homeomorphism of X onto Y and we

say X and Y are homeomorphic or topologically equivalent. [A

particular case of this occurs when f is an isometry of X onto Y.l
The term "topologically equivalent" is an appropriate cne: From the
above theorem and the continuity of £ and £71 it is an easy EXERCISE
to see that a subset of X is open if and only if its image under £
is also open.

A property P is a topological invariant for metric spaces if,
whenever X, Y are homeomorphic under f and A ¢ X has P then f(A&) also
has P,

EXAMPLES. It is easily seen that the property of "being opeh“ is a

topological invariant (prove), as also is "being closed", however

"boundedness” is not [give an example to show this. Hint: consider
(R,d1) and (R,d*%), where d* is the metric derived from di as in

Exercise 2 of page 5.].
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EXERCISES:
. W -
1) i) Prove that the metric spaces[{—_iu g}, djj and (R,d;)
are homeomorphic. [Hint: consider £ = tan]
ii} Using i)} conclude that “completeness" is not a

topological invariant.
2) If £ is a homeomorphism of (X,d) onto (Y,d') show that
a"(x,y) = d' (E(x),£(y})
defines an equivalent metric to d on X (see exercise 5
on page 51).

*3) Let X and Y be normed linear spaces with norms [|.[] ana Il .l *
respectively. Show that the linear mapping T: X + Y is a
homeomorphism if and only if ther exists m,M > 0 such that

mlxll < Tl <ulxl for all x € x.

*4) Let M dencte the family of all metric spaces. Show that " (X,d)
is homeomorphic to (Y¥,d'}" defines an equivalence relationship
on M {and so metric spaces may be partitioned into classes of

homeomorphic spaces).

REMARK :
Let x be any veeton space of finite dimension n over the §ield . R,
.t a noam on x and {391,132,...,13n} a basis fon X.

It may be shown that the 'natural' .isomonphism

Il
p: X + R : (A1}31 T Ab, F o+ A D) e (Al,}\z,...,ln)

45 a homeomonphism between x and 12.121_

Thus X and i’,g are ftopologically equivalent. In particular
then the family of spaces KE (1 <p <o, n fixed) are Ttopologically
equivalent,

map, each of the metiics dP (1 <p<oo) gdve nise fo the same
open sets (although of counse the open balls differ from metric
Lo metiic).

Fwither,—4s-ince—in—this—ease—y—ean—be-takento-be—the—tdenbity—- - -
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Consequently thene .is onfy one noum topofogy possible for R™.
(Although there are many different nomms they all .induce equivalent
methics. )

In fact, it can be shown that there L4 only one topology for R
compatible with the algebraic struetune.

With nespect to this unique topology any Linear thansformation
(mapping) T : R* » R™ {5 continuous. By the previous remark, this
dmplies the continuity of any Linean fransformation between finite
dimensional vectorn spaces. This explains the relative unimportance
of metric, oih econtinulity, arguments .n findite dimensional Linear
algebnra.

{Precisely the same nemanks apply to finite vector spaces overn the
complex gield C.)
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§1.6 Compactness in Metric Spaces

Before proceeding to the main work of this section we must first
clarify the notion of a "subsequence".
DEFINITION. A subsequence of the sequence (an); that is, of the function
o: nlhr a is the composite aon where n is a strictly increasing
sequence of natural number; n: k- nk € N with n, » ni whenever k > &,

k

[Note: this implies that n_ % k for all k. An observation which is

often helpful in the course of proofs.]

We will denote such a subsequence by
[an ] r [a ] or a ; @ I CEE RN | a I ..
kik=1 * Tk 5 N Ny

1 . . .
EXAMPLE : Let a = E—and let n be the (strictly increasing) sequence

of natural numbers ki+ Ek, then the composit @ o n is the function

Kb a(n(k) = a(2) = ay = ok

Thus the sequence

=N

. Sy .
lr%fgr'}fr LI
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Intuitively a subsequence of (an) is obtained by deleting points from
Bqv Bor seed By aaes while preserving the order, provided that the

deletions are such that an infinite number of the original terms are

always retained.

EXERCISES: 1) In any metric space (X , d) show that the following are
agquivalent.
i} the sequence (an) converges to a.
ii) every subsequence of (an) converges to a
iid) (an) is a Cauchy sequence and there is at least one

subseguence {an Y, of {an), which converges to a.
k

2} Show that a subseguence of a subseguence of (an) is

itself a subseguences of (an).

DEFINITION. In a metric space {(X,d) the subset K ¢ X is compact

(strictly speaking, sequentially compact)if every sequence of points in
K has a subsequence which converges to a point of K.

As we will subsequently see compact sets have many very nice
properties. The jundamental role compactness plays in mathematics .is
excellently set fonth in Courant and Robbins, "What .is Mathematics?”.
A book which you should certainly thy to inspect.

At this stage i1t is difficult to give examples of compact sets. We
remark however that the closed interval [0,1].in (R,dl), indeed any
closed bounded subset of a finite dimensional normed linear space, is
compact. [The proof of these assertions will occupy much of this
section. ]

It is however easy to give examples of non-compact sets. Thus

in (ﬁ”dl) the whole space R and the set of pogitive real numbers(ﬁ+

are not compact. [To see this, note that either set contains the
sequence of natural numbers 1,2,3, ..., n, ... and that no subseguence

of these can converge.]
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EXERCISES. 1) Show that the intersection of two compact sets is
compact.
2} Show that the union of two compact sets is compact.
[Hint. For any sequence in A U B note that either an infinite number
of the terms must lie in A or in B. Hence there is a subsequence
contained entirely in A or B.]
3) Show that any finite subset (that is, a subset with
only a finite number of elements} of the metric space (X,d) is compact.
4) For any set X with the discrete metric d show that the
onrly compact subsets of (X,d) are tﬂe finite subsets.
Before turning to the problem of characterizing compact sets we prove
one extremely useful propexrty of such sets (others will be given in
the next chapter).
Thepzem 1. Let (X,d) be a metric space, K a compact subset of X and
f: X -+ & a continuous real valued mapping on K, then f assumes a
maximum and a minimum value on K.
Remark: That this is not true for general X is shown by the function
f: (0,=) -+ &: xI=+ %-which is continuous (indeed differentiable) but
assumes neither a maximum or minimum value. Incidentally this also
serves to show that (0,®) is not a compact subset of @ with absclute
value as norm. |
Proof. Noting that a minimum of f is a maximum of -f it suffices to
show f assumes a maximum. ILet M = sup{f(x): x ¢ K}, i.e. M
is the supremum or l.u.B. of the range of f; we must show there
exists'xM ¢ X such that f(xM) = M. Now, by the definition of
supremum there exists a sequence of points (xk) of K such that

f(#, ) * M as k > @, and by the compactness of K there is a

.... convergent to some point x

subseguence xkl, xkz, X M

kB'
of K. Whence, by the continuity of f on K

we have f{x,) = Limit f(xk = M as required.

M )
e m
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We begin our search for compact sets with a series of lemmas. The
first two give necessary conditions for a set to be compact while the
next two provide means whereby new compact sets may be derived from
known ones.
LEMMA 1: A compact subset of a meiric space is closed.
Proof. Let K be a compact subset of the metric space (X,d) and
(xn) a sequence of points of K convergent to x ¢ X we must
show x € K. By the compactness of K there is a subsequence
of points (xnk) convergent to a point y of K, but then by
exercise 1 on page 6B ®x = vy so x £ K as required.
LEMMA 2: A compact subset of a metric space 1s bounded.
Proof. Let K be & compact subset of the metric space (X,d) and
choose any point X, € X.
Let R = Sup {d(xo,x): x € K}.
Then, by definition of supremum d(xo,x) £ R for all x € X and there
exists a sequence (xn) of points of K with d(xo,xn) + R as n -+ «. By
the compactness of K there exists a subsequence R N I

1
convergent to some x € K. Thus

1A

R = 1limit d(xo, x ) limit (d(x ,x) + d(x, X 1)
Tk e k-0 © k

dix ,x) + limit d{x, x )
° ke Tk

Il

dix ,x) + 0,
o

and so we conclude that R < =, proving the result.

EXERCISE: By first proving that the mapping
0:(x,d) (R,dl): x d(xo,x) [xo a fixed point of X] is continuous,

give an alternative proof of lemma 2 based on Theorem 1 above.

LEMMA 3: Let (X,d) and (Y,d') be metrie spaces, K a compact subset

of X and f: K + ¥ a continuous function on K into ¥, Then
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£) = {fx): x € X} is a compact subset of Y, i.e, the
econtinuous image of a compact subset is compact or compact-
ness is preserved under continuous mappings.

Proof. Let (yn) be a sequence of points in £{X), then for each
nekN Y, = f(xn) for some point *_ € K (definition of
f{K)} and so we arrive at a sequpce of points (xn) in ¥
which, by the compactness of K, contains a subsequence

b - convergent to some point x ¢ K.
Py fre=1

Now, the ségiénce {f(xn )]m is clearly a subsequence of
k k=1

(yn) and by the continuity of £, f(xn ) = E{x), i.e. (yn)
k

contains a convergent subsequence and so f(K) is compact.

LEMMA 4. A closed subset of a compact set is compact.
Proof. Let K be a compact subset of X, A € K a closed subset and
(an) a sequence of points of A. Then (an) is also a

sequance of points of ¥ and so by its compactness there

[~}
exists a subsequence [a J convergent to a € X, thus,
kjk=1

since a ¢ A each k, a is a limit point of A and so
k

a e€ A (A is closed). Whence (an) has a subsequence

convergent to a2 € A and so A is compact.

We have so far not given any examples of a compaﬁt set, our next
results remedy this situation at least in the case of finite dimensional
normed linear spaces.

We begin with the classical Theorem of Bolzano-Weierstrass.

Theorem 5. Fer a < b e R the closed interval [a,b] is a compact. =

subset of R with absolute value as norm,
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let (xn) be any sequence of points of [a,bl; it suffices to

(==}

gshow: there iz a subsequencé [Xn ] which is either
kik=1

decreasing or increasing, for then, (xn } is bounded bhoth
k
above and below (by b and a) and so,by.the first year result

"an increasing ({decreasing) sequence bounded above (below)

is convergent", X Tx for some x € R which, since [a,b]
k

is closed, is an element of [a,b]. I.e. (xn) contains a

subsequence X TXE [a,b] whence [a,b] is compact .

k

R
M -
‘_______4____.__—0-——‘- ‘‘‘‘‘ %
s B i >
E\\¥ E\\\ |
. /.\ 2
o : J o all subsequent
N //’_ i \ N terms lie beneath
e ; : N i N - the dotted lines
of T - A~ Peak Points~. A A -

Cail'n € N a "peak point" of (xn) if x > x_ for all m > n,
then we have two possibilities:
(1) (xn) has an infinite number of peak points at

n, <£n, <n. € ..... , in which case = > X > x b
o 5 3

and so (x ]m is the required decreasing subsequence.
k|k=1

{(2) (xn) has only finitely many peak points at ny < n, < ... < nm.

In—this-sase—let-N-—=="n——then-N-—is—not-a—peak-—point-so-—: -

1 m 1

there exists N2 > Nl with le < xNz, further N2 is not a



peak point so there exists N3 > N2 with x < x_ , continuing
2 3

inductively in this way we arrive at the required increasing

N N

2 3 B

Our next results generalise this result into higher dimensions.

subsequence Ry < x < X < le. .
1

LEMMA 6. Let X = 22, then the wnit Ball of X,

B ='{§ € X: Izl <1}, is compact.
m m m m
. = {x ;X vees X
Proof Let x { 11 %y 37 . n)

m
be a seguence of points in B, i.e. Ixj| <1 for all me N

and § ¢ {1,2,...,n}.

. - m ‘ '
Now xi, x%, x%, ceer Xpypo.e (the sequence of first components) is a

sequence in [-1, 17 and so hy Theorem 5 above there is a subseguence
n

e [-1, 1] with x L X, as k + o,

n ng f3
1 1

; X ; X ;--. and a point x

1 1 1

Simiiarly, the second componentsof the subsequence S S AR
1 2 3

_ 1 1 1 1 _ 1 1 1 1
%y (hl, Xy Hyr ey x”) X, = (ﬂl, Xy Xy oeee xn)
2 2 2 2 2 2 2 2
il o o — o oy F— S h— i
~2 1 2 3 T ~ 4 LT 20 T TR
.. .3 .3 3 3 . _ .3 32 3
2‘3 (‘lr XZI' x3f - e ‘]'!) :'_{3 - (xlr K2r x3.r eea,y, X )
4 4 4 4 4 4 4 dq
b = r ar -, fac 2. e )
—:‘Ll (xl r xz 4 :"-3 LA R Xn) ’; \--:L L “d L “_j ‘]’1 ds,
s — f“s. 5 35 ’ 15‘ « = qy? U3 U5 =N
-..b l 2’ 3’ “F -])I -5 J.I 21 31 T -T_
6 G 6 3] &) 6 6 6
- = [y . r = -
3 N 2T VR xn) ¥ (zcl, L VT }-n)

.
.

"
=

o
[oad

bl
{8}
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viz, x, L X, 2, X, 3,... is a sequence in [-1, 1] and so there is a
Con n n D
subgequence %, 1, %, 2, X, m3' ... With X, k X, € [-1, 1]. we

therefore have a subsequence (gn yof (gn) for which the sequences

e

of first and second components converge to ®q and X, respectively.
Continuing in this manner we will arrive at a subsequence of (gn),

which for notational convenience we will denote by

... each of whose component sequences converge,

X e, X
~51 ~.52f r ~Sk'
i.e. for each j ¢ {1,2,...,n}
S

Ik
x, =+ xj e [-1, 1] as k =+ w,

J
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Let x = (xl, Xy weer xn), then x € B (as Xj e [-1, 11, 1 <3 <n) and

S S
k . k
ix. - == Mex |x, - =x.| + 0 as k + = since x. —+ x, as k + =,
Sk - 155<q J ] J

Thus (gn) has a subsequence convergent to x € B and so0 B is
compact.
Corollary 7. (A version of the Heine-Borel Theorem): Let X be as in

Lemma & above, then every closed and bounded subset ig compact.

Proof. Let F be a closed, bounded subset of X, then
R =sSupfllxl: x e F} < = so F is a closed subset of
BR = {x e X: |xl <R} so by lemma 4 it suffices to show

BR is compact. Now BR = £(B)} where B is an as lemma & above
and f is the function £{x) = Rx which is easlily seen to be
continuous and so since B is compact by lemma 6 we have by

lemma 3 that BR is compact as required.

We now characterize the compact subsets of any finite dimensional

space.

Theorem B. ZLet (X,|-1) be a normed linear space of finite dimension
n. A subset A of X is compact if and only 1f A is closed and bounded.
Remanfe:  The assumption X .is finite dimensional £s over sthong, all
we need s that A be a subset of a §inite dimensional subspace of X,
Proof. (¥) has already been estahlished in lemmas 1 and 2.

{= Letl{bl, byo eees bn] be a basis of X, then each x € X

may be expressed uniguely as

n
X = Z x;b, {xi e ®, all i) and so we can define the mapping
i=1
Tl
T X+ by TEX) = (xl, x2, cens xn).

It is an elementary exercise in linear algebra to show T is

1-1 and onto and consequently invertible with inverse

-1 n o
T ": R+ X: (%x,,%.; .., )} Z X.b.,. Further, if g has
172 n o 1d
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norm Hme = Max |x.|, where x = (xl,xz,...,x } then T“l (and
- ST } n
indeed T also) is a continuous function because
-1 1 n n n
I ) -7 ) = ) xb, - Fyb | =] (x.-v.)b,]
~ < . ii Nl A § b i 74774
i=1 1=l i=1
n
= z |xi—yi|ﬂbiﬂ by the triangle inequality and (N3)
-
n
<) Dxeyl byl oas Ixeyl, = max [x; -y |
i=1 L Isish
13
= 1B, 1| l=-yl
ti=1 * -

and so T"l(g) + T_l(§) as y + x.

Thus since A = T—l(T(A)) it suffices to show T{A) is a closed bounded
gsubset of ﬂ?, for then By lemma & it is compact and so A is the image
under T_l of a compact set and so. by lemma 3 is itself compact.
It therefore only remains to prove:
(a) T{A) is closed. Thus let (§n) be a sequence of T(&) convergent
to x then T-l{gn) -+ T_l(g) by the continuity of Tul, but
T_l(ﬁn) € A, which is closed, and so T_1{§) € A whence
x = T{T_l(g)) e T{A). So T(A) is closed.
(b) T{A) is bounded. Let § = {y ¢ | lyl, = 1}. It suffices to
show m = ingigum "T_l(y)" is non—-zere, for then, if
e Z

0#xerm, 5 essom<IrAxhl = 1T 0 /lxl or
(B4

i3 -1 . -1
(B éga‘ﬂT (x)| and the result follows since T (%) € A and A
[+4) I -
i5 bounded.
Now, S is a closed bounded subset of BF and therefore, by the

above lemma, compact. Hence, by theorem 1, the continucus

-1
mapping y i+ IT “(y)| achieves its infimum m on S at some
{necessarily non zero) point a = (al,a ,...,an) € 5, and so
-1 n
m # 0, for otherwise T ~(a) = X aibi = 0 contradicting the
i=1

linear independence of the basis'{bi}.
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Corollary 9. In the wnotation of the last theorem, the mapping T is
a homeomorphism.  [This shows that any nommed Linear space of finite
dimension n is topologically equivalent to 22 - see the remaik om

page 64 J.

o . N -1
‘Proof. We have already established the continuity of T . That T

is itself continuous follows from (b) of the above proof.

, T
For any x # 0 we have Tx # 0 {as T is 1-1) and so ——E*‘E s,
¥ T

but then by (h) above m s;”T_l[W%§FJ"
.1 -1 [Es]
N T R o

Rearranging gives

1
Irxl < = lIxl
« m

and so T is bounded {and hence continuous) as m # 0

*

EXERCISE: Prove that any linear mapping between two finite dimensional
normed linear spaces is continuous.

Our final result is the promised demonstration that all finite

dimensional normed linear spaces are complete.

Corollary 10. Any finite dimensional normed linear space is complete.
Proof. Let (xn) be a Cauchy sequence of the finite dimensional normed
linear space (X,ll-l), then (xn) is bounded, i.e. there exists
R > 0 with Han < R for all n. Thus (xn) is a sequence of
the closed bounded set {x e X: lxl <R}, which by the above
theorem is compact, so (xn) has a subsequence (xn ) convergent

k
to x. But

— = . - — i
I, —xll < fx, —x_ || + Hxn x| and so flx x| + 0 as k » =

K X

i.e. (x ) is convergent to x.
—_ n
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EXERCISES: 1) Show that any finite dimensional subspace of a normed
linear space is closed.
2) By considering the sequence (gn) where
= {0,0,...,0,1,0,....}

+
n'th place

e
~n

show that the unit ball of £ is not compact.
[This shows that the conclusion of Theorem & s not valid .in the
infinite dimensional space &_. Indeed it ecan be proved that the unit
batl of a normed Linean space L4 compact if and only .if the space .is
finite dimensional. This is a consequence of Riesz' Lemma, which
honouwrs students might Like Ao thy and prove.
(Riesz' Lemma)}. Let M be a proper closed subspace of the normed
Linear space (X,0-}). For each § e (0,1) show there exists a point

x; € X such that lxgll = 1 and d(xo, M) = infllxﬂ -ml = 5.]
meM




