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MTISCELLANEQUS EXERCISES TO CHAPTER .

i) If 4 is the discrete metric on any set X, describe the halls
Br(x) and Br[x]. [Hint: consider the possible cases;
O<r<l,r=1landr > 1.]

ii) Let X be the family of all subsets of A = {1, 2, 3, 4, 5}.
If 4 is the metric defined on X as in Example 6 of page 5,
describe the ball B2({2,3}).

Give a counter example to the natural conjecture that in any metric

space B_(x) = Br[x]. [Show that this is, however, true in a normed

linear space.]
Show that any finite subset of a metric space is bounded.

Show that the intersection of two convex sets is convex. Is the

same true of the union of two convex sets?

Show that the terms of a Cauchy sequence in a metric space form a

bounded set.

Let (X,d) be a metric space for x € X and A€ X define the distanece
from x to A to be '

d{x,A) = dinf d(x,A}.
ach
i) Show A # ¢ implies 0 < d(x,A) < ®
ii} Prove x € Int (X\A) iff d(x,a) > 0.
iii} Prove x € A iff d(x,A) = 0, (hence characterise those

X € bdry A in terms of distances from sets.)

(SEPARATTION PROPERTIES)

(a) If %,y are distinct points of the metric space (X,d), show
that there exists a pair of disjoint open balls each of which
is centred on one of the points. Because of this metric

spaces are said to have the Hausdorff separation property.

(b) In the metric space {(X,d) let x & A = A. Show there exists

[

disjoint open sets Gl. Gé with x ¢ Gllanﬁ n & G2
*(c) Let A, A, be any pair of disjoint closed subsets in the
metric space (X,d). Show that there exists disjoint open sets

G G2 with Ai < Gi (i =1,2). Because of this property we say

1'
metric spaces are normal spaces.
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g.* The ruler function r: [0, 11 + 0 n [0, 1] defined by

0 if x is irrational
rix) =

é-if x = &
g g

where p and g are mutually prime integers (i.e. the greatest common
divisor of p and g is 1), has the broperty of being continuous at
each irrational point, but discontinuous at every rational point.
Prove this for, at least, the two special cases of x = % and x = /572.
(This function is considered in many of the standard books including

Spivak's "Calculus".)

9, In any metric space {¥X,d) let xn g»x. Show that the set

{xl, b X 1 oaens x} is compact.

10.* If X is a compact subset of the metrie space (X,d) show that for any

E > 0 there exists a finite number of points Xyr Xyy anny x such
n -
that K & O B (x.).
=1 °©
11. One of the most fascinating sets in anélysis is Cantor's Ternary Set.

It may be constructed inductively by deleting the

1
? ]  open interval (%, —32—) from [0,1],
% : 1 2 7

1 Tooonnans . . 1 2 7 B8,

- ) lP—T;-“f———J then deleting (9, 9) and (9, 9),

§ ¢ 5§
e I s EEREEEEE —-- — followed by the deletion of
HH..HH-HHHH 1 _2) i(..l _E) (1‘2 2_9)
’ i ' 277 2777 7t 27" Yo7 o7t

) 25 26
etc. (‘2“7, E) followed by ...

{see diagram)

1 1 2 7 8 ,
Clearly, the points 37 %y 9r g gr groc- are never deleted by this

process and so K # ¢, in fact X contains infinitely many points,

despite the fact that the total "“length" of non-overlapping intervals
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deleted is readily seen to equal

n
1 2 4 g i 2 4 8 2
THS A=+ ... = = ot h oo L+ — + L.,
379737 a1 3 [1 375" 27 Tt J
a geometric progression whose sum is 1!
(i) Deduce that K is a closed subset of ([0,1], dl).

{(ii)* (For latter parts you may assume the results of this part, if
you feel unable to prove them and feel they would help.) Show

the following are equivalent definitions of K

3n-1
@ 2 -
{a) K = [D’l]\ u u .2m—:.l.‘_' .zﬂ
n=1 mp=1 3n 40

(b) K consists of precisely those points in [0,1] having a

ternary representation (i.e. representation te base 3)

(==}

a
of the form ) —ﬁ-with a, =0or 2 for all n ¢ N.
n=l 3

[NOTE: = 0.0l = 0.00222 (base 3); thus %—e K.]

1

5 .

(iii) Show Int K = ¢

(iv) Show bdry X = K

(v) Show [0,1]\K is a dense subset of [0,1]

(vi)* Show X is an uncountable set with cardinality that of the
continuum; ji.e. there exists a 1-1 and onto mapping from K
to [0,1]. (Thus although K has zeroc "length" it contains as

"many" points as the original interval [0,1].)
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CHAPTER 2: APPLICATIONS

This Chapter is divided into four sections. Each section extends
the basic theory of Chapter 1 in a specific direction and cullminates with

at least one application of the theory developed.

SECTION 1, APPROXIMATION THEORY

Preamble
Much of Mathematics depends on the "approximation” of given objects by

more tractable ones.

For example:

. . . 22 3
The approximation of T by rational numbers, 7 = g?y E%I} . e}

The approximation of a given function by a polynomial,

explx) =1 + x + xz/z + x3/6, sin x = x;

The approximation of a given function by a trigonometric

polynomial oxr its equivalent,

-1 if - 1T £ x50
For f£(x) {

1A

1if 0 < x m

1:

4 1
£{x) ;{sin x + 7 sin 3x + l-sin 5x} (c.f. Fourier Series);

3 5

Finding a polynomial approximation to the solution of a given

differential egquation [Metheod of Frcbenius]l;

For a given n ¥ m matric A (n > m} and n-vector Q, finding an
m-vector x for which ax - b is approximately zero, i.e., finding
an approximate solution to an inconsistent ("over-specified")

system of equations Ax = b.

All of these problems share a basic similarity: From among the elements
of a given set A, choose one which will, in some specified sense,
approximate the object, t.

A number of natural questions arise.

(i) How "good" an approximation is possible?
(ii) For a given & and t is there a "best" approximation?
{iid) If there is a "best approximating element"” is it unigque or can

other equally acceptable approximations be found?
{iv) Assuming it exists can we develop a procedure (algorithm) for
determining the best approximation to t from among the slement

of A?
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These are typical of the type of guestions with which approximation theory
deals.

From the pioneering work of Pafnuti Tchebycheff and Karxl Weierstrass
in the second half of the 19th century through the penetrating work of

Haar, Bernstein and many others to the present day, approximation theory

has become an increasingly important branch of mathematics with applications

in other areas of mathematics, computing, engineering, economics and the

social and life sciences.

Speaking of the approximation of t by elements of A presupposes that
we have some criterion for "measuring” the proximity of a € A to t, the
natural super-structure for such a criterion is that of a metric space.

Consequently, we will assume that A is a subset and t an element of
some metric space (X,d). We will mainly deal with questions of type (i),
(ii)} or (iii) which now become.

(i) For any given € > 0 is there a point a of A with d{a,t) < e?

(ii) Is there a point a, of A with d(ao,t) = d{a,t) for all a € A?

When such an 8y exists we refer to it as a best agpprozimation to

t from A or a closest point of A to t.

(iii) If it exists is the point ag of (ii) unique?

Except in a few simple cases the more specific and usually more
involved problems associated with question (iv) have been avoided. (See
Cheney, Chapter 3 onwards for examples of work of this type.)

The answers to (i), (ii) and (iii) abowve can vary with the choice of
metric for X. Usually this choice is dictated by the context of the
problem. For example, if it were required to approximate an electrical
signal by another one which was required to deliver about the same
average power, it would be reasonable to use the metric induced by the
inner-product norm ”'”2 (corresponding to the "root mean square average"
of the difference in signals). If on the other hand the signal were to
operate a control device sensitive to voltage éhanges the Tchebyachefsf
norm ”'“m would be more appropriate (measuring the maximum deviation
between the two signals).

Tchebyscheff himself first introduced the "sup” norm in connection
with a problem relating to the design of linkages between the wheel and

piston in a steam locomotive.




The problem was to develop a Linkage which wowld exactly convernt the
nectilinear motion of the piston into the circular motion of the wheel.
This problem had been unsuccessqully considered by several engineens and
mathematicians prion to Tchebyscheff. Tehebyscheff conv.inced himsel §
that such an exact Linkage was not possible. He then sought fo deteamine
the "best" Linkage which could be constructed with n pivots. Clearly it
s no good having such a Linkage neatly exact for most of the motion and
way out for a small part of it (at that point something would break) .
Consequently, he measwred the "goodness” 0f the approximation by the
maximum departure Lt produced from the desired motion, and s0 implicitly
Antroduced the "sup" noam W-ll . IShortly aftewwands, 1864, the French
Naval Officer, Peaucellier, discovered am exact Linkage nmvolving 6 pivots.
However, by that time the development of high tens.ile bearings, and
epficient Lubricants which could tolerate "slop" and withstand greater
Athesses, nendered the solution unnecessany. ]

To gain some idea of the type of situations which our theory must
deal with we begin by giving a GEOMETRIC INTERPRETATION OF BEST
APPROXTIMATION.

To find the best approximations from a subset A of X to the point
x, € X (assuming they exist) we may intuitively proceed as follows.

Starting with a very small value of ¥, gradually increase r until
the sphere centred on X, Sr[xo], first makes contact with a. {Imagine
blowing up a balloon in the shape of the sphere.) The point(s) at which
contact is first made are the closest points of & to Xg -

With this interpretation, the following sketches should serve to

illustxate—hew—eiasest—pcintSMCanwfﬁii—tc—exist“ﬁr—faii Lo pe miigue.
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1)

an open interval

Closest point may fail to exist

II1)

closest points

Even with a "nice" norm (here the euclidean norm on ﬂ?) without some

restriction on the "shape of the set A {(e.g. convexity) the closest point

may fail to be unique.
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IIT)

Without a restriction on the
norm (shape of the unit ball)
the closest point of even a

"nice" set (here a subspace

in #?) may fail to be unigue.

closest points

:\
REMARK  Our .LRustrations have been .in R2 (because we oan easily dnaw them) .
This does noit detract from thein sdgnificance, indeed .it highlights the
Amprotance of our abstract methods. We camnot eas Ly picture the situation
when for example, asking fon the best approximation(s) to o from the set A
o4 polynomials with deghee Less than 17 which Anvolve coefficients o4
absolute values at most 5 in the dpace CL0.1] with the uniform noam. By
recognising the analogy with similar questions in &2 (both ane nealization
04 the same abstract /.si/tua,témi) we can, however, envisage difficuliies
which might aiise and concepts needed for thein nesolution. Oun absthact
approach enables us fo transfer some of owr intuwition about &2 to othen
Less familion situations.

General Theory,

We begin by observing that if X is a limit point of the subset a in
the metric space (X,d), then there are points of A arbitrarily close ta
Xyr S0 there can be no closest point of A to xounless X, itself is in_A; in
which case X, is its own best approximation from A. For example, in ®
with ]'I as norm, 1 is a limit point of the open interval (0,1) and we
observe that there is no positive number strictly less than 1 which is
closest to it.

4 necessary condition for a subset n to contain a closest point to
each point of the space is therefore +hat a be elosed. A subset with
this property; that it contains a hest approximation to each point of the
space; is sometimes termed "a proximal subset”., Our first results will

show that at least in finite dimensional normed linear spaces, the property.

of being closed is also a sufficient condition for a set to be proximal .
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Theorem 1. Let K be a compact subset of the metric space (X,d), then

to each point x € X there corresponds a point Kk, €K of minimun distance

from x.

That is, K contains a best approximation to each point of the space.

Proof. Let § = infimum d(k,x): k € K, then by the definition of infimum

(greatest lower bound) there exists a sequence of peints of K,
(kn) such that d(kn,x) + 8 as n + =, and further d(k,x) = &

for all k € K. By the compactness of K we may extract a
subsequence of (kn); knl, knz, kn3’ ey knm, - -. convergent to
some point kx € K. Now § < d(kx,x) o d(kx’knm) + d(knm,x) for
any m € N and so taking the 1limit as m + = and noting that

d(kx’knm) + 0 while d(knm,x) + § we have that

8 = d(kx,x) S

or
d(kx,x)==6==inf la(k,x) : k e K} < d(k,x) for all k £ K,

as required.

EXERCISE: Give an alternative proof of Theorem 1, based on Theorem | of
§1.6 (page 69), by first showing that the mapping K + ®R: k |+ dk,x) is

continuous.
As a consequence of Theorem 1 and the work in §1.6 we have

Theorem 2. Let M be a finite dimensional subspace of the normed linear
space (X, |-} and let & = M be a closed subset of X. Then A contains a

best approzimation to each point of X.

Proof. Given x € X, choose any point a, € A, then if there is a closest
point N of & to x we have
—_ < —_—
lx - agll < llx - a,l

and so a, would belong to

B = {yen:llx-qvyll <llx= aIH}.

Thus_it_suiﬁiges—to—sh@wmthathéhEEe—is—a—eieseSt—point—of“B to-x<



Now

and sc B is a closed (intersection of
two closed sets) bounded (B S Br[x])

subset of the finite dimensional subspace

M.

B is

follows from Theocrem 1.

case

Hence, by Theorem 8 of §1.6 (page 75),

andyeX:llx-yl <lx-all}

I

AN Br[x], where r = |[|x - alﬂ

compact and the desired conclusion

To illustrate this result consider the following examples (in each
the above theorem guarantees the existence of a solution).

Since an irrational number can be approximated arbitrarily well

by rationals, there is no rational g for which d(g,m) = la - =]
is. a minimum; that is, there iz no'best raticnal approximation to .
However, we can ask; from among the set of positive rational numbers
with denominator less than or eqgual to 10, say, which best
approximates w in the sense that |q - 7| is a minimum. Moxe generally
for N g N let AN = %% :Prge Nand 0 < g < N} then AN n [3.4
contains only finitely many elements, and so there exists Dy £ A ,
for which |q - ﬂl lq - WI for all q € AN that is, qN is a best
approximation to T from AN. For example, it is readily checked that

Qlo = 22/7.

Exercises

1)

2)

Show that in this case the best approximation to T from Ay is unigue.
(HINT: observe that if there were two distinct best approximations
they would be of the form r) =T-€and r, =T+ E, But then,

T =1(r; + r,) contradicting its irrationality.)

(bptional) Determine qZD' If you have a programmable calculator
available, you might like to try finding I for some larger values of
N. (NOTE: T = 3,1415926536.)
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The question of how, .in general, to determine ay A8 an old one.
IZ was studied by Huyghens (16 82) when designing toothed wheels for a
plandtarcium and was st solved by Wallis in 1685 using the theony
of continued fractions. (See, fon example, Chiiysital "Textbook of
Algebra™ Vol, 11 Ch XXXT1, {irst published 1889; seventh edition,
Chelfsea 1964.)

For .interest, a few resulits are tabulated below.

311

%00 T g7

355

000 = 773
78433

Y5000 T 74986
{(I¥} Let C be the one-dimensional (basis element, the Ffunction
fl(x) = 1) subspace of (C[1,2], H'”m) consisting of all constant

1
functions. 5 best approximation to f£(x) = ;-from C is the

function fD(x) = CO’ where CG is such that

Alt) = ”i‘" t”m = Max

has a minimum at t = Cq-
Exercise: Determine”cg and show it is unique.
(III} Exercise: Let L0 be the one-dimensiocnal (basis element the
function x) subspace of C[0,1] consisting of all polynomials
p of degree less than or equal to one for which p(0) = 0;
that is, all "straight lines through the origin".
(a) Find the best approximation to £(x) = e from LU in
(cro,11, -y,
That is, find m such that

1 .
l:[ (e® - mx)? ax ":l;i
0

*(b) Find the best approximation to f(x) = e* from LO in
(Cro,11, II-_).
That is, find m such that

is smallest.

Max

x
e’ - mx
O=x<]

is smallest,
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(IV) Let Pl be the two dimensional subspace of C[0,1] consisting of all
polynomials of degree less than one equal to one.
It can be shown that the element (straight line) vy =mx + b is a
best approximation from Pl to £(x) = e* in (C[0,1], “'Hm) if and
only if the line intersects y = e” in two points P, Q (see diagram)
in such a way that the maximum absolute difference in value between
the line and y = e® in each of the three regions OP, PQ and OR are
equal, i.e., !ABI = ICDI = [EFI.

‘This is a special case of the
very elegant Alternation Theorem
(Proved by Borel in 1905 and
generalised by Young .in 1907 o
punctions satisfying a Hawr

condition):
n
P (x) = ¥ amxm
m=0
3 =C A8 The best n'th degree polynominl

approximation Zo £ on [a,b] with
respect Lo the Tehebyscheff noam
A4 and only if there exists
Xp < %y < x, < ... < x in [a,b) such that r(xi) = —r(xi+l) = iHer
where r = £ - P .

Exercise

*(a) By use of diagrams, etc. give a heuristic argument which demonstrates

the truth of the ahove statement about approximating e

-

(b) Using the above facts show that the straight line of best approximation

toy = e in (CI0,1], -l is

g ~ (e-1)in(e-1)
2

vy = {e-1)x +

(V) Consider the problem of finding "best” solutions to the inconsistent
systems of linear equations, Ax = b where A is an n ¥ m matrix,

X € Rm, b e Rn(and often n > m, that is the system is overspecified).

By a best solution to such a system we mean a vector x for which

. .. . . Il .
l2x-bll is a minimum, where ||.]] is some suitable norm on R'. This
may be reformulated as follows. From basic linear algebra, we know

s . mo, n
that A corresponds to a linear mapping from K~ into R, whose range
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a(R™), is a subspace of R° (spanned by the columns of A). Thus, setting
M= A(Rm), the above problem amcunts to finding m e M.for which ”@~§” is a
minimum, i.e. m is a closest point of M to b. A "hest" solution is then
any ¥ for which Ax = m and at least one such x exists as w belongs to the

range of A.

In the case of the euclidean norm || .||, the problem is essentially the
statistical problem of linear regression analysis ‘or that of finding a
least-square "line" of best fit, through a set of data points in n-dimensional
space (see later). We now cobtain a solution for a simple instance of this

general problem in the case of the Tchebyscheff norm, ”.”m

Tchebycheff soclution for an "overspecified" system of equations in one unknown

Given the system of equations, in the unknown x;

alx = b1
azx = b2
a3x = b3
ax=»h
n n

we seek x such that

mak{lalx—b|,lazx-b[,...,[anx—bnl}

iz a minimam, i.e. we seek to minimise the maximum of the residuals

a,x - bil {i=1,2,...,n).

For this reason such problems are often referred to as minimar problems.

[Note: This problem is equivalent to seeking an element of the

,...,an) which is closest to

l1-dimensional subspace spanned by a = (al,a2

the vector b = (b, ,b b ) e R" with respect to the norm .1

grce-r
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To see how such a problem might arise in practice, imagine we wish to
determine the "elastic constant (x)" of a given spring, by taking readings
of the extension (b) caused by various loads {a), and assuming Hooke's law

b = xa applies.

For example, suppose we have taken two such readings and obtained the
following values.

load {(a gms wt) extension caused (b cms)

2
% 1
Each reading determines a value of x, however because of "errors", Hooke's

law produces the pair of inconsistent equations

In such a sitvation it is not unreasonable to select the value of x
which minimises the maximum of the residuals I2x - 2| and ]%x - l|.
That is x such that §(x) = max{|2x - 2|, |4 - 1|} is a minimum.
Observing that, for any real number a

la] = max{a,-a}
we see that

§(x) = max{lalx - bll, ]azx -b ,...,]anx - bn[}

N
may be replaced by the more convenient expression

§(x) = max{a.x-b., bl—a x, a.Xx - b

- b ,b - .
177 1% 3y gr Pymay¥%,...,a b b ~a x}

0

The problem is then to find x for which §(%) iz a minimum.

For the "spring” problem above, we must minimize

§(x) = max{2x-2,2-2x, %x - 1, 1-%x}.
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By firxst graphing each of the straight lines
y=2x-2, y=2-2%, y=4% -1, yv=1- %

it is not difficult to draw the graph of v = §(x)

A
N\\ 2 CY‘= é;(JC)
~
-~
~
~ 4
N7
l@ﬁif"ff
32>
NS L f"’
, \/lé \\'\ E - 3
L) I'a ﬂ\‘ L
/ /\/ .""-'y.§ _
// \\/"b I
\ ~ st
# \ Q-"c\
~ .7 -~
o) & A \Yz=gZ =R
- Jog s \
&~ y yzRx-2 y

from which, not insignificantly, we see that &(x) has its minimum at the

intersection of the two lines y = 1 - %x and v = 2x - 2, whence our

. , 1
estimate for the spring's elastic constant is x = 1 g-(cms/gm wt) .

While this graphical method may be used to solve any similar problem, it

is not readily automuted in a way which allows it to be easily programmed

forTuse om & computer, say, Nor will it easily generalize t6 include more

than one unknown, in which case the lines become planes (hyperplanes) in

three (or higher) dimensional spaces.
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Many more suitable algorithms have been developed, one of which is

described below.

Descent from Vertex to Vertex.

We have seen that the problem, minimize

§(x) = max{[ajx - by[, |apx - by|, ..., anx-hnl}

can be rephrased as, minimize

8(x) = {rl(x), rz(x), . r2n(x)}
where
rl(x) = clx - dl = alx - b1
rz(x) = Cyx - d, = —a1x + by
= - -b
ra(x) cax " azx 5
rq(x) = Cux - dq = —a,x + b2
ete.
(I.e., for i =1, 2, ..., n, rzi_l(x) = Oyl X - dzi—l = a;x - b
= . - = - -+ .
and rzl(x) 021(x) d21 aix bi }

Thus for the above "spring Problem"

rl(x) = 2x - 2
rz(x) = 2 - 2x
rs(x) = Lx -1
rq(x) = 1 - %3,

As we develop the algorithm each step will be illustrated by reference to
this particular problem.

Selecting any value X, as starting point -

{7 Determine tHE Set M of indices 1 for which ri(xo) = S(XD)
(i.e., identify those lines y = ri(x) which intersect with the graph

of §(x}) when x = xD.)
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Note, M # ¢ as 6(x0)= max{rl(xo), rolxg) ...3.

E.g., for x, = 1 we have

0
6{1) = max{0, 0, %, %} = Y%
while
rl(l) = 080l £ M
r,(l}) = 0so2¢ M
rg(l) = -k so 3¢ M
r (1} = %s0o4d4enM

whence M = {4}.

{2) If M contains indices j and k for which cjck < 0, then %, is the

desired value of x which minimized &§(x).

(To see this note that cj and SN have opposite sign and so at Xy

the two lines y = rj(x) and y = rk(x} must look like

Since the graph of §(x) passes through (xo, 6{30}),the intersection
of these two lines, and since y = 6(x) must lie "above" each of the
lines (8(x) = max{rl(x), ry(x), ...}, 6(x) must have a local minimum
at X but then by its convexity this must be a global minimum (see

subsequent exercise) as required.
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If M does not contain such a pair of indices (as, for example, is
the case in our numeric example, where M = {4}), then determine jeM
for which ch‘is smallest (in our example we have only aone choice,
viz j = 4) and depending on whether cj is positive or negative
deterﬁine the nearest value of x to the left or right of Xy for which
rk(x) = rj(x) for some k # j. (I.e., slide along the line, y = rj(x),

through (XO’ 6(x0)) with shallowest slope in the "down-hill" direction,

vy = rj (x)

which must coineide with the graph of §(x}, until it intersects another
line at which point &{x) may change "direction".)
E.g., for our example, Cy = -% so we seek the value of x to the right

of 1 and nearest to it for whcih

-3y = rk(x) (k = 1or 2 or 3).
Now
l-%kx = rl(x) = dx - 2 =x = %»(to right of 1 as sought)
1 -3x = ry(%x) = 2 -2x=x = %—(to left of 1)
1 -%x = ra(x) = hx - 1l=x = 2 (to right of 1 as sought)

so the sought after value of x is x =

] o

Using the value of x so obtained as our next estimate (xl) return to step (1).
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E.g. In step 1 with xU replaced by xl = g-we have
6 2 2 2 2
§i= = = ¢ - T r
5 max{s 5’75 5}
s0 M = {1, 4}
and proceeding to step (2} we see
c.c = 2x-45 = -1 <0.

174

So x = %—is the required value of x (see before).

This and several similar algonithms are available for s0lving

the problem in one unknown and extensions of the theony by

Polya, Haar and others provide algornithms for handfing problems

in mone than one unknown. ALL of these procedures are intimately
related o the general theory of convex proghamming which is o4
considerable imporntance An economic theory and operations ieseanch
Type problems.

Exercises:

1) Determine a Tchebycheff solution to the "over-specified": gystem

of eguations

2.0x = 1.2
4.0x = 2,1
5.0x = 2.6,

2} Find x such that ”yﬂm is a minimum where

2 2
y = Ax - Db and A = h = .
7 - 1 = 2

0 1

3) If you have the facilities you might try developing a programme which
uses the above algorithm for solving an overspecified system of equations

in one unknown.
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4) Give an example to shoﬁ that the vector x for which HA; - me is
minimum need not be unigque.
5) DEFINITION: A function f: Q.+ f is termed convex if its supergraph
{(x,y) € @: y > £(x)} is a convex subset of R2.
a) Show that a function of the form y = |ax + bl is convex, where
a, b are constants.
b} Hence, show that the function v = 8{x) is convex. (HINT: use
Exercise 4 on page 79.)
6)* Show that a local minimum of é convex function is necessarily a

global minimum. (HINT: Draw a diagram.)

We have seen that compactness is a sufficient condition for a set A
to be proximal. BAs illustrated by II on page 86, to ensure that the best
approximation from A to any point of X is unique we must further restrict
the nature of A. For example, by requiring that A be convex. A subset
with the above property; that it contains a unigque best approximation to

each point of the space is termed a Tchebyscheff set.

The question of characterizing Tchebyschefd subsets remains, .in
general, unanswered {though .t has been the subject of considerable neseanch) .
For example, fon many spaces. (including Hilbert spaces) it.is not haoun
whether convexity .is a necessary condition for a closed set to be Tchebyschess,
a characterization of Tchebyscheff sets in (Cla,bl, -t ) has only recently
been given {1975} by A.L. Brown and othess.

As demonstrated by illustration III on page 86 the convexity of A alone

is not a sufficient condition for A to be a Tchebyscheff set. We must also

restrictions on a).
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DEFINITION: A normed linear space (X, l|-ll) is strictly comvex

(or rotund) if whenever two elements % and ¥ are such that
Izl = uy” = Hz—g—lﬂ we must have x = y. Excluding the trivial
case of x =y = 0 we may, by dividing throughout by the common value

of the norm, assume without loss of generality that [[xlf = ”y” =1

X+ vy

and then X is strictly convex if and only if | l< 1 whenever
=
X and y are two distinct elements of the unit sphexre
S{x) = {x e X : llxll = 1}. Geometrically this states that the
unit shpere does not contain any non-trivial line seqments [x,y] -
can you prove this?
X - OY

Xty

2

S(x)

The unit sphere of a space
which is not strictly convex

The unit sphere of a strictly

convex space
EXAMPLES :

1) From the parallelogram rule
l= + y“z +1lx - y”2 = 2«2 + 2ﬂy”2

we see that if llxl = liyl = IZZH , then llx - v} = 0 or x = y.
Thus, every inner-product space is strictly conve.

2}  The space Ei 18 not strictly comvem. To see this note that x = (-1,1)
. + .
and y = (1,1) are points in S(ﬂi) and that HE—E—XHm = ||(O,1)||cn = 1,

EXERCISE: Show that none of the spéces ﬂ%, (Cla,bl, "'”m),.or Rm are
strictly convex,
REMARK: L may be proved that all of the spaces ﬂp with 1 < p < = ane
statetly convex spaces.

The importance of strict convexity for our purpose lies in the
following result.

THEOREM 3: Let (X, II'll) be a strictly convex normed linear space and

———tet-hbe-a-conver—subset—of¥—Phen;—given—ny potnt Xy = X7t there

18 a best approximation to X, from A it is unique.
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Proof: Assume aj and a, are two best approximations to xp from A; that

is
ﬂxo - a1H = on - a,ll = HxD - alf for all a ¢ A,
Let r = on - a1H and let x = X3 - @y, ¥ =X, - a,, then =l = llyll = 2.
al + a2
Since A is convex, — "« A and so
a1 + a2
r = |lx; - a.ll = llx, - =4 .
a 1 ¢ 2
a;y + a +
But x - -2 = X b4 and so we have
] 2 2
Xty
<
r [ 3 Il
= Ixﬂ 3 |
”(xo - al) + (xD - a2} i
B 2
- on - all + lxy - ayll
- 2
= r.
+
Thus, x| = lyll = ¢ = HE—E—QI and so by the strict convexity of X we must

have ¥ = y or X3 —a, =x; - a, and so a, = a, as required.

As an immediate corollary we have

THEOREM 4: Every compact convex subset of a strictly conver normed
linear space is a Tchebyscheff set.

EXERCISES:

1) Show that every closed convex subset (in particular, every siubspace)
of a finite dimensional inner-product space is a Tchebyscheff subset.

2) If A is a convex subset of a normed linear space (X, |-} and if ayr

a, are two distinct best approximations from A to the point XO € X,

show that every point of the line segment [al, a2] is also a best

approximation from A to x,. Intultively, this shows that ithe sphene,
centre x,, which "just touches A" contains the Line segment [a,, a,]
and suggest why there can not be two distinct best approximations in
a Athictly convex space.
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By further restricting the natrue of the norm function it is possible
to relax the conditions on A while still ensuring that it is proximal
{indeed Tchebyscheff). Thus effecting a kind of "trade-off":- more

properties on the norm for less on the set, and possibly vice-versa.

DEFINITION: A normed linear space (X,|l.ll) is wniformly convex if

whenever (xn) and (yn) are two sequences of elements from X such that

X +y
Hxn” + 1, "Yn” + 1 and “—EE—E” + 1 as n + », we must have Hxn—ynﬂ + 0.

EXAMPLE: Rearranging the parallelogram rule we have

- 2 - 5 2 2 2 2
-y 12 = 2 12 + 2y 12 - lx sy )12,

thus g lx l, Ny )l ana |28 + 1 ve nave

xn+yn 2
- 2 - 2 2 . 4”__qm4l
= yn" Zﬂxn“ + 2y |l 4~

+ 2  + 2 - 4 =0

and so we conclude that every immer-product space is uniformly convex.

REMARK: The notion of uniform convexity was .introduced by J.A. Clarkson
i 1936 as parnt of an endeavour to find a Langer class of spaces for
which certain Hilbert space results would remain valid.

PROPOSITION 5: Every uniformly convex space is strictly conves.
Proof. Let x and y be such that [[xll = iyl = ﬂfgzﬂ (=1, without Ioss
of generality). We must show x=vy.

Consider the constant sequences xn = x and Y, =y (n=1,2,...) then

X +y
Han + 1 (indeed Hxn” = 1 for all n) and similarly ”Yn” > 1, H—EE—E” -+ 1,

ﬁ"“__““SU—bY“nnifﬁrm_UUﬁVERiﬁy_WX;“YEW_;_OT_bﬁf’Wigzyg”EWE:?W“fﬁfWEII_ﬁ_ﬁﬁﬂ‘Bﬁ"“““”””'””””W'

we conclude that [[x-yll = 0 or x=v as required.
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The converse of this proposition is not true in general. Howewver,

for finite dimensional spaces the notions of uniform and strict

convexity coincide.

**FXERCISES: 1) Show that a strictly convex finite dimensional

normed linear space is uniformly convex.

[Hint: If llx{l,ly ll and “fﬂj{ﬁ_” + 1 but Il x -y % o theré exist
n " 'n 2 n 'n

subsequences (x )} and (y ) withjflx -y || 2 ¢ > 0 for some € > 0

and all k. Use the compactness of closed bounded sets to extract further

subsequences (x ) and (v ) with x + xand ¥y + y. Conclude

: . : k.
B ] ] J
+ . . '
that 1 = {lxll = llyll = HEEZH , but that llx-vll =z e, contradicting the strict
convexity of X.]

*¥2) {(a) Let X be the spéce of all bounded sequences and

let T be the 1-1 function which maps the sequence xo,xl,xz,...,xn,...

to the sequence x ,xl/2,32/4, ...,Vxn/2n, -

0

For each x ¢ X show that T(x) is a sguare summable segquence and conclude

that
=l = Il + lle=ll i
i
o .-2n 2
= Suplx [ + [ Z 2 xn]
n n n=1
defines a norm on X (indeed an equivalent norm to H.”m).
(b} Show that with this norm X is strictly convex.
(c) Show that X with the above norm is not uniformly
convex.

[Hint: consider the sequences (gn) and (Yn) where

= 0,0,...,0,1,1,...,1,0,}0,.;.
1 ‘ ]| }
first n a block of
terms zero 1 one's.

1

and 5-Z-'n - §n+1.



Before proceeding to our main result on uniformly convex spaces we need
the following lemma and its corollary.

LEMMA &: If (X,I.0) <8 a uniformly comvex normed linear space and (t)
18 such that Iftnll =+ 1 cmd“in;ri“" +~ 1 as n,m + =, then (tn) is
Cauchy sequence.

Proof. Assume (tn) is-not a Cauchy sequence; that is, for some €5 > O
and each N € N there exists a pair of indicies N and m both greater
than N with th -t |l 2 eg. (Otherwise, for each ¢y > O there would
exist an N ¢ N Nsuch that ”tn-tm” < €g for all n,m > N and so (tn)

would be a Cauchy sequence.) Since DM > N we have Ny and.mN +

as N + = and so

t -+t
” N mN”
e If, Te_ Il ana + 1 as N + =, by the assumptions on (t_).
nN g 2 n

Now, let Xe = tn and Yy = tmN (N=1,2,3,...), then

N
+
l]lel ' f!lel and ”XN—;E” + 1 as N+ =,

So by the uniform convexity of X we must have
”XN"YN” > 0, but “anyN” = th -t Il 2 g for all ¥ ¢ N, a contradiction,

N
showing the assumption; (tn) is not a Cauchy sequence, must be false,

'
Corollary 7: If (X,.I) Zsa uniformly convex mormed linear space and

Z 2,
(z) Zs such that lz ll + k and ”—%l +k as n,m +~ =, then (z_) ig a

Cauchy sequence.

Proocf. If k=0 then z + 0 and the result follows. Thus suppose k#0

t + t
=5 + 1 as

n,m + = and so, by lemma &, (tn) is such that th—th + 0 as n,m + =,

and let t = z./k, then (tn) is such that th” + 1,

But,

| -
lz -z = Xt -t |

S0 ”?nrzHH -~ 0 as n,m + = and we conclude that (zn) is a Cauchy

sequence as redquired.



105.

THEOREM 8: A closed convex subset of a uniformly comvex Banach space
eontains a unique best approximation to every point of the space.
That is, every closed convex subset of a uniformly convex Banach
space is a Tchebyscheff subset.

Proof. Let xp be a given point in the uniformly convex Banach space

(Xx,I.1) and & < X a closed convex subset. If d = inf lla - xgll , then

there exists a'sequence of points (an) of A guch that ”an—x0“-+ d,

further, by the convexity of A, %(an+am) € A s0

= -
as<lita +a) - xJ
s;”%(an—xo)” + H%(am—xo)” (by the triangle inequality)
+ 54 + kd
i.e. H%[(an—xo) + {a —x )1l > a.
Thus, by Coxeollary 7 above, (an—xo) is a Cauchy sequence, i.e.
H(an—xo) - (am—xo)ﬂ = ”an—amﬂ + 0 as n,m + = and so (an) is itself

a Cauchy sequence. But X is complete, hence, there exists a, € X

such that an -+ ao, further, since A is closed a0 € A. Whence,

d<la x|l <lla-all +lla x|l *+0+dasn=+w®, solla~xil = d and
00 n n 0O

0 0°0

a, is a best approximation to g from A. ‘That this best approximation

is unique follows immediately from Proposition 5 and Theorem 3.

Best approximations from subspaces, particularly of a Hilbert space.

We have already encountered this situation in example (V) on page 91,
where a solution was obtained (descent from vertex to vertex algorithm)

. . n
for the case of a one-dimensional subspace of 2m .

We begin with an observation (due to Pt&k in 1958) that a, i8 a best

nppwnw'mntv'nw to.x from.-the gybspagg_aﬁgﬁmthg_ngymgdiiﬂgwpacg_.,_.._._n._..______.....

. 2f and only if onmaO” §§”(xo—ao)+laﬂ for all a € A and X ¢ R.

That is, if and only if Xg~a, is orthogonal to each element of A in the
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generalized sense of Exercise 1) (ii) on page 22, {(To prove this
observation it suffices to note that - 8, + Aa is an element of A
{as A is a subspace) and that for each A ¢ R every element a' of A
a' + a
G

may be written in this form by taking a = — Y -

So, ”xo - aGH < ”(xo - ag) + Aall ﬁ’”xo— aDH < HxD - a'll for ali
a‘ € A.
ﬁ'ao is a best approximation to
%, from A.)
Intuitively, we may interpret this observation as: A best approximation
to %y from A is, in the appropriate sense, the foot of a perpendicular

from %, to the subspace A.

0
3

™ ~——-— best approximation

Since a subspace A is necessarily a convex subset, in the case of
an inner-product space, if a best approximation from A to X, exists
it must necessarily be unique [Example 1 on page 100 and Theorem 3]

and the above observation may be restated as follows.

PROPOSITION 10:  For an imner-product space X, a, 18 the best
approzimation from the subspace a to x if and only if <x, - a; a> =0
for ail a € A&,

This follows from exercise 1(ii) on p.22, where you were asked to
show that in an imner-product space the generalized notion of

orthogonality nse above corresponds to the usual ome: x is orthogonal

to a if <x,a> = 0. For completeness we now prove this.

<x,a> = 0" 1f and only 1f =il < llx + rall for all A e R
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