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CIf <x,a> = 0, then we have
Ix + Adl? = <x + Aa, x + Aa>

= <x,x> + 2) <x,a> + AZ<a,a>
lxll 2 + 2%l all2

Hxl % (as A2all? = 0)

v

and so, taking square roots

Iz + Aall =z lIxll as required.

1f, for all A we have llx + rallz §xll, then squaring and using the

definition of the norm we alsoc have
<x + Aa, % + Aa> > <x,x>
or expanding the L.H.S5. and cancelling
A2 <a,a> + 2\ <x,a> = 0.
Thus fo: A > 0 we have
<x,a> 2 %) llall?

Letting A + 0+ gives
<x,a> z 0

while A + 0- gives
<x,a> £ 0,

and so <x,a> = 0 as required.
EXERCISE

Let X be C[-1,1] with inner-product

1
<f,g> = J f{x)gltldt.
-1

Show that in X the best approximation to fﬂ(t) = t2 by a function of the

form g{t) = at + b is given by go(t) = aot + bD where ag and b0 are such
that

1

J (t3 -at?2=b t)dt = 0

0 0

-1

and
T2 _
J l(t - ant - bo)dt = 0

Hence, find 9q -
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From the example on page 102 and Theorem 8 we have:-

PROPOSITION 1l: If A is a closed subspace of the Hilbert space X, then

A contains a unique best approximation to sach point of X.

Since finite dimensional subspaces are always closed (Exercise 1

on p.78) we have as a corollary.

PROPOSITION 12: If A is a finite dimensional subspace of the Hilbert

space X, then A contains a unique best approximation to each point of X.

*EXERCISE: Since finite dimensional subspaces are always complete,

by examining the proof of theorem 8 show that the assumption "X is a
Hilbert space" in the above proposition may be replaced by "X is an inner-
product space". That is: every finite dimensional subspace of an irmer-

product space is a Tchebyscheff set.

By using the characterization given in proposition 10 we can obtain an
explicit expression for the best approximation in proposition 12.

PROPOSITION 13: If {el,e ,...,en} 18 an orthonormal basis* of the finite

2

dimensional subspace A in the Hilbert space X, then the best approximation

to xg from n is
n
a9 = L grep”ey
i=1

Proof. ILet ay be the best approximation to Xq from A. Then, since

{e_,e

ye..:€ } is a basis for A we have
1°72 n

n .
a. = X o.e. for some scalars o, ,0_,...,0 .
0 o 13 1'72f “n
l:.'

Now, by proposition 10

< Yomao_a == 0 for all a A

* That is, the span of 81’82"
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In particular then, for each j=1,2,...,n.
Ly > =
.yo ao,ej 8]
or
n
< - > =0.
XD ; izl uiei,ej 0
Expanding gives
n
< > - < > =
xo,ej izlai ei,ej o

1 if i=§
0 if i3

Using the orthonormality of the basis L<_ei,e{> = {
we therefore have

<x ,e>-0d, =0
073 ;|

- < :
or cxj %, ,ej>

Substituting into the expression for a2, gives the desired result.

EXERCISE: Give a direct proof of Proposition 13 by showing that

t 2
xg = I el
i=1

is minimized if and only if u, = <:xo,ei> .
EXAMPLES

i
(1) In Cl-w,w] with inner product <f,g> = J flx)g(x}dx it is easily
™

1 . .
checked that the set B = {73?, /% sin x, J% cos X, /%‘Sln 2%, /% cos 2x,...}

forms an orthonormal set thus, the best approxzimation, fgr to £ € Clr,m]

form the finite dimensional subspace spanned by the first 2n+l elements of B is

o Q.. .a I« LU
£lx) = 1 2 . + 3 + + 2n-1 * 2n
x) = 73? + 7;— gin x 7; cos X - “7¢f“‘51n nx Jx cos
il m
1 1 .
where aj = JE:. Fi{x)dx, o, = 7= fix)sin mx dx,
y-2 17— 2m——T—|
—TF —TT

m

3 J _ )
gy ng = /o Wf(x) cos mx dx {m= 1,2,...).
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We ought to recognise this trigonometric approximation as the truncated

‘Fourier series expansion of f£.

(z;) {1,x,x%,...} is a linearly independent set of functions in C[-1,1]
from which, using the Gram—Schmidt orthogonalization procedure with inner-—

1
product <f,g> = J f{x)g(x)dx, we can arrive at the orthonormal sequence of
-1

polynomials (the Legendre Polynomials)

{1/5 ,/_%‘x,... } y

Therefore, using the above results, we have for example, the best linear

approsimation to e® on [-1,1], in the sense that

i
J (ex—ax+b)2dx is a minimum, is y = a//f + B[//gij where
-1

1 exdx ezvl
o= = = =

2] &/7

1 ¥V

3 6

and B = o J xa dx = ' —

=1
[ .2_

S0 ¥y = l £ 5 + 3x] Je = g™

*(IIT) Let A be an nxm matrix and consider the problem of finding x e R such that

HA§ - ?”2 is é minimum, where b is a given vector of " (c.f. example (V)

of page 21}. Regarding A as a linear mapping from Rm to Rn we know from our
general theory that there exists a unique best approximation from the subspace
A(Rm) to P. Thus there certainly exists an X for which HA§-§”2 is a minimum.

Further provided A is 1-1 {which can only happen if m<n, i.e.the system of

equations is "over-specified") this x is unique, Ta _derive an_expression for

x we proceed as follows,

A

m
For any v ¢ R we have "Ag - @”2 ”A(§+z)~§“2, as x+y is an element of Rm,

or <Ax-b, Ax-b> < <A(x+y)-b, A(xty)-b>



expanding both sides we obtain

0 < 2 <aAx-b, Ay> + llayll?

T T
or <ATA§—A b, y» = —%”Ay”z for all y where A" denotes the

"transpose" of A.

Replacing y by Az we obtain

T T
<A"Ax - A'Db,z> = -&i|lazll? for all A € R and z ¢ R,

Letting A + 0 from above and below gives

<A Ax - A b,z> = 0 for all Z.
But this happens if and only if
ATA§ - ATE =0
and so we see that x is a solution as required if and only if

T
ATAg =AD

T . . . , R
[Note; A™A is an wmXm matrix and so maybe invertible, in which case the

unique solution is x = (A A) YATh]

Now consider the special case when

x = r A= 1 x2 and ? = v,
I . -
L 1 xq- I Y,

which corresponds to finding m and b such that

I
lax-pll 2 = Z (y,-mx,-b,)? is a minimum.

- i=1 1 1 1
This 48 the problem of finding the straight Line y=mx+b 0f Least squares
best it to the n data points (%1 5¥9) s (6,750 v oo s (x 4y ) and amouwnts

to the statistical problem of obtaining a Linear reghession on the data.

Substituting into our general solution we obtain

]
»
"
[y

11 ... 1 1% ﬁ 1 01 ... 1 A

1 %2 n Xl M S T B Yy

i—"l‘
Boaa s
W
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e n - o : n —ary
or " lizlxi ° . = ' “Zlyi
n oo, m | 'n
z X, Z X, . Z J'::i_yi
R S | .
i=1 t i=1 | i=1

which, provided the system is non-degenerate, has as its unique sclution

n iy 2 n Tl
.Zlyi.zlxi - Ix ) *5Yy
= 1=

Codi=1 Ti=1
b= D
n X, ¥, - X, v.
I e SR = M =
D
n o, n 2
where D = n Z X, - z .
AP | P )
=1 i=1

[Note, this same solution could have been obtained by equating to zero
n

the partial derivatives wr £t b and m of f(b,m) =.Zl (yi—mxi—b)Z.
However this does not establish that £ is a minimu;_at the solution
point. ]

EXERCISE: 1{a} (optional}

(Gram~-Schmidt orthogonalization procedure)

Let {bl'b2""'bn} be any linearly independent subset of an inner-product

space.

show that the set of vectors {ul,uz,...,un} defined inductively by

u, = bl/”blu’ u o= an/uan“ where
n-1
= —_ <
a, = by kgl b > Uy !

is an orthonormal set of vectors whose span is the same as that of'{bb;k=l,2,...,n}
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{b) The set of vectors {l,x,xz,;..,xn} is a basis of Pn[O,l] in the

1
inner-product space C[0,1] with <f,g> = ['fg. Use the procedure
0

outlined in {(a) to obtain an orthonormal basis for P2[D,l].
Hence find the best quadratic approximation p(x) to y = x3 on

[0,1], in the sense that “xa—p(x)ﬂz is a minimum.

2. Let C be a closed convex subset of the Hilbert space H, and let
x € H. Let x; be the best approximation to x from C [which
exists by Theorem 8, p.105 and the example on p.102].

For each y € C define £ : R-+R by

£(e) = llx - [txy + (1 - )yl 2.

By expanding this expression for £({t} out in terms of the
inner-product, show that f(£) is a quadratic in t and hence a
differential function.

From the observation that for 0 £ t <1 we have tx, + {l-tlyecC
and the definition of =xg note that £(t} attains its minimum value on
[0,1] at t = 1, hence conclude that £'(1) < 0.

Deduce that

<x - x5 y- xﬂ>‘s 0 for all y € C.
Show that the converse is alse true. That is, if X5 € C is such that
<x - x5,y - x0>>:so for all y e C, then x,; is the best approximation
to x from C.
By noting that a closed subspace is a particular example of a

c¢losed convex set, rededuce propostion 10 from this last result.
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SECTION 2. FIXED POINT THEOREMS AND THEIR APPLICATIONS

§0. PRELIMINARIES

Recall: X, € X is a fiwed point of the mapping f: X + X if £lx,) = xq.
Exercise: Let f£: [0,1] -+ [071] be a continuous real valued function of a
real variable, Show that f has a fixed point. [HINT: BApply the

intermediate value theorem of Bolzane to the function x b %) -~ x.]

Many problems in Pure and Applied Mathematics have as their
solutions the fixed "point" of some mapping £ and so a number of the
procedures in 'numerical' analysis and approximation theory amount to
obtaining successive approximations to " the fixed point of an appropriate
mapping. (For example, Newton's method for finding the zexo's of a
function may be interpreted in this way.)

"Popular" accounts of fixed point theorems and their applications
may be found in the following.

Courant and Robbins "What is Mathematics?", Ch. VIII.

and

Marvin Shinbrot "Fixed Point Theorems", Seientific American, January 1966,
reprinted in: Readings from Scientific American "Mathematics in the
Modern World'".

For an interesting discussion of fixed point theorems and their
applications consult:

Rosenlicht "Introduction to Analysis", Scott, Foresmand, 1968,
and

Hille "Methods in Classical and Fumctional Analysis", Addison-Wesley, 1972.

Because of their importance we will prove several fixed point
theorems for mappings of a complete metric space into itself. We will then
illustrate their use by giving one application, to the theory of ordinary
differential equations* A further application is given in an appendix (which
you may treat as optional, but which you should at least look through) .

We begin by briefly summarizing the necessary background material.

Throughout (X,d) will denote a metric space. That is, a set X for

which a metric function d: X x X + JR is defined and satisfies:

* The existence result established here will be assumed in the

differential equations course.
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i} da{x,y}

[\

0 for all =, v ¢ X%;
_ ii) d{x,y) = 0 if and only if x = y.
iii) [Symmetry] d(x,y) = d{y,x) for all x, v ¢ X.

iwv) [Triangle inequality] d({x,y) < d{x,z) + d(z,y) for all x,y,z2 ¢ X.

For example, if {(%,l.l} is a normed linear space, then d(x,y) = lx-vy|
defines a metric on X -~ intuitively we think of d{(x,y) as the "distance"
between the two points x and y.

A sequence (xn) of points of X is convergent (to x) if d(xn,x) + 0

as n + = and is a Cauchy sequence if d(xn,xm) + 0 as both n and m = =,
The metric space (¥,d) in complete if every Cauchy sequence is convergent,
For example, any (norm) closed subset of Banach space (X,d) is complete
with respect to the metric dix,y) = [x-v|.

A metric space (¥,d) is {seguentially) compact if every sequence
(xn) of points of X has a subsequence (xnk) which is convergent (necessarily
to a point of X). For example, any compact subset K of a normed linear
space forms a compact metric space (XK,d) where the metric is defined by
d(x,yv) = lxv| for all x,v € K.

If (X,d) i1s a compact metric space, then it is complete, and every
continuous function f:(¥,d) + R achieves its maximum and minimum

on X.*

§1 FIXED POINT THEOREMS

We will be interested in mappings T: (¥,d) =+ (X,d) which are of the
following types.
i) Nov-expansive, that is; d(Tx,Ty) $ d{x,y} for all x and y € X.
ii) A contraction, that is, d(Tx,Ty)(é)d(x,y) for all x,v € X with x % y.

iii) A striet contraction, that is, for some k with 0 = k(é)l .
d{Tx, Ty} = k d(x,v) for all x and y € X.
Clearly, T a strict contraction ™ T a contraction = T is non-expansive.
EXERCISE, give examples of mappings from the closed interval [-1,1] into
itself which show that in general none of these implications can be

reversed.
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Before turning to the question of existence, we establish the "unigueness"
of a fixed point for a contraction (and hence also for a strict contraction) .
For many applications, uniqueness of the fixed point is almost as important

as existence.

THEOREM 1. ILet (X,d) be a metric space and T: X + X a contraction

mapping, then T ecan have, at most, one fixed point.
Proof. Assume both Xy and X, are fixed points of T, that is,
T(xl) = %; and T(X,) = xp. Then,

d(xl,xz) = d(Txl,Txg).

Further, by the definition of a contraction, either x, = x or

d(Txl,sz) ; d(xl,xz), and so either

1 2
or
Since the second conclusion is impossible, we must have X =X, and so T
cannot have two distinct fixed points. B

EXERCISES: (1) By means of an example, show that the conclusion of

Theorem 1 will not, in general, be true for non-expansive mappings.

[Hint: Let X = {z ¢ C: Izl £ 1} and define T: X+ X by Tz = z. That is,
T is the reflection of the unit disk about the diameter Im z = 0.]

\
W,

\ 4

(2) et (X, lf-ll) be a normed linear space and T: X + X be a
linear mapping (that is, T(x+Ay) = T(x) + AT(y) for all =x, v € X and
A € R). Find an "obvious" fixed point of .

Define the "norm" of T to be

*
loll = inf{m: l|7xll < wllxll for all x e x}.

if [Tl < 1 show that T has precisely one fixed point. Show that this
need not be true if |[H| = 1.

*You might 1like to try proving the important observation of Banach, that |7l de-
fined in this way is indeed a norm function for the space of all bounded linear
mappings from X +to X. Recall, a linear mapping T 4is bounded (or
continuous) if Tl < =,
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THEOREM 2 (Banach's Fixed point Theorem) :
Let T: X + X be a strict contraction of the complete meiric space

(X,d) into itself, then T has a unique fized point in X.

Proof. Let %k e [0,1) be the "Lipschitz" constant such that
d(Tx,Ty) < kd(x,y) for all =,v ¢ X.

Take any point x; € X and inductively construct the sequence of

points
X, = T(xl)
Xy = T(xz) = Tz(xl)
. _ m3
X, = T(xa) = (xl)
x g = Tlx ) = T (%, )

[=<]
We first show that {xn}n_ is a Cauchy sequence in (X%,d).

L

Thus, without loss of generality, take m <n (m, n € N), then

m—1 n—1.
d(xm, xn) = d(T (xl), T (xl))

< xa(r" “(x.), Tn_z(xl)}

1

m—3 n-3

(xl), T (x.))

1

<™ latx, "))

— P e -TT—
<™ Uatxy, T + alrx)), 12600 . T am " ey,
T () )

{by extended application of the triangle inequality)

sgkm-l{d(xl, T(xl) + kd(xl, T(xl)) + kzd(xl, T(xl)) + ...+

KL g (0 T}

{using T 4is a strict contraction)

S KT e r e R L+ KT Ak, Tix).

Since 0 <k < 1,

1+k+k2+ ... +k "< ) kj—lfk

J=0
(sum of an infinite geometric progression),

whence



d (=

C'l(xm, xn)gl—k L

T(xl)) eoe (F)
+~ 0 as m (and hence n) =+ oo,

Thus {xn}:=l is a Cauchy sequence, and so, by the completeness of (X, d).

there exists x. € X with x =+ x .
0 n 0

We now shaw %, is a fixed point of T.

Now d(xo, T(xo))=€ d(xo, xn) + d(xn, T(XD))
< d(x,, x ) + kd(x , X ) (as x = T{(x 1}
0 n n-1 0 n -~
=+ 0 as xn, xn-l -+ XD
whence

d(xo, T(xﬂ)) =0 or

T(xo) = Xgr
and so, X, is a fixed point of T.
That Xg is the unique fixed point of T has already been established
in Theorem 1. L

Almost as important as the result itself is the "econstructive" nature
of Banach's proof. Starting with any point x; of the space the successive

iterates of %y under T ; Txl, szl' T3x1, ..., converge to the fixzed

point X, of T. Further from the step (*) of the proof we can derive an

easily evaluated estimate for the error in the m'th such approximation:

d(Tm(xl), xp) = dlx .

xo)

= limit &
;ﬂi (xm+l
m

k
ST dleg, Tey)) o by (9)).

. X))
n

- . m m(d({x;,T(x))
That is, a (xl), xo) <k [——-—-—-—1-—~l _—— .

At each iteration the error is decreased by a factor of k (<1, by
d{xy,T{x;))
1 -k
of course, -easily evaluated for any particular choice of Xy -

assumption). The constant in the error estimate is,

EXERCISES:
{1) Let f£: [a,b] +JR be such that £{a) < 0 < £(b), f' exists and is
continuous on [a,b] and . +there exists constants m, M with

D<m< £'(x) < M,
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(1) (cont'd)
Show that for a suitable choice of constant k the mapping g defined
by g(x) = x - k £{(x}) is a cvontractiomn on {([a, b], dl)'
[Hint: Apply the mean-value theorem to show
g(x) - gy} = {x - y){1 - kf'(2)), for some =z e (x, y).]

Hence, conclude that £ has a unique zero in (a, b).

{2) Let a €JR be such that la - l] < 1. Show that the mapping £
defined hy
fix) =5{@ + 02 - 1+ a)

is a contraction on X = {x: |1 + x| < |1 - a|} with respect to the
usual metric. Hence conclude that a has a unique square root in X.
[REMARK. This result remains valid when a is an element of a Banach
algebra (that is, a Banach space (X, ||.ll}) in which a multiplication
xy 1is defined and satisfies [lxvll <Ixllllyll}). In such spaces it plays
an important role by establishing the existence of scquare roots for

certain elements.]
The remaining results indicate that by strengthening the assumptions

on the domain of T it is possible to relax the requirements on T.

THEOREM 3: Let (X, d) be a compact metric space and T: X - X a con-
itraction (not necessarily strict) from X into itself, then T has a unique

fizmed point in X.

Proof. Unigqueness has already been proved in Theorem 1, we therefore need
only establish existence.

Define ¢: X + [R by
b{x) = d{x,Tx).

We begin by showing ¢ is continuous.

To see this, give & > 0 we note that

[a(x, %) - d(Y;TY)I

o (x) - ¢y ]

[a(x, ™) - d(Tx,y) + a(Tx,y) - dly,Ty) |
< |atx,7x) - a(mx,y)| + |atmx,y) - dly,Ty) |

< d{x,y) + d(Tx,Ty)

L 2d{x, ) {as— T is_a contraction)

< E provided dix,v) < § = g—.



Now since ¢ is continuous and X is compact there exists x, € X such that
¢(x0) £ ¢(x) for all x ¢ X (that is, ¢ attains its minimum at Xg). We
show that X is a fixed point of T. Since ¢(xo) £ ¢(x) for all x € X,

taking x = Txﬂ we have

A

¢(x0) ¢ (Tx,)
or d(xo, Txo) < d(TxU, T(Txo)).
Now if x; is not a fixed point of T, that is Txy % xp, then using the
definition of a contraction we have
d(xo, Txo) = d(TxO, T(Txo))
g d(xg, Txg)

which is impossible, and so we conclude that Tx0

x  as required. B
REMARK: The above proof does not furnish an explicit procedure for
approximating the fixed point in the same way that Banach's Theorem did.

Nonetheless +the successive iterates of any point x, € ¥X; Tx T2x

1 1’
szl, ..., can be shown to converge to the unique fixed point x

1'
q-
What one cannot do is obtain the same type of precise error estimate

possible for a strict contraction.

THEOREM 4: Let (X,d) be a compact metric space and T a contraction of
X into itself, then, for any %y € X, the successive iterates

TX, szl, R Tnxl, ... conwerge to the unique fixed point of T.

Procf (Optional}.
Let x, be the unique fixed point of T.

0
+

First Note d(Tn+l(xl), Xy} = d(Tn+l(xl). ™ l(xo))

< AT (%), Tix))

- = : 1 0
it
= 4T (=), x.) for all n € M.
1 0

Thus, (d(Tn(xl), xD)):;l is a decreasing sequence of positive real numbers

and so converges to some limit @ = 0. It suffices to show o = 0, for then

n n n = : .
a(T (xl), xD) +a=0o0r T (xl) - Xy Now, (T (xl))n=1 is a seguence of

n
points of %, so by compactness, there exists a subsequence (T k(xl));—l

whichconverges tosome poimt—y &« X, and

e
dly, x.) = 1limit a(T {x,}, x.) = .
0 1 0
ko

If ¢ % 0D then v % % so
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a = d(y, xo) ; d(Ty, Txo)

= d(Tvy, xo)

e
= limit d(T(T xq}, xO)
koo
N+
= 1limit 4T (xl),xol
Lt

= .

. . . n
Thus o > d which is impossible. So o = 0 and T (xl) - xO. : |
In the next theorem we further restrict the domain of T to be a metric
space of the form (K,d) where K is a compact convex subset of a normed

linear space (X, lL.l) and d(x,yv) = lx - ¥ll.

RECALL: K c X is convex if the line segment joining any two points in K
lies entirely in K, that is, if x, v € X and X € [0,1], then
A+ (1 - A) vy e K.

THEOREM 5: Let X be a compact convex subset of the normed linear space

(x,ll.I1) and Zet T: K + K be a non-expansive mapping of K into itself
(that is, llTx - Tyll < llx - yll for all x, v € X), then T has a Ffized
point in X.

Of course, the unigqueness of the fixed peint can no longer be asserted -
see Exercise on page 3, or take T to be the identity mapping.

PROCF: Choose Yo € K and for each n € N let

Gn(x) = [E%ijyﬁ + [HEE) Tx for all x € K.
Firstly note that Gn(x) is a convex combination of the two points Y, and
Tx of K and so, since K is convex Gn(x) € K. Thus Gn is a mapping from
K into itself.

Further, for x,y € K we have

I

“Gn(y) - Gn(x)” ”YO + nTy - (yo + nTx) [ / (n+1)

n

= Hii-ﬂ Ty - Tx ||
< EEE- fy - %l (as T is non-expansive)

Thus G_ is a strict contraction ( LI l} and so, by Theorem 2 has a

-1
LLIVAT

unigue fixed point X in K.
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That is
L n
XSG )) =T Yy F o T TX,
and so
- = - Tx
*n Txn n+ 1Yt n+1 Txn n+1l 'n
Ther W Tyl

Now, by the compactness of K the sequence (xn) has a subsegquence (x )

k
convergent to some point %) of K. Since T is continuous we have
Ix, - T 0 = Limitlx - 7x |
U i
1
< 1imi -
SHEEE T v - |
k k
S 1
= [lﬁﬂit — 1] HYD Txoﬂ
k
= 0
or x, = Tx and so x is a fixed point of 7. &

] 0 0

The above proof is taken from an article by Dotson and Mann in the
American Mathematical Monthly. It establishes a special case of the much
more general (and more difficult to prove) Schauder fixed point theorem
which states:

A continyous mapping of a compact convex subset of a normed

linear space into itself has a fimed point.

§2. AN APPLICATION -
the local existence and wniqueness of solutions for initial value problems

of systems of first order ordinary differential equations.

THE PROBLEM: For the simultaneous system of first order ordinary differential

equations
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dul _ 3
E_t__Fl(ul(t)r uz(t)r LA un(t)lt)
du, _

d—t——'Fz(ul(t): u?_(t)r - =7 un(tth)
du, _

T = Fn(ul(t), Uy (t), ..., un(t),t)

with the initial conditions

ul(tu) =1

10
Uy (tg) = 1,
+ =
un( 0) Uno J

We are interested in conditions which will ensure the existence of a unique

solution

ul(t) = ¢1(t)
uz(t) = ¢2(t)
un(t) = ¢n(t)

"locally" in some neighbourhood of the initial point +t,; that is, for

]

te (tyg - h, £ty + h), where h is some, sufficiently small, strictly

0
positive number

REMARK: In the special case n = 1- we are of course considering the
unigueness-existence guestion for the initial value problem of a single
first order ordinary differential equation - for a discussion of this simplest
case, which might help you to understand the general case considered here,
you might look at

Boyce and DiPrima, "Elementary Differential Bgquations and

Boundary Value Problems” (Wiley), sections 2.11 and 2.12.

The congideration of a system rather than a single eguation introduces little
in the way of extra work or difficulty and is worthwhile for at least two

reasons;—

(i} Very frequently in applications, systems of equations arise naturally.
This would be true for example in: electrical circuit theory, engineering
control theory, the rates of chemical reactions and ecological or

physiological models;
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{ii) An n'th order ordinary differential equation can always be replaced by
a system of n simultaneous first order eguations.

-Given the n'th order equation

du _ [ du @2a a7, t] )

T T LUy T STEy e T,

ach at’ dc 4: (0-1)
with initial conditions [ evnnn (2)

n-1
- da - d "u _ (n-1)
u(tD) = Uy 3% (to) =ul, ... 1) (tD) = u,
at )
let u 4 o <9 o _d% u_ﬂ(n;)u
1 T2 T dat’ T3 a2’ Tt T qe -1 !

then (2) is eguivalent to the system

du
-
FE- =W
duz _
a3
d un
raie f(ul, Uyr wens un, t)
with the initial conditions
ul(tol = uO
—_ 1
uz(to) = u0
{n-1)
+ =
un( o Yo

So by establishing existence-uniqueness for a system of equations we are, as

a special case, establishing the result for n'th order equations.

NOTATION: It is convenient to rewrite (1) in vector notation. Let
u, ()
w_(E)

i
il
[§=
=
Il
e e N

u {t}
n
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Thus, the k'th ‘"component" of u is the function uk(t).

Let us also agree to write

X
du [_
=1
T J ul(t)dt
o
du2 X T
d 2
EE. for t ' J u(t)dt for uz (t)de
dt ~ 0
. 0] :
dun x
B [ e |
0
etc.
Then (1) may be rewritten as
dy _ -
'a"'_i:—- - F(g(t) rt); g-(tﬂ) - 1_;10 ----- (l)

A SIMPLIFICATION: Observe that under the transformations

*
x =t - ty, vx)=ulx+t)) -y

and fly(x), x) = Fly(x) + 4, % + tD)
the system (1') becomes

d
== £y, ®, yo@=0 ... (1.

Henceforth, we will assume that our system has been reduced to this form with

initial point 0 and all initial values also 0.

INTRODUCTION OF AN APPROPRIATE SPACE:

For any real number h > 0, let us dencte by Xh the set of vectors
vy (x)
yx) = :

y (x)

all of whose "component" functions yk(x) are real valued continuous mappings

on [-h,h].

* here, subtraction has the obvious meaning.
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That is

X, = C[-h,h] x C[-h,h] x ... x C[-h,h]

n "factors"

It is readily seen that X is a vector (or linear) space with addition and

h
scalar multiplication being defined in the obvious way, and that

Slesye- R

Iyt = oy Jax ||yk||Dn = k=1,g?%..,n IﬁTéﬁ lyk(x)l

defines a norm on Xh with respect to which it is a Banach (or complete)

space.

FORMULATION AS A SYSTEM OF INTEGRAL EQUATIONS:
Henceforth, we will assume that each of the functions fl' gr +e-
_ n
is a continuous mapping from (A,dz) into R, where A is the

"{n+l)-dimensional cube" of “side length" 2a > 0:
n-+1
A= {(yl,yz,...,yn,x) e R : fxl < a and |yk|=£ a for k=1,2,...,n}.

For each h € (0,a] let M = {y ¢ X]

) ”g” < al,

h
then it is readily verified that Mh is a c¢losed subset of Xh and so
Mh is a complete metric space with respect to the metric

d(y,z) = lly-zl.

Using the assumptions on each fk' motivation for the definition of Mh
comes from the observation that for vy e Mh the composite Ffunctions
fk(y(x),x) are continuous functions of x for |x| s h. That is for

Ely(x),x) ¢ X

ye Mh, he
LEMMA ; ¢ € Mh is a solution of (1") if and only if
x
¢ {x) = I £lg(t),t)de - (3)
0
Proof. (<)
Since, by the above observation, for k = 1,2,...,n, fk(@(x),x) is

a continuous function, the fundamental theorem of calculus applies to give

that the R.H.S. (and hence, also the L.H.S.) of
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X
¢k(x) = J fk(Q(t).t)dt
0
is differentiable and
ag
kE _
E"— fk(tE{X),X).
That is,
dg _
T £l (x),x) .
It is also clear that
0
(E(D) = J ?(t)dt = 9:

and so (1"} is satisfied.

=)

Again the above observation shows that, if

d¢k
= - £, (8(x),x)
and ¢k(0) =0 for k=1,2,...,n, then both sides are continuous and so
by the fundamental theory of calculus
>
fodd,
0
X
f

= | £ (d(t),t)at.

X
Thus, d{x) = J f(@(t),t}dt. =
0

CPERATOR REFORMULATION:

For any h €{0,a] define the operator (mapping) T: Mo+ X by

T) (x) = | £0P(E),t)dt.

oN——®

Then the above lemma may be restated as ¢ € M is a solution of (1"} if and

h
only if

b = T4,

that is, if and only if ¢ is a fixed point of T.
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Thus, to establish a local existence unigqueness theorem for {1"), and
hence (1), it suffices to show that for a sufficiently small h, T has a
unique fixed point in Mh. In turn, this will follow from Banach's fixed
point theorem provided we can find a value of h such that T is a striet

contraction of Mh into itselkf.

We first show,
FCR h SUFFICIENTLY SMALL T MAPS Mh INTO ITSELF:
Now, since for %k =1,2,...,n, fk{g,x) is by assumption continucus on
the compact set A (Heine-Borel Theorem), there exists m > 0 such that
]fk(g ,x)l s;mk for all (g, x) £ A.

Let m = Max{ml,mz,...,mn}, then for Y e M

< h
X
eyl = IIJ £p(e)  t)atl

i

= [T m dt[ (by the definition of [ -|})
0

= mel

= mh.

Thus, provided we choose h < we have

H

1|Tty|| < a or TP € M, .

The final step is to choose h so that T is a strict contraction.
Regretably this is not, in general, possible without further restricting
£. We will assume that f satisfies a Lipschitz's condition in the

first variable, that is, for some KX > O

|£, (v, ) - fk(¥2,x)| < My, -yl

*
for (yl,x)jyz,x} € A and k=1,2,...,n0.

*This is equivalent to requiring each of the Ffunctions fk satisfy a

Lipsehitz condition (K —is the maximim 6f the LipSchitz constants for

the individual fk). A sufficient (and often used) condition Ffor this
of

to happen is that 555- be continucus in A, as may easily be seen upon

i
application of the mean value theorem.
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Under this assumption we have for any ¢, | ¢ Mh

i

I, -z,

X
o HJ £ (t),e)dt - J E(p(t),t)atl
N 0

0

X
= M Max £ o(p{r),t) - (p(t),t))at
k=1,2?}.{.-,n leQl Ii e lt |
x
< Max Max £ (a(t),t) —-L (p(t),t)|dt
k=1,2,...,n |x|<h IJ 5.4 Kt at|

X
< ID}ng@ IJ‘ kg -y llat]
0

= xallp -yl

1 . . .
and so, for h < ' T 1s a strict contraction.

. 1
Thus, taking 0 < h < Mln{a, %} i} we have proved:

n+l

n . -
THEOREM: If f£: A clR + R 1is continuous on the "eube"

a={{y, 2): |x| <a, Iyl < al and satisfies the Lipschitz condition
- = -
!ig(glr x) = £y, 0l < thf1 y Il

~2

on &, then there exist h > 0 such that the initial value problem

dy . -
T = Elylx). x), y(O) =0

has a unique solution for -h < x < h.

REMARK: From the proof of Banach's fixed point theorem and the remarks

following it, for T defined by

X
¢ (%) = f £(¢ (£}, )at
0

and starting with any initial "guess" ¢0, the sequence of iterates

dgr Tdgr TEQO, ceer T, o
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form successively better approximations (known as Picard's approximations)

dy _

to the solution of Ix g( (x),x), v(0) = 0.
BEXERCISES :
(i) Transform the initial value problem u' = u, u{0) = 1 into the
form y' = f(y) y(0) = 0.
{ii) Obtain the first five successive Picard approximations to the seolution

(iii)

(iv)

of y' = f(y), y(0) = 0.. Start with the initial approximation
¢, (x) = 0.

Show that f is continuous and satisfies a Lipschitz condition.
Determine a range of x-values for which tha above theory
guarantees the Picard approximations converge to a unique solution of

y' = f(Y); Y(O) = 0.

Using the error estimates obtained in the discussion following the
proof of Banach's fixed point theorem, determine the maximum number
of Picard approximations which need to be computed if the solution is
to be approximated with an error of no more than 0.01 throughout

the interval determined in (iii).
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APPENDTIX

IMPLICIT FUNCTIQHNS

Qur aim is to illustrate the power of fixed point Theorems hy proving,
via the Banach Fixed point Theorem, the following simple
IMPLICIT FUNCTION THEOREM.

Let x, y ¢ R be related by

(1) y = ax + R(y) where R(0) = 0 and for [y| <7

R satisfies the Lipschitz Condition
[R(y1) - R(y2)| <k|y1 - va

where k 18 a fimed consgtant with 0 < k < 1,
Then there exists a unique continuous funection £ with £{(0) = 0 and

domain D = {x: |x| <p < %é%—r} such that y = £(»), all x € D.

i.e. the relation implies y is functionally related to x at least in a

neighbourhood of 0.

Proof. If a solution exists it will belong to the subspace X of C [-p, p]
consisting of those functions g with g(0) = 0 and Hg"m = Max |g(x)| <no.

EIR

with the induced metrie, 4 _(g. h) = 11‘11—1\%J |g(x) - h(x)] for all g, h ¢ X.
*

It is easily verified that (X,d_) is a complete metric space.

Further chserve that f is a solution if and only if

T(f) = f where T is the operator on X defined by
T(g)(x)

ax + R{g(x)} for all |x|v< p, g € X.

Thus, provided we can show T is a striect contraction mapping into X, the
desired result will follow upon invoking the Banach fixed point Theorem.
But [[T(g)ll_ < |a||x] + xlgli_ < |a]|p] + kr <r by the choice of

p[< %é% r] so T(g) ¢ X.

Further dm(T(g), T(h)) = Max IR(g(x)) - R(h(x))|
. x

<k Max |g(x) - h(x)| = kd_(g, h),
X

"""""" —go—P-is—a-strict—contraction—and—the-resulit-follows.

Application: TIHVERSE FUNCTION THEOREM

Take £ e C (xg - 11, Xg + v1) with £'(xg) # 0. If £{xg) = yp we aim to
show there exists a unique function g, domain D = (yg - ra, yg + r3) for
some vy > 0, such that if y = £(x) then x = gly) all y « D.
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i.e. £ is invertible on a neighbourhood of xy.
It suffices to show that such a g must satisfy a relation of the form (1).
The following reasoning is due to édouard Goursat (1858 - 1936} iam 1903.
f(x) as
£ (xg) Hy - yg) - R(x)
£1(xp) TIE(x) - Flag)] - (x - xg).

This is of precisely the right forwm, and further, from the continuity of f'

Ve rewrite y

11

X = Xp

1

where R(x)

there exists rz e (0, r;] such that

ClEY ) - Frxg)| < BlE'6rg) all x with |x - xq] < rs
whence, for xj, %3 € (xp - r3, ®p + r3) we have
|R(x1) - R(xp)|= |£(x1) - flxg) - (% = x2) f'(xo)llf'(XQ)l_l

= -1

£'(xp)

X1
I [£1(x) - £'(xg)1dx
X2

E3 -1
gj [£7(x) - £'(xg) |dx] £ ()]

g

<3|t Gl |3y - x| [£1 Gegd |7

by cholce of rg
and so R satisfies the reguired Lipschitz condition
[R(x;1) - Rixp) < %lx; - xp].

Thus an application of our simple implicit function Theorem gives a unique

h such that

I

%x - xg = h{y - yg) for all x with |x - x0|.€§§2 = max {rg, %|f'(xp)|rs}

whence x = g(y) = xp + h(y - yp) as required. .

REMARKS: (1) The proof of our simple implicit function thecrem may be trivially

extended to cover the case where R = R(x, y) provided the Lipschitz condition
|R(x1, y1) - R(xa, y2) < k%3 - x| + [y1 - y2ll, 0 < k <1,

is satisfied for ]xli, |le < ry and lyll, lyzl < rp; some Ty, rp > 0.

(2) Under appropriate assumptions on F, Goursat's arguments can be

combined with this extended implicit function Theorem to obtain a version of ihe

usual implieit function Theorem:
Fix, y) = 0=y = £f(2) some function f.

The calculations are however considerably more involved.
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{3} Both versions of the Implicit function Theorem considered remain
valid if x and y are allowed to be elements of a Banach algebra, the only
difference in the proof being the replacing of ]-I by the norm in the appropriate
places, while the Inverse function Theorem extends to cover complex valued

Tunctions of & complex variable,

Collateral Reading.

Essentially, the above considerations were extracted from the two books
of Einar Hille, "Analytic Function Theory" Vol. I Gin, Boston, 1959 and
"Methods in Classical and Functional Analysis”, Addison-Wesley, Massachusetts

1972,

b}

EXERCISE. .
Let x and y be related implicitly by

x3 + ¥y o+ x - y = 0.

Establish the existence of an r > 0 and function f € C(-r, ) with £(0) = 0

such that

y = £({x) for all x € {(-r, r).
[Hint: Consider T: X + X where
T(g)(t) = t +t3 4 g¥3(t) for all g ¢ ¥,

a suitable subspace of C(-r, r).]
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SECTION 3. BAIRE'S CATEGORTIZATION OF METRIC SPACES

0. Heuristic Outline

In 1899 the FPrench mathematician, René Baire, developed a method for
classifying the "size”, in an appropriate sense, of subsets in a metric
space. Intuitively we may consider subsets divided into three categories

(for this reason, the work is frequently referred to as "Baire's Category*

theory"):

"minute" - (these are formally defined below and referred to as nowhere
dense sets)

"small® - (these are those sets which can be constructed in a suitable way
from minute sets. They will be subsequently termed meagre sets.
In much of the literature they are also known as sets of the first
Baire category, or just first category.)

"large" - (a set which is not "small" is "large". These sets are often said

to be of the second (Baire) category. We will refer to such sets

simply as non-meagre sets.).

Baire's category theory has proved to be a valuable tool for the establishment
of "pure existence results". That is, the existence of certain objects is
established by methods which give no hint as toc how these objects may be
constructed and so provide no specific example of such an object. (This
should be contrasted with the existence theorem for differential equations
derived from Banach's fixed point theorem. There, not only is existence
established but a method for constructing the solution, as a limit of certain
iterates, is provided - this is a "constructive existence proof'.}

To illustrate this use of Baire's category theory we will give one typical
application, originally due to Banach (1931); establishing the existence of
continuous functions which are not differentiable at any point. In essence
the proof goes as follows.

Using Baire's Category Theorem: FEvery complete metric space is non-
meagre, which is established below, we deduce that the space of continuous
functions C[a,b] with the uniform metric is a non-meagre set. We then
proceed to show that the subset D consisting of all continuous functions
which are differentiable at at least one point of the interval [a,b] is

a meagre subset. Since it follows from the formal definition of meagre sets

that the union of two meagre sets is again a meagre set, we conclude that the

*Not to be confused with the more recently developed algebraic notion of
categories.
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compliment of D in ([a,b], Cl[a,b]\D, is non-meagre (otherwise,

Cla,b] = (Cla,b]\D} U D being the union of two meagre sets would itself be
meagre, a contradiction, as we have already found it to be non-meagre}. But,
this complement comprises precisely those continuous functions which have no
point of differentiability in [a,b], and so the continuous nowhere—
differentiable functions constitute a "large" set. Certainly then such
functions exist. [Since a large percentage of Function theory is concerned
with differentiable functions, we may say, "the majority of mathematics deals with
a minority of functions.” This came as somewhat of a jolt to mathematicians,
though the ground had been somewhat softened by Cantor's researches into
infinite sets which lead to analogous and at the time even more revolutionary
conclusions. ' The mere existence of continuous nowhere-differentiable functions
did not come as a shock, earlier the German mathematician Karl Welerstrass

[1815-1897] had produced such a function, Ffor example the function defined by

(==}

fix) = z }E-ﬂip x},

n=110

where {rl} denotes the "distance" from r to the nearest integer, thus

3 1, _ 1 1, _1
{lZJ = {EZ- =7 {54 = 7 etc.
EXERCISE: {a) Draw graphs of }H_{an x} for m =1, 2 and 3. Hence,
3
construct the graph of
3
1
N ={3" x}.
n
n=1 3

Can you see why £(x), defined above, might prove to be

nowhere-~differentiahle?

*{b) Prove that the Ffunction f(x}, defined above, is continuous
on [0,1]

[Hint: Note that lﬁ-fﬂ? x} is continuous for each n,
10 1
and so deduce that fN(x) o= z — ﬂﬂn x} is a continuous
, n=110
function for each N. Finally conclude that f is con-

uniformly f as N =+ o, To do

this, note that Suwp [f(x) ~ £ (x| < ] lg
Ol n=N+110

tinuous by showing that fN

-]

**(c) (Optional) Establish that the function f(x}, defined above,
is not differentiable at any point of [0,1].
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** () (cont'd)

(Hint: For any r ¢ [0,1] find a sequence X <+ r such that

the appropriate difference quotients

E{x_) - £(x)
n

X = I

do not converge. You may find it useful to consider
numbers represented as decimals. A proof may be found

in Spivak's "Calculus".]

l. Baire's Category Theory

Throughout (X,d} will denote a metric space.

RECALL, a subset B of (X,d) is dense if its closure B is the whole of
"X - intuitively this means that the points of B are distributed "thickly"®
throughout the space, B contains points as near as we like to every point
of X.

Since an open ball consists of all points of X nearer to the centre
than some given amount, we may think of an open ball (and hence any set with
non-empty interior and so containing an open ball) as representing a "solid
or substantial lump of the space". BA set C whose closure contains an open
ball (that is, dint C # @) therefore has points which are "thickly" dis-
tributed throughout some "substantial lump” of the space. Such a set might
be thought of as being somewhere dense. This motivates the following

definition.

DEFINITION 1: A subset E of the metric space (X,d} is nowhere dense if

its closure has empty interior, that is, if int E = 4.

EXAMPLES: 1. In R with the usual metric the following subsets are
nowhere dense.
{a) Any set consisting of a single point;
(b) Any finite set;
(c) ™M the set of natural numbers;
2. In [R? with the euclidean metric the set of points on a
line is a nowhere dense set.

[As an EXERCISE you should verify these assertions. ]

In our subsequent work we will make use of the following consequence of

the above definition.

LEMMA 2: Let E Dbe a nowhere dense subset of the metric space (X,d), then if
G 1s any non-empty open subset of (X,d) there exists a point x € G and

r > 0 such that Br(x) c G and B (x) nE= g.
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