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Proof. Since the complement of a closed set is open, M = G n (X\E)

is

an open subset of X. PFurther, if M were empty we would have G E.E}

that is, the closure of E would contain the non-empty open set G

and so

it would have non-empty interior, contradicting the fact that E is nowhere

dense. Thus, M 1is a non-empty open subset of X. Choose any point x € M,

then x is an interior point ¢f M and so there exists r > 0 such that

B (x) c M.
r

Since by the definition of M we have M cG and M N E =@, we see that

Br(x) € G and Br(x) nE =@ proving the result.

O

EXERCISE: Prove the converse of lemma 1, that is: If E is such that, for

every non-empty open subset G of (X,d) there exists a point x € G and

r > 0 such that Br(x) c G and Br(x) NnE=@, then E is a nowhere dense

subset of (X,d).

[Hint: Assume E is not nowhere dense and consider G = int .7

Before proceeding to the next stage in the construction of Baire Categories

we must

RECALL: Following Cantor, a set A is said to be cowitable (or demumerable)

if there exists a one-to-one (1-1) function from A into the natural numbers

~ intuitively; "A has no more elements than there are natural numbers".

For example, the following sets are countable.
(a) The set 2 of all integers.
Consider the function £: Z-+ W defined hy

2Zn if n =0 Z o, -1, 1, -2, 2,
fin) = O T .
—{2n + 1) if n < 0. m o 1 2 3

(b) The set @ of rational numbers, that is numbers which may

represented in the form g- where p and g are integers

g >0 and p, g having no common factors. In this case,

the function

27 3P if p=o

P
f: Q.}_m: =
2 5 if P<O.

be uniquely
with

consider

(Verify that £ is 1-1.)

The following result is of subsequent impertance.
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PROPOSITION 3: A finite union of countable sets is itself a cowrtable set,

that is, if Al' AE' vy An are a finite number of sets each of which is

countable, then &

Al u Az U ... u An {zlso denoted by

n
U B, or U{Ai: i=1,2,...,n}} is a countable set.
i=1

Proof. (Outline} & 1-1 function £ from the union A into N may be

defined as follows. For each a ¢ A
: £i_(a)

i i
fa) =223 &

where ia is the smallest of the indices 1,2,3,...,n for which a ¢ Ai
a

and fi is a 1-1 function from Ai into N, which exists since Ai
& a a

is assumed to be countable. [l

NOTE: Whenever a collection of objects (which may themselves be sets) form
& countable set, we say that we have a countable "number" of objects. Any
collection of cbjects which are arranged in a sequence Eir Eyy Egy ..
form a countable set (consider the function fF: En ¥ n). Conversely, if a
collection of objects form a countable set A we can always arrange the
objects into a sequence. Iet £ be a 1-1 function from & into MW, then
take as the first object E, the element of A for which the value of £
is smallest. For the second objact E, select that element of A for which
f assumes its second smallest value, etc.

Henceforth we will assume that any countable number of objects have been

arranged into such a sequence.

We are now ready to state
DEFINITION 4: A subset M of a metric space is meagre if it is the union
of a countable number of nowhere dense sets. Thus M is meagre if and only
if there exist nowhere dense sets E;+ By, Eg, ... such that
M=E UE, UE;U ..., such a countable union will alsoc be denoted by

iti M= U E M= U = UE : .
writing o B . En or M {En n e M}

EXAMPLES: 1. If {B} denotes the set whose only element is the rational

number %u then {g} is nowhere dense in R with the usual metric.

Since the set @ of rational numbers is countable we therefore have that

Q = U {E} is a countable union of nowhere dense sets and so conclude that
Feg 9
=1

the set of rational numbers is a meagre subset of R with the usual metric.
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[Note: This example shows that while a meagre set is "small" it may nonethe-
less be dense, Thus, while a finite union of nowhere dense sets 1s readily
seen to be itself nowhere dense, a countable union of such sets, by definition

meagre, need not be nowhere dense.]

2. Since, in R2 with the euclidean metric, each line is
a nowhere dense set, we see that the set of all "vertical"” lines which in-
tersect the x-axis in a rational point, being a countable union of nowhere

dense sets, is itself a meagre set.

T
L
SRl w7

rational points

The next proposition is of importance for applications.

PROPOSITION 5: The union of a finite (indeed, countable) wmumber of meagre

sets i1s itself a meagre set.

Proof. Iet M=M uM U ... U Mn where each of the n sets

1 2
Ml’ Mz, ey Mn is meagre, that is for each i =1,2,...,n there are a
countable number of nawhere dense sets E,., E,., -.., E. , ... such that
il i2 in

=)
M. = U B, .
1 m=l 1m

Now, let E denote the collection of all the Eim for i=1,2,...,n

and m=1,2,3,... . By proposition 3,

pesed U vl U {Enl'Enz'En3""}

E = {E r---} U {E21IE2

117512%13 2%

being a finite union of countable sets is itself countable.

So,

[==]

E U U E = U E
M i=1l m=1 im EeE

jai

is a countable union of nowhere deligse &6t5, and we conciude that M ig a

meagre set, as required. O

We are now in a position to give an important theorem due to Baire and

Hausdorff.
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THEOREM &: If (X,d) 18 a complete metric space and M <18 a meagre subset
of X, then the complement X\M is a dense subset of X.

In proving theorem 6 it is useful to extract the following lemma, which is

of importance in its own right.

LEMMA 7 (Cantor's Intersection Theorxrem):

If (X,d) is a complete metric space and (Fn)z=l

of non-empty closed sets whose diameters tend to zero {(that is,

5 a nested sequence

F oF oF 2 ... 2F o ...
1= 2 "3 - n and

defl

diam P
n

supfd(x,v): x,v ¢ Fn} + 0 as n -+ «,

(=]

then the intersection of the F_ ‘s, N T _,
n n=]l n

contains exactly one point,
in particular it is non-empty.

Proof: For each n € N choose an element xn from Fn. Note, that since

the sets are nested we have x € Fm for all m < n.

We first show the seqguence (xn) is a Cauchy sequence. To this end,
given any € > 0, since diam Fn + 0, we may choose an N ¢ N such that
diam FN < g. Now, for n, m > N we have (by the above "note") that

= i < +
XX € FN and so d(xn,xm) = diam FN E. Thus (xn) is a Cauchy
sequence and so, since (X,d) is assumed complete, (xn) converges to some

point x € X.

We next establish that this limit x belongs to the intersection of

th F 's, ¥
e n or any n £ [N we have that the subsequence X0 Xn+l' xn+2,

still converges to x and consists entirely of points in Fn' Since Fn
is closed it follows that x e Fn. Thus, x ¢ Fn for each n and so
©
e L F .
x n=1L n
To see that x is the only point in the intersection note that if vy

is any point of the intersection, then both x and y belong to each of the
sets Fn. Thus 0 < d(x,y) < diam Fn for every n. Sinece, diam Fn = 0

we have that d(x,vy) =0 or v = x. ‘ (]

EXERCISES: 1. Show that the conclusion of lemma 7 may fail to hold if
either of the conditions

(a) each Fn is closed

(b) diam Fn + 0

is dropped, by giving, in each case, an example of a nested family of non-

empty sets with empty intersection.

*¥2, Prove the converse of lemma 7,that is: If in (X,d) every
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family of nested non-empty closed sets whose diameters tend to zero has
exactly one point in its intersection, then (X,d} is complete.

[Hint: Given any Cauchy seguence {xn) in {X,d), let Fn = {xk: k = nl.]

We now return to the

proof of thecorem 6. To prove the density of X\M in X we show that for

any X, € X and r

0 0 7 0, the intersection Br (xo) n {¥\M) is non-empty.

0

Since M 1is meagre, M = ng& En for some collection El' Ez' Ea, e

of nowhere dense sets.

By lemma 1 with G Er (xo), there exists x and r, » 0 such

1 1
0
that B_ {Xl) S B, (xg) and B (x;) n E; = @. Let F, be the closed

1 0
ball B _[x,] where =
Ty 1 1
of diameter at most 1 such that P1 c B

= Mil%rl,%}, then F is a non-emply cleosed set
1

U(XU) and F, nE = B.
Now apply lemma 1 with G = Br,(xl),
1
to obtain Xor Ty > O such that

r

B_ (xz) E-Br’(xl) and

2 1
B, (x,) 0 B, =f. Form F, = B .[x]
2 1 2
where r, = Mln{%rzrag}u then F,

is a closed non—empty set of diam-

eter at most % such that F, ¢ F

2 1

and F, n E, = M.

2 2

Next apply lemma 1 with G = Br,(xz),
2

r, » 0 such that

to obtain x 3

3!’
-.. etc.

Continuing in this way we construct

... such that

a sequence of closed sets F

reey B
3’ "ot
B, (x)) 2F, 2F, 2...2F 2 ..., diamF <—— and F nE =g for

0 oo n
all n.

By lemma 7, nC& Fn contains exactly one point, x® say. Since for each

n X € Fn we have that x ¢ B (x

P E = . T
r, and x & En (as 1! N @) Thus

D) n

X g“B;—TiaT‘ﬁ"TXVMT"“Eﬁﬁ“thé*prﬁaf~is“ﬁbmprétéf“‘ =

]

Corollary 8 (Baire's Category Theorem): The compliment of a meagre subset in

a complete metric space is non-meagre.
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Proof., Let (X,d) be a complete metric space and M a meagre subset of

1

X. Assume that M, = X\M1 is also a meagre subset of X, then by

proposition 5 we have M = M, UM, is a meagre subset of X. By Theorem 6

X\M 1is dense and so certainly not empty, but by definition

X\M = X\(M1 u M2)
= X\ (M; v (X\M;))
= X\X = g,
a contradiction, establishing that X\M1 must be non-meagre. ]

Before presenting exercises we illustrate the use of the above result
by considering one application the details of which are slightly more in-

volved than those called for in the subsegquent exercises.

3. Illustrative Application - the existence of continuous nowhere differentiable
Functions

We take as our metric space X the set of all continucus real valued

functions on some non-empty closed bounded interval [a,b] equipped with the
defB

uniform metric d_(f,g) aMax !f(x) -gix|.

That is, X denotes (C[a,bl, d ). By the appendix to Part I of this course,
we know that X 1is a complete metric space, so theorem & and corollary 8
apply in X.

For each n € M, let En be the set of all functions f in X for

which there exists some point t, in [a,b] such that

£(t) - £eg) | .
t—to == .

for all t ¢ [a,b], t # e

To see the relevance of the sets En to our problem, note that if £ is

1imit f(t)—i(tg)
trtg =ty

tela,b]

exists, then, by the meaning of this limit, there exists a &§ > 0 such that

differentiable at gome point tD in [a,b], that is f’(tD)

£{t) - £(tq)

< ¢ and t # . 5
t"‘to rt o

O| 0

< %- for t ¢ [a,b], |t -t

£1(t)

£{t) - f£(ty)
t - tU

< %—+ [f’(tﬂ)], while for other t ¢ [a,bl]

for such + we have I

we have |t - tOI = 6 and so for these t,
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E(t) - Flto) | _|£(8) - £(tg) | . £ max - £ min
- tg = 5 = 5

slopes near the value of f‘(to)
1

]
! slopes never get too
larqge

|
i vy = £(t)

=

e
W
ot

l
[
|
|
l
|

-
o mf——— —
o

Q - t +E
o]

‘ where fmax' and fmin are respectively the maximum and minimum value of f on
fa,b] (which exist since f is continuous and [2,b} is compact).
Therefore, if £ ig differentiable at ty, € [a,b] we have for all

t € [a,b], £ # t, that

£(t) - E£(tg)
t -t

‘ £ B Fos R
< Max {% + |f'(to)| , max - min }
and so £ ¢ En_fqr some sufficiently large n.

Thus D = nil E_ contains all functions in X which are differentiable at

at least one point of [a,b].

The proof is completed by showing that each En is nowhere dense, and
so D is meagre. To establish that En is nowhere dense we first prove that En

is closed so ﬁn = En, and then show int E = ¢.

a) En is Closed.

Let fm be a sequence of functions in En which converge to £. For each

£ {t) - fm{tm)
fm there exists a point tm € [a,b] such that ra— <n for all
i

t ¢ [a,bl, £ # tm. Since f[a,b] is compact, there exists a subsequence tmk

convergent to some point tD of [a,b].
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Further, for each k € N we have

F(t) - f(i’mk) fmk(t) -fmk(tmk_) + (f(t)—fmk(t)) - (f(tmk) - fmk(tmk)
t - t B
mye £ty
_ _fmk(t) - fmk(tmk) N flt) - ﬁ“k(t) . f(tmk) - fmk(tmk)
£ - E@k 7 £~ HW{ £ - trnk
24 (£, )
< n -4 ._.__c..'i___,_._ﬂ.ﬂ]L

& -t |

Now, f(tmk) +’f(t0), as f is continuous, and g (f,f

— =L
m ) 0, so for t # to'

E&cing the limit as k + =, we have

£t} - £ (&)

t - tb

and conclude that £ € En.

b} Int En = ¢. For auy f En and € » 0 it gsuffices to show that the

ball Bs(f) contains a function g not in E {for then, £ is not an interior

point of En). To see that this is so consider the function obtained by

inscribing in the strip {(x,y): £{x)-e/2<y € £(x) +¢/2}
a zigzagging graph consisting of

. . [Remark: that this
straight line segments of slopes

construction for g is
greater than 2n or less than -2n.

possible follows from the -
A - fact that the set of “"step
Y functions" is dense in
(Cla,bl, 4) - see
elsewhere, or alterent-
ively it may be proved

directly using arguments

g T e Al imA e =

similar to tliose used to
establish this last

result.]

MOFTTTTTTTTTTR
(S Y Y AUU
\ 4
o+
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EXERCISES

1.

{a)

(b}

{c)

{a)

Using the completeness of/R with the usual metric, deduce that the set of
irrational numbersﬂz\ﬂ is non—-meagre. [This provides a pure existence
proof of the existence of irrational numbers, and should be constrasted
with the constrﬁctive proof found in most school books - what is this
proof?]

In JR with the usual metric, show that any countable subset of real
numbers is a meagre set. [Hint: refer to the proof that § is a meagre
subset of R.1]

Cantor defined a set to be uhcountabfe if it is not countable. One of
Cantor's major achievements in the theory of "infinite sets" was to
establish the existence of uncountable sets. In particular he proved
that the set of all real numbers [R and the set of irrational numbers are
both uncountable. Deduce this last pair of results.

{Optional). A real number is said to be algebraic if it is the root of
some polynomial with integer coefficients.

For example: any rational number p/g is the root of gx - p = 0 and so is
algebraic; V2 is a root of x% = 2, so V2 is algebraic, though it is not

rational. A number which is not algebraic is said to be transcendental.

Let Am denote the set of algebraic numbers arising as the root of a
polynomial of degree less than or equal to m with integer coefficients
each of absolute value less than or equal to m.
i) Show that Am is finite. Indeed there are at most (2m—!—l)m+1 such
polynomials each of which can have at most m roots, so
(A s m(2mt1) ™ |
ii) sShow that A = A; u A, U Aa U ...., the set of all algebraic numbers

is a meagre subset of [R with the usual metric [indeed Ais a

countable set].

iii) Deduce that the transeendental numbers are a non-meagre (and hence

uncountable) subset of [R with the usual metric and so conclude
that transcendental numbers exist.

[The proofs that certain numbers are transcendental. e.g.

e (Hermite, 1873} and (Lindemann 1882) represented major advances
in the theory of numbers. Today it is still unknown whether EBuler's

constant Y= limit [(1 + % + ... + ) —1n n], or ® + e are

n—1

==

transcendental. Indeed, even their irrationality has not been proved.]
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2. (a} In a metric space (%,d) show that a subset A S X is nowhere dense if
and only if the complement of its closure, . X\A is dense.

G -..; are a countable number of dense open sets in the

{(b) 1If Gl' Gy, Gy
complete metric space (X,d) show that their intersection

A = Gl n G2 n G3 N.... 15 a dense subset of X.

[a set such as A above which is the intersection of a countable

number of open sets is termed a G6 —set. *Bhow that the intersection

cof two dense Gﬁ_ subsets of a complete metric space is itself a dense
GS_ subset. Give an example to show that if the assumption that the

sets are GS— sets is dropped then the result need not be valid. fThat
is show that the intersection of two dense subsets need not itself be

dense. ]

3. (a) If a complete metric space (X,d) is the union of a countable number of

closed subsets (that is, X = U Fn where each Fn is a closed set), show
n=1
that one of the subsets has a non-empty interior.

*{b) Let F be a "point-wise bounded" family of functions in C[a,b]: that is,
for each point t € [a,b] there exists a constant Mt such that
|f(t)[ <M for all £ ¢ F. Prove that there is a subinterval [c,d]
of [a,b] with ¢ < 4 on which the family of functions is unformly
bounded; that is, there exists a constant M {independent of t+) such

that |£(t)]| < M for all t e [c,d].

[Hint: Let F = {t ¢ [a,bl: [£(£)| < n for all £ e T}.)

*4, Prove the following result.
If £: 10,11 + Rie continuous on a dense set of points d, then the set of
points in [0,1]1 at which £ is discontinuous must form a meagre set.
 [Hint: Note that the set of points of discontinuity for f equals U En,

"n=1
where En is the set of points at which the oscillation of f is at least

%_, that is t ¢ En if and only if there exists a sequence of points (tm)

in [0,1] with £+t and |£(t) - £(8)| > 2 for all m.]

-—[Remark: _As_a. consequence of this_snd exereise-l-above-itisimpessible-to--have

a real valued function which is continuous at the rational points in [0,11, but

discontinuous at all irrational points. The result does not of course



147.

preclude the possibility of a function which is continuous at the irrational

points but discontinuous at every rational point. Indeed such functions do

exist: for example, the so called "ruler function”

D if t is irrational
£(t) = {

l-if t = £ where p, ¢ € [N have no common factors.
q

(Can you see why this function might be termed the "yuler function"? *Can

you estahlish the continuity properties claimed for it?)]

5. A metric space is compact if every sequence of points in X has a convergent:

subsegquence.

(a) If Fy 2 F, 2, .. 2 F 2 .... is a nested family of non-empty closed

subzets in a compact metric space, show that nch Fn P
(b) 1Let (X,d) be a compact metric space and Al, Az, AB' .- be a Family
of closed sets with the "finite intersection property! that is, the

intersection of any finite number of the An's is non-empty, show that"

. »
n=1 Pn 7 ¢- N
int . = N .
[Hint: ILet FN | An.}
n=1l

{Remark: The converse of (b) is also true. That is, if every family of
closed sets with the finite intersection property has a non-empty intersection,

then the space is compact. *Can you prove this?]

6. Let fn:ﬂQ—+ﬂl be a sequence of continuous functions and suppose
fn(x) + £(x) (as n += ) for each x e R (i.e., fn converges point-
wise to ). Prove that f is continuous except at a meagre set of

points in R .

[Hint: Define the countable family of sets
F = {x eﬁR:lf (n) - £ (x)l < i-, for all k =z n
m,n n k m

I

{m, n:e N)

and consider

= U ]
M {F ,n\lnt Fm,n)
m,nel
=R\ N int F ]
m,n
T, It

An excellent account of some of the applications of Baire's Category
theory to the theory of real functions may be found in: Boas, R.F. Jr.
"A Primer of Real Functions", Wiley.
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SECTION 4. INTEGRATION THEORY - UTTILITY GRADE

As a preliminary to our main business: defining an integral for a suitably
large class of functions; we study the notion of "uniform continuity" in metric

spaces.

§3. Uniform Continuity

DEFINITION: Let (X,d),(¥,d') be two metric spaces. The mapping f: X + ¥ is

uniformly continuous on & € X if, given ¢ > 0 there exists § > 0 such that

d'(f(xl),f(xz)) < g whenever x X, € A and d(xl, xz) < §.

17
Clearly, this is equivalent to requiring

£(A A Ba(x)) c BE(f(x)) for all x ¢ A.
This definition should be contrasted with that for the (global} continuity of f:

f is continuous on A if, given ¢ > 0, for each Xo ¢ A there exists a §p> O
[here the wvalue of 60 may vary when the point xo is changed; that is, 60 = ao(xé)]
such that

d'{f(x),f(xo))*< £ whenever x ¢ A and d{x, xD) < 60,
or equivalently
£(B n Bg (xo)) = BE(.f(xD))-

Given the € > 0, in continuity, for’each point xo there is a 60 = 60(x0) which

'works', on the other hand, in uniform continuity there is one § which 'works' for

every x. This last requirement is equivalent to having

(8§ =) infemum & (x )} 0.

X € A
0

AT

From the definitions it should be clear that
(£ uniformly continuous on A) = (f continuous on A}

The converse of this is false as the following example shows.
EXAMPLE: Let {X,d) be the open interwval (0,]) with metric d(xl, xz) = |x1 - le
and let (Y,d) be the real numbers R with the same metric d(yl, y2) = |y1 - y2|.
Then, the function f: X + ¥: x & 1/x is continuous on X (indeed f is differentiable
at every point of {0,1)}. £ is not however uniformly continuous on X. To prove
this, assume f were uniformly continuous; that is, given ¢ > 0 there exists § > 0
such that

1 1

le"xz|<‘5=> 1 xyl ©F

—-Now--choose;

— 1} and let x, = %xl, then
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4
- = Lx < =
X, %, ﬁxl 5 < §, but
1._ %.l = _E;_Z S % c.
X) Xy 2x1 :

A contradiction, showing that f cannot be uniformly continuous.

Y

Given a e > 0, the &s applicable at X, Xy, X

grow progressively smaller (indeed tend to 0)

gr v--

as x_ =+ 0.
n

Sequential Characteriaation of Uniform Continuizty

Recall that the continuity of £f: 2 £ (X,d) %~(Y,d‘) may be sequentially
characterized as follows. £ is continuous if and only if for each X, € A

c d '
whenever ﬁ{n) = A and X, Fox, we have f(xn) 4 fix,).

LEMMA 1: f£: A S (X,d) + (Y,d") 5 uniformly contimous on B if and only if
whenever (x ) and (t ) are itwo sequences in A such that d(x ,t ) *0asn+e

we have 4! (f(_xn),f(tn)) +~ 0 as n+ o,

Proof (=) Given £ > 0 let 8 be such ithat, for x, t € A,
dlx,t) < 6 = a'(f(x),£(t)) < & (definition of uniform continuity)

and let N be such that

@ <6 whenever-n->-N——(possible-since-d{x—rt—)——0)

then for n > ¥ we have d‘(f(xn),f(tn))< e and so d'(f(xn),f(tn)) = 0 as n + =,
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(&) We prove the logically eguivalent contrapositive; that is, if
f is not uniformly continuous on A, then there exists seguences (xn) and (tn)
in A such that d(xn,tn) + 0 but
d(f(xn),f{tn))‘v 0.

Now if £ is not uniformly continuous then there is an £, > 0 such that for

each § » 0 there exists a pair of points x., t6 in A with d(xﬁ,ta) < & but
¥ =

d (f(xﬁ),f(tﬁllm Eye X

Thus for each n ¢ {N, by taking § = o ¢ ve have a pair of points Xn’tn

l 1
such that d(xn,#n) < - but 4 (f(xn},f(tn)) = Eg -

The sequences (xn) and (tn} arrived at in this way are such that

1
d(xn,tn) < o 50 d(xn,tn) + 0

while

d‘(f(xn),f(tn)) 2 g, >0 and so d'{f(xn),f(tn)) % 0.

An argument similar to =) above yields:

IEMMA 2: If £: B £ (X,d) + (Y,d') is uniformly continuous on A and (x ) i5 a
Cauchy sequence in A then (£(x )} i8 a Cauchy sequence in Y. That is a

uniformly continucus funetion maps Cauchy sequences to Cauchy sequences.
Proof: Given ¢ > 0 let § > 0 be such that, for x, t ¢ A,
dx,t) <« § =4 (f(x),£(t)) < e (definition of uniform continuity)

and let N € W be such that n,m > N ﬁ-d(xn,xm) < § (possible since (xn) is a
Cauchy sequence).

Then for n,m > N we have
a'(£(x)) ,f(xm)) < g

and so (f(xn)) is a Cauchy seguence.
B

REMARK: The sequential characterization of continuity shows that a continuous
function maps convergent seguences to convergent sequence, it need not however,
preserve Cauchy sequences. For example, taking X,Y and f as in the previous
example (f(x) = iﬁ we see that, if x = %} then (xn) is a Cauchy sequence in (0,1)

however (f(xn)}.is not a Cauchy sequence, indeed f{xn) = qn,

RECALL: A subset A of the metric space (X,d) is dense if A = X; that is, if every

point of X is a limit point of A, or equivalently for avery X € X and € > 0O there

exists a € A with lx - all < ¢
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THEOREM 3 (EXTENSION THEOREM)

Let (X,d) be a metric space and let (Y¥,d') be a complete metric space.
If B ig a dense subset of X and £: A +Y is a uniformly continuous function
on A, then there exists a unique function £ X vy which satisfies:
i) £ ig uniformly continuous on: X
and

ii) f{a) = f(a) for alla.« A (that is, £ is an extension of £ to X).

Proof. Each x € X is a limit point of A /S0 there exists a sequence (an) in A
with a, + x. Since (an) is convergent it is a Cauchy sequence and so, by Lemma 2,
(f(an)i is a Cauchy sequence in Y. WNow Y is complete, so (f(an}} converges to some

point in Y. Thus we may define £ by

- L. d
fi{x) = limit f{an), where an - x
n-o
We must show

f is well defined - the value of f at x is independent of the particular choice

of sequence a  + x. That is, if an -+ X and bn -+ X, where (an) and (bn) are both
sequences in A, then

limit f(an) = limit f(.bn)
n-o n—+.

Note, once this is established, it will also follow that f is an extension of £,
since, for a € A the constant seguence. a, a, a, .... converges to a so

f{a) = limit £(a) = f(a).
=

Now, let (an), (bn} be sequences in A with an + x and bn -+ ¥, then, since
d(an,bn) < d(an,x) + d(x:bn), we have d(an,bn) + 0 and so, by lemma 1,

1
d {f(an),f(bn) + 0.
But then,

0 € d'"(limit £{a )}, limit f(bn))
- H -

d'(limit f(an),f(am)) + d'(f(aﬁ),f(bm)) + d'(f(bm), limit f(bn))
n-sen n-e

A

-+ 0 as m =

and so, limit f(an) = limit f(bn} as required.
n-o -+
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f is uniformly continuous - Given any € » 0, since f (the restirction of %

to A) is uniformly continuous on A, there exists § > 0 such that

d'(f(al),f{az)) < %— whenever al,a2 e A and d(al,az) < §.

N 6 .
Now, for any x,t € X with d(x,t) < 2 there exists a4r83 € A such that
§ -
d(al,x) < z and d(a2,t) < %-(density of A) and also d'(f(al),f(x)) and

d‘(f(az),f(t)) are less than %—(definition of f). UNote this also implies that

d{al, a2) = d(al,x) + d(x,t) + d(t,az)

8 § 8
= ry + 5 + r
= §

and so d'(f(a }),f(a)) < & .

1 2 3

Thus, for any x,t € X with d{x,t) < g

35 we have

a'(E(x), £(t)) £ a'(E(x),£la))) +d'(£la)),Elay)) + d'(E(ay),£(x))

E £ E
€= + F o+ = =
3 3 3 " F
so £ is wniformly continuous.
f is unigue — assume ¢: X + Y is uniformly continuous and g{x) = £(x) all x € A.

Then g{x) = f(x) for all x € A. Now for x € X\&, let X ot X where x € A (all n),
then

a'(E(),g9(x)) < a' (F),£(x)) + d' (£(x),g(x)

a' (£(x),£(x ) + d'(glx),g(x))

+ 0 {(by the definition of f and the wuniform continuity of q).

Hence f(x) = g(x) all x ¢ X and so f is unique.
=

APPLICATION: 1In the elementary thecry of real valued functions of a real variable
it is often natural to construct a function first on @ the set of rational numbers
{equipped with the metric d(x,t) =[x - t|) and then "extend" it to the whole real
line. The above theorem guarantees this can be done provided the function

constructed on @ is uniformly continuous.

EXAMPLE: Using the "laws of indices" we can define the function x » a® (for fixed

a e [0,«)) and all x ¢ @ n [0,1], An application of the theorem allows us to _extend the

domain of definition to [0,1]. In this way the function exp may be cbtained (a=e).
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EXERCISE: Let R be equipped with the usual metric d{x,t) = |x - t]. Show
that there is a unique continuous function

f: R + R satisfyving the functional equdtion

flx +y)l = £(x) + £(y) with £{1) = 1

The final two results, developed below, provide examples of uniformly

continuous functions.

THEQREM 4 (HEINE'S THEOREM)

Let A be a compact subset of the metrie space (X,d) - that is, every sequence
of elements of A has a subsequence which converges to an element of A - and let

f: & + (Y,d'} be contimwus on A. Then, f is wniformly continuous.

PROOF: Assume f is not uniformly continuous on A, then there exist sequences
. - ' >
(xn) and (tn) in A such that d(xn,tn) 0 but 4 (f(xn),f(tn]) Z € s for some

£, > 0 (see proof of lemma 1 («)). Now A is compact so there exists a subseguence
!xnk) convergent to some x € A. Then, for the subseguence (tnk) we have
d(tnk,x} £ d(tnk,xnk) + d(xnk,x)
+ 0

S0 tnk + X also.
From the continuity of f we therefore have f(xnk) + £{x) and f(tn]) = £{x)
i

and so d'(f(xnk),f(tnk)) < d'(f(xnk),f(x}) + d'(f(x),f(tnk)
+ 0

contradicting the fact that d'(f(xnk),f(tnk)) b4 EU > 0 for all k.
) .

Since for —= < a < b < =, the closed interval [a,b] is compact we have:-
COROLLARY 5: FEvery element (function) in Cla,bl <is wniformly continuous on [a,b]

Fpor the remainder of this section (X,"-“) and (Y,"-"') denote two normed lineayx

spaces.

RECALL: A function T: X + Y is linear if T(ax + By} = aT(x) + BT{(y} Ffor all

X,y € X and all real numbers o,B.
We first prove

_IEMMA 6: For a linear mapping T: (X, 0-1) + (v, 1-1 ) the following are equivalent:
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i) T <8 contimious;
ii) 1 is contimuous at the origin 0;
iii) T <5 bounded; that is, there exists some M > 0 such
that loxl’ < mixl for all x ¢ X .

PROOF: That i) = ii) is immediate from the definitions. To see that ii) = iii),
note that since T is continuous at 0. Given € > 0 there exists 6 > 0 such that
ir(x) - T(O}l' < € whenever Ix - all < & .

Now, fora linear mapping T(0) = 0 and so the lagt line becomes

"T(x}u' < ¢ whenever Ixl < &.
Observing that for any x € X {x ¥ @) EW%W ¥ has norxrm less than ¢, we
therefore have
8 r
"T (———— x)u < g for all x € X
2=

or using the linearity of T and the properties of a norm,

bl ' < 25 gl
Thus T is bounded with M = 2":/[S . The proof is completed by showing iii) = i).
Now, 1if %y + x, then we have
I - I =1 -l
T(x ) - T(x) Irx - x)
< M"xn - xl (by iii}
+ 0
and- so T{xn) + T(x} establishing 1i).
-]
As a consequence we have
THEOREM 7: If 7:(x, .1y + (v, I-1")1s a continuous (bounded) linear mapping, then
T is uniformly continuous on X.
PRCOF: Let M > 0 be such that
Irx) I' < mlxl  for all x e X,
then given any ¢ > 0, taking § = ﬁ- we have
"T(x) - T(y) “':"T(x - y) II'
<mlx -yl

< ¢ whenever X,y € X are such that

lx - Yy I < §r and so T is uniformly continuous.

. - ]
Combining Theorem 7 with Theorem 3 we have: -

LEMMA B: If B is a dense subspace of the normed linear space (X,1-1) and

T: A > (Y, h-1") 28 a linear mapping into the ccﬁmglete normed linear space ¥

then there is a unique extension T of T to X. Further T is also a linear mapping.
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PRCOF: It is only the last remark that needs proof. To see that T is linear, note
that, if x,y € X there exists sequences (xn), (yn) in A with x, + xand v,y

{density of A) and then by the definition of T

Il

T(x + v} l;zit T(xn + yn) {(as X, + Y + X + v)

limit T(xn + yn) (as X + ¥, € A, since A is a
o
subspace}

Il

limit (T(x_ )} + T(yv )) f{as T is linear}
n n
n3e=

Il

limit T(x_ } + limit T({y )
n n
e n--e

T(x) + T(y).

§2 Integration on [a,b]

Throughout this final section a,b will denote a fixed pair of real numbers

with a < b. I, J, I I, etc. will denote intervals (closed, open, half-gpen)

1° 2
of real numbers contained in [a,k]. The "end-points" of I, for example, will bhe

1

denoted by i, i%* and we will always assume that a i< i*¥ £ b.

Thus I may be any one of the following

(i,i®) = {x: i <=x < i*}
[i,i*] = {x: i < x < i*}
[i,i%) = {x: i = x < i*}
(i,i*1 = {x: i < x < i*}.

Fla,b] will denote the set of all real valued functions defined on [a,b].

RECALL (Pure Mathematies 2, Linear Algebra), Fla,b]l is a vector (or linear)
space with peoint-wise definitions of "vector" (function) addition and scalar
multiplication.

A particularly simple type of function in Fla,b] is the characteristic

function of the interval TI(€ fa,b]), defined by

if x
if x f I

m
H

(1
Xp = =Yy

Thus, for example, if I = (%,3] we have

0 if 2 =

A
o
R
»
v
w

_J1lif Lk <« x < 3
X1 (x) = «:
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X(_%,3]

The subspace of Fla,b]l spanned by the set of characteristic functions of intervals
in Ia,bl is denoted by B5tla,b].

The elements of Stla,bl are termed step functions and consist of (finite)

linear combinations of characterictic functions of intervals in [a,b].

Thus, s is a step function if and only if

n
- s= I s x
k=1 k k
where n € [N; Syr Sgr ---s S are real numbers and Il’ Iz' vaey In are intervals
{in [a,b}). For example,
g =% + 2 -
X-1,1) Xro,251 ~ *i2,3]

is a step function and we see that

r .
L if 1 £ x <0

2 if 0= x <1

sy = { 2iflsx<2

1 4if 2 £ x £ 2%
<

-1 if 2% < x

L 0 if x < -lor x> 3

2 "
: ¥y = s(x)
1 M
-
ml) .
-1 0 1 2 3 a x

.
1
)
L)
L]
]
.
0
[}
[
.

(
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We now define the "definite integral from a to b" for any step function.

n
et s = Z S X1 € stla,b]
k=1

If our definition is to agree with what we usually understand by "integral"

and relate to "area under the curve®, it is clear that we must take

T n
a k=1

where, for any interval I, (I} is the "length” of I and so
u{I)y = 1i* - i,

EXERCISE: for our previous example we have

b
L‘%thl,l) * o, m1 TXpz,3))

= H(l - (-1)) + 2(2% - 0) - 1(3 - 2).

Check that this is indeed the "area under the curve".
From this definition it is clear that the defintie integral from a to b has the

following properties.

b b b

1) (s; +8,) = j sp + JSZ for all s, and Sy in Stfa,bl
Ja a a
‘b b .

23 rs. = r J s for all s € Stla,b]l and all real scalars r.
‘a a

3) If s is a positive step function (that is s(x) 2 0 for all x € [a,bl}, then

(b
J s = 0.

a

We will take these to be defining properties of a definite integral*.

* These, together with the normalizing axiom ;

b

— b — r
J Xa,b] 2
a

and the tramslation invariance amiom;

T iIf Iy T & bl are such thatp (T = (T}, then

b b
o =
a a

completely determine the definite integral from a to b on Stfa,bl. You might try
FOOTNOTE CONTINUED ON NEXT PAGE
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REMARK: If we define the mapping IZ by

b b
J : 8tla,bl + R: s# J s

a a
. b . .

then 1) and 2) are equivalent to reguiring Ja to be a Linear mapping. [Such a

mapping from a vector space into the real scalars is often termed a (linear}

funetional - thus 1) and 2} state: The'deFfinite integral from a to b" defines a

linear functional.l]

Qur aim is now to extend the domain of IZ from 5t[a,bl to a larger class of
functions, while preserving the three properties listed above.

Let Bla,b] denote the set of bounded functions on [a,b]. That is,
f € Bla,b] if [f(x)! £ M for all x € [a,b] and some M > 0. Tt is readily checked
(do so) that Bla,b] is a (vector) subspace of Fla,b] which contains St[a,b] and
that

"fﬂm = sup |f(x)l
asx<b

defines a norm on Bla,b] with respect to which it is complete,

Thus, (Bla,bl,l-1 ) is a Banach space.

Let Reg[a,b] denote the closure of St[a,bl in Bla,bl. That is, £ € Regla,b]
if and only if, there exists a sequence of step functions (sn) with “Sn - f”m -+ 0,
in which case we say f is a "uniform limit of step functions" (refer to the
discussion of uniform convergence given in the proof of completeness of C[a,b]).

The elements of Regla,b] are referred to as requlated functions*,

EXERCISE: Let (X,"-“) be a normed linear space and let M be a subspace of X.

Show that the closure of M, ﬁ,is also a subspace.

From the abhove exercise and the earlier one estabklishing that a closed subset

of a complete metric space is itself complete, we see that

* This terminology and approach to "elementary" integration theory is adapted from
that of the French Mathematician Jean Dieudonné (1906 - Y - see his hook:

"Foundations of Modern Analysis" {(Academic Press).

FOOTNQTE FROM PREVIOUS PAGE CONTINUED HERE
. b o
'““prﬁving“this“JS“En“ExErCiSET”“That“isTWShDWWthat“IfWTES“satIsfIES"iTT—ZT,'3)'and*'
the above two axioms, then

Jb ) E
) s X = s, H(T ).
k AL
a k=1 k k=1 k k
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{Reg [a,b], ||-Hm) .8 a Banach space (stla,b] is a subspace and so
T —
Reg[a,bl = Stla,b]l is a closed subspace of the complete space Bla,b]).

. b
We now show that the "defintie inteqral"®, Ia' may be extended to Regla,b]

We first need

( functionall) from (stla,bl, i "m) to R with the usual metric.

PROOF: Let s € Stla,bl, then fsl = sup [s(x)| and so for each x ¢ [a,b]
asxsb

—"sl[m < g{x) = Hsllm

or
0= s(x}) + "é"m and 0 < ”s]lm - s(x}.
These two inecqualities may be re-expressed as:
st a sl -
s+ sty X[a,h] an @ X[a,bI S

are both positive functions on [4,bl, and so by property 3)
b b ,
< + lisl a 0 < <l - s).
0 Ja(s e X[a,b]) an a( e X[a,b] s)

Using the linearity of the integral and its definition, we therefore have
b b
R I I N R N
a a

oxr

b
J s| £ (b - a) sl

a
b | . . o eas . .
and so Ja is5 a bounded linear mapping (see definition in §1, p. 7) as required.

Now, by construction, Regla,b]l = Stla,b] and so 5tla,b]l is a dense subspace of

Regla,bi. Hence by the above lemma and lemma 8 of §1, p. 7) we have that fg has

a unigque bounded linear extension from Stla,bl to Regla,b]l. We will denote this

extension by fz {(rather then the more formal ]2) and for £ £ Regfa,b] we will call
the wvalue of this extension, fif, the "definite integral of £ from a to b".
Since the extension is linear properties 1) and 2) hold for it, we now establish
that 3) is also satisfied.

First, let us note that from the proecf of the extension theorem {(Theorem 3

~of 81, p. 4) we have the constructive result:

b b
J f = limit J S, where (s.) 15 any sequence of step
a n+= a

functions which converges uniformly o £ (that is, for which ﬂsn - £l + o),
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Now let f € Regla,b] be a positive function. From the abave observation and the
density of St[a,b] in Regla,bl, for any € > 0 there exists a step function s such
‘that b 0 .
f £f - J s| = ey ~and s - £l = g" = e/2(b-a)
From the second inequality and the definition of "'"m we have

- g'=s(x) - fix) for all x € [a,bl,

and so, since f is a positive function,

0= e+ .2(x)

or
g' X + s is a positive step function.
{a,bl
b
Thus 0= J (E'x[ b + 5) {(by property 3) for step Functions)
a ar
or b b
E
0= g'(b-a) + J 5 = 5 + J 5
a a
c ds]
and so -3 = J s
1
b b e
Combining this with the first inequality, J £ - [ 5| = 5 we therefore have
a a

Jo] jo) e
J £ 2 J 5 = 5-2 - g, for all e > 0
a a

b
and so we conclude that J £ 2 0 whenever f is a positive function in Regla,b].
=

Having extended the “definite integral from a to b" to Reg[a,b], we now
establish that Regla,b] is a 'large' enough class of functions to be of interest.

We do this by showing that Cla,bl - the set _of all continuous functions._on [a,b] -

is a subspace of Reqgla,b]. That is, we show that every continuous function f on
a,b] is a uniform limit of step functions, or equivalently, given any € > 0 there

exists s ¢ St[a,b] with lIf - s"m < e,
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THEOREM: Cla,b] Zs a subspace of Regla,bl.
PROOF: Let £ ¢ Cla,bl, then by Corollary 5 of §1, p. 6, f is uniformly continuous
on [a,bl and so, given € > 0 there exists §& > 0 such that If(x) - f(y)l < e
whenever x,y ¢ [2,b]l are such that lx - y‘ < &,
Now choose N & [ such that (b - a)/N < §, let X =a, x =a + iéiél-,
—5+31915l =b and let I = [x , x.) = [x_, =) I = [x x ]
XZ— N r ---.rxN 1 Q: i 1’ plt sttty N-1" %N
A
y \ ,

X '

i ]

] ]

1 '

X '

: 2y = six)

|

1 p : :

5: e L e+ . : ‘ Y - f ( K)

¢ ! ‘ .

i : !

r L] ¥ LY 1 >

© . x x .é -
a *1 2 3
x
a

Define the step function s by

N
s = ) Elx_,) %I
k=1)zkl k

The proof is completed by showing e - S"m < g,
X belongs to precisely one of the disjoint

To see this, note that for x ¢ [a,b],
E(x _,) and !Xk—l - x|z B2 o

-e. I

Iz, .say x € I, then s(x) =

intervals II' N’
S0

|20 - st | = [gx) - £ <€ .

We therefore have

sup If(xl - s(x)| < E
asx<b

le - s“m =

and the result is established.

i
REMARK: The above theorem shows that every continuous function on [a,b] is in
In fact Regla,b]

Reg[a,b] and is therefore integrable according to our theory.

contains most functions of practical importance and so our:” theory of integration
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