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is adequate for most work in Applied {(and Pure) Mathematics.

We conclude with two results which should already he familiar to vou.

We begin with some terminclogy.

Given any f € Regla,b] and X1

that the point wise product

¥, with a S x

f'XIx x ] is in Regla,b].

= b, we first observe

[Tf (sn) is a

< x

2 1 2

sequence of step functions converging uniformly to £ on ia,bl,then (sn-x[x % ])
. r
is also a sequence of step functions which converges to f-x[x %1 1 12
r
;A . 17 %2
: :
. If”” ,
., .
V “y =
; _,,”: Y £lx) graph of
; s 2
: : Xy,
o N N
.—ﬁ{ 3 £ } 7 X
a Xl Xz b
*a
The definite integral from a to b of f'X[x %1 will be denoted by J f; that is
17%p %
1
%o b
f £ definition [ (f-x[xl,le)
X a
1
i - = f- + f- wh = = = <
since £ X[x x ] X[ %] X[x %1 ere a xl xs x2 b, we clearly
1" 17773 3rT2
have
) *3 %2
[ e Ik
X1 *1 %3

To extend this identity to all Xy, Xy, Xg € [a,b] irrespective of their order,

for X, < x7 we define

INTEGRAL MEAN VALUE THEOREM:

f(x} s M for all

S . P -
x € [x,, x,] where a < x; £ %, € b,

m(x2 - xl)

If £ € Regla,bl 4s such that, for some m,M ¢ R we have m <

then
X

2
SJ f =

%y

M(x2 - xl),
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PROOF : Since m = f(x) for all x ¢ [xl, x2] we see that

f- -m
Mxy,x,] 7 ™xy,x,]
is a positive function on [a,b] and so, by property 3),

b

0 < {f-x - my )
J5 [xlrxzj [xlrxz:E
2
= f - m(_zv:2 - xl) .
5"
1 %X

2
This gives, m(:«:2 - xl)s J f. The upper inequality is established similarly
X

(do =o0). 8 1

The function

x
F: [a,bl + R: s H—I £
a

is termed the primitive (indefinite integral) of £ ¢ Regla,bl.

FUNDAMENTAL THEOREM OF CALCULUS:

If £ € Regla,bl Zs continuous at the point X € [a,bl, then the primitive
F of £ is differentiable at x  and

1 —1
F ,(xD) f(xo).
PROOF: For h > 0O,
F(x + h) - F(x ) xyth *o
- : ° .1y £ - £)
n h
3 a
_ l xo-i-hf
" |
x
]

and so, by the integral mean value theorem,

Flx_ +h) = P{x) _
9] s}

infemum f£({x} =< = < supremum f (x).
X Sx<x +h X Sx<x +h
0 0 0 o

Now £ is continucus at X and so, as h + 0 we have
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infemum £(x) - f(xo} and supremum (f) -+ ﬁ(xo)
X EX=x +h X <X<x +h
0 o 0 o

{Prove this}.
We therefore have P (Xo'l'h) - F{x )
limit B = fx ).
h+0+ o

A similar argument for h < 0 (give it) establishes that
F(x0+h) - F(x,)
limit — = f(xo)
h+0- h

and so we have F'(xd) exists and equals f(xo). -

REMARKS: 1) From the last result we can go on to develop the usual integral
calculus: X9
If F is an anti-derivative of f(that is F' = f), then J -f = F(xz) - F(xl);
"change of variable" formulae for integration; *1
integration by parts; theory of improper integrals, etc. All this should be
well known to you and we will not persue it further here.

2) We have established the integrability of a class of functions,

Regla,bl, which is adeguate for most applications. However, while Reg[a,bl] is

complete with respect to "-nm it is not complete with respect to the norms
b
el =
£l |£]
a
b
1
or el - (sz)-
a

which we can define using the integral developed. This is an impediment to the
application of many theorems of abstract analysis. To obtain complete spaces
with respect to "these" norms we must further extend the "definite integral®

to a larger class of functions, L[a,b], whose elements are the uniform limit of
a sequence of step functions except on a set of points in [a,b] with "zexro
length”. That is, except for a set of points which can be eontained in a
countable union of intervals the sum of whose lengthsis arbitrarily small.

This leads to Lebesgue's theory of integration - see for example the book by

A.J. Weir YLebesgue Integration and Measure" (Cambridge University Press).
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APPENDIX

Suprema and Infema

Let S be a non-empty subset of the real numbers R. We say S is

bounded above if there exlists a real number o such that s £ o for

all s € 8§ and refer to o as an upper bound for & .

The supremum of § , denoted by Sup S , is the "least upper bound”

for S. That is M= Sup 5 if and only if
i) 5 M for all s €5 (M is an upper bound for )
and
{ii) 4if o is any upper bound for &, them M = o (M is the

smallest upper bound for g§)

The supremum axiom for TR ensures that every n'on-empty subset 8§

which is bounded above has a supremum.
Note: The supremum of S need not belong to $. For example S5Sup(0,1)=1
but 1 ¢ (0,1). 3If it happens that Sup 8 is a member of 35 we usually
refer +to it as the maximum of S and denote it by Max 8§ .

It will be convenient to write Sup 5 = = in case 5 is not bounded
above.

The following simple result is ascumed frequently in these notes.

PROPOSITION: For ¢ #5 R there exists a sequence (sn) of points
of 8 with s * Sup S. [Note: In case Sup 5=, this must be
interpreted as 5, "diverges to += "; that is, given any real number r,

there exigsts N e N such that n > N = 5. > r.]

&

Proof. In case M= Sup 85 < w , for sach n € N there must exist S, € 5

\ . 1
with M - % = s, {otherwise M - = would be an upper bound for S,

contradicting the fact that M is the smallest upper bound). But then

1 .
M—ES snSM (M is an vpper bound) and so as n * = we have s_~+ M.

The proof in case Bup§ = ® is similar and is left as an exercise.

The infemum (or greatest lower bound) of § may be defined and analysed
similarly. Alternatively guestions concerning infema may be converted into

questions about suprema by noting that

inf S= -~ gup{ -s : s € S}
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PROJECT

In many situations a metric is defined "locally" in terms of
differentials.

For example; the Poincaré metric on the (open) upper-half plane

A{g = (x,v) € RZ . v >0 has as the infinitesimal element of "distance"
- - I dzj_-_llz_ O
v .

The distance from x; to x; is then taken to be

Pllae, £,

min -
. Lz £(x)

X1
[ V1 + £1({x)2
'3

£x)

i

dlxg, ¥1)

min dax (2)

£
where the minimum is taken over all differentiable curves lying in the
upper-half plane which join §D and %7 that is, functions Ff such
that

f(xl) = ¥Yi. f(xz) = y3 and flx) > 0 for all x ¢ (xo,xl)-

Exercise: Show that d(§0, §1) as defined above is indeed a metric

function.

J1 + £12

If F(x, £, ') = —F denotes the integrand in (2},

then from the calculus of variations the minimmn is achieved at an £

satisfying the Euler-Lagrange equation:

Show that this leads to the equation

1+ ££f" + £'2 =0
of

1 .
1+ 5(£2)" = o0,

Hence conclude that the curve for which the minimum in (2) must be
achieved is the circular arc joining %y and x, with centre on the

x-axis and lying in the upper-half plane.
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This curve is the "geodesic” {path of shortest length) joining x

o and
¥y - From this deduece that (2) leads to the expression
_ tan {$p/2)

(For points vertically above one another this is to be interpreted as

the limiting expression |loge|y0/y1|[.)

Here ¢, and ¢1 are the angles illustrated above.

[Hint: use the substitutions x =a + r cos §, vy

r sin ¢.]

The upper-half plane with this metric is a model for a non-—euclidean

(hyperbolic) geometry. [For a fuller discussion see for example, Siegal

"Topics in Complex Function Theory" Volume II ppld - 29.]
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A
Algebraic number 145 -Convergent sequence 33
Algebra of closed sets 50 Convex function oa
Algebra of closures . 54 Convex set 28
Algebra of interiors 53 Countable set 137
Algebra of open sets 48
B D
Baire Categories 134 Dense set 52,136
Ball 25 Descent from vertex to
Banach's fixed point thecrem 117 vertex algorithm 95
Banach space 37 Discrete metric 3
Best Approximation 84
Bolz ano-Weierstrass Theorem 71 E
Boundary 54 Equivalent metric 52
Bounded mapping 60 Equivalent norm 52
Bounded set 30 Buclidean metric 2
Euclidean norm 10
C Euclidean Space 11
Cantor's ternary set a0 Extention theorem i50
Cauchy-sSchwarz-Bunyakowski
ineguality 19 F
Cauchy sequence 36 Finite dimensional normed
Characteristic function 155 linear spaces 10,65,77
Closed ball 25 Fixed point 114
Closed set 43 Functicn 57
Closest point 84 Function spaces 13
Closure 43 Fundamentzl Theorem of
Compact set 68 Calculus 163
Complete space 36
Constant sequence 35 .G
Continuous mapping 57 GS - set 146
(local) 37 Gram—-Schmidt procedure 112
{glchal) 58
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H

Hausdorff separation axiom

Heine-Borel Theorem

Heine's Theorem
Hilbert space

Homeomorphism

I

Implicit function Theorem

Inner-product
axionms

spaces

Integral-defining properties

Integral mean value theorem

Interior

Interior point

J

Jordan—-von Neumann
characterization

L

Limit point
Linear mapping
Line

Line segment

Lipschitz mapping

M

Mapping

Meagre set

Metric Space (axioms)
Metric induced by a norm

Minkowski's inequality

79
75
153
39
64

131

16
1@
157
162
46
46

21

60,153
27
27
59

57
138

20
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N

Non expansive mapping

Normal space

Norm function (axioms)

Normed linear space

Nowhere dense set

0 *
Open ball
Open set

Orthogonal vectors

Over specified systems-—

Tchebyscheff solution

Least saquares

P

Parallelogram rule

Polarization identity

Post-office metric

Proximal set

Pythagorean identity

R

Requlated function
Riesz' lemma
Rotund space

Ruler function

S

Sequence Spaces
Sphere
Step function

Strict Contraction

Strictly convex space

Subsequence

115
79

136

25
46
21,105

o9z
110

20
22

87
19

158
78
100
g0

12
23
156
59
100
67



T
Tchebyscheff norm
on R"

on function space

Tchebyscheff set

Topologically equivalent

spaces
Topologically invariant
Topology
Transcendental number
Translation invariant

triangle inequality

U

tncountable set
Uniformly convex space
Uniform continuity
Uniform norm

on R

on function space
Unit ball

Usual metric on R

10
13
29

64
50
145
B,157
2,7,19
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