A GEOMETRIC PROOF FOR SOME SIMPLE CASES OF MARTINGALE CONVERGENCE

BralLEY SiMs

§0 INTRODUCTION.

The use of real valued martingales in probability theory has grown steadily
since their detailed introduction by Doob in 1950. Vector valued martingales were
first studied explicitly in 1960 by Chatterji and independently Scalora, and were
rapidly recognised as a powerful tool for the study of certain Banach space structures
(see, for example, Diestel and Uhl, 1977).

Besides introducing the idea of a vector valued martingale this article gives
a "geometric" proof of the following convergence theorem which makes no use of proba-
bility theory and involves a minimum of measure theory.

THEOREM 1. Let (In,fg) be a martingale in LP(I,U;X) where 1 < p < = and X i8 a uniformly
convex Banach space. Then there exists f_ ¢ LP(Z,u;X) with Hf; -f Al ~0if (and only

. p

if) Hf;” s K for all n and some X > 0.
p

Our proof is particularly simple when p = 2 and X is an Hilbert space. Since this
case would usually be introduced first, the proof for other cases has been relegated
to footnotes and remarks.

The article owes much to the suggestions of my colleagues, in particular,
Mr. L. Kavalieris, made during a series of seminars at the University of New England.

§] PRELIMINARIES.
Notationa.

Throughout the article, L denotes a U-algebra of subsets of {l and y a countably
additive probability measure on I (that is u(E) 2 0 for all £ € ¥ and u(Q) = 1).

i H is a Hilbert space over the real field, with inner product (-,-), and X is
a real Banach space. We say X ig uniformly convex if: every sequence (xn) for which
r +z

"xn“ and N—E—E—JEH have a common limit as n,m + «, is a Cauchy sequence (and hence

convergent).(l) It is an easy consequence of the parallelogram rule that # is uniformly
r -z z +x
2
convex (121" = iz 1% + wiz 0% - 12 _m2)
n m 2
. . . 2
Bochner integration for vector valued functtonaf /

The reader interested only in real valued martingales could pass over this
material provided IR (the real numbers) is everywhere substituted for H or X and integrals

(1) This form of the definition is most suited for our purpose. The equivalence with
Clarkson's original definition being a simple matter.

(£) FPor details see either Dunford and Schwartz 1958 or Diestel and Uhl, 1977.
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are interpreted in the sense of Lebesgue.

A function f: Q + X 18 u-measurcble if there exists a sequence of simple
functions (Sn) with HSn(w) - f(w)l ~ 0 for u-almost all w e f.

A simple function 1is of the form

for some TyaTpsere Ty € X and El""’Eﬁ € I, which,without loss of generality, may be

assumed to be pairwise disjoint. Here and elsewhere, XE is the characteristic function

of the set £. The integral of such a simple function f is defined in the obvious way;
N

J Sdu = z u(E n Ei)ri’ Eel.
E i=1

A y-measurable function is integrable if there exists a sequence (Sn) of
sizple functions with

J HSn(w) - flw)lldy + 0., (Lebesgue integral)
Q

Ia this case the norm limit, as n + =, of LESﬁ du exists for each £ ¢ ¥ and is inde-

peadent of any particular choice for (Sn)' By definition, [‘f du is this common limit.
’E ‘

For ] < p < = we denote by Lp(Z,u;X) the space of f: 1 + X for which
1

T (J W fwilP du)P < o,
v Q

It is a significant result that the elements of LJ(Z,u;X) are precisely those

fuactions which are integrable in the above sense. It follows from Holder's inequality

a=d the finiteness of y that the elements of Lp(Z,u,X) are integrable. Further, as in
the scalar case, H-Hp is a Banach space norm for this space.(s)

LM 2, LZ(Z,u;E) i8 a Hilbert space.

FROOF. (fig) = Jn(f(w),g(w)) du defines an inner-product on L2(Z,u;ﬁ).

M.M. Day [1941] proves the following.

LIMMA 3. Lp(E,u;X} 18 uniformly comvex if 1 < p < ® and X 18 wniformly convex.

X, Strictly, the space of equivalence classes modulo almost everywhere zero functions.
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Comidivional Expectations.
Let ZD be a proper sub O-algebra of I, then LP(XO,U;X) is a proper subspace
of L_(L,u;X).
r
Clearly for any given f ¢ Lp(Z,u;X) there can be at most one f0 € Lp(Eo,u;X)
vithJ fdu=Lf dy for all E e L.
P 0 . 0

When such a fo exists it will be referred to as the conditional expectation
of f with respect to I, and demoted by E(f[):o).

LEMXA 4. fo € HO = LZ(Xo,u;H) i8 the conditional expectation of f with respect to
Zy if and only if (f—fo,g) =0 for all g ¢ My

PROCY. It is sufficient to consider g = :r)(E where x € H and F ¢ 20 (MG is the

closed linear span of such functions). Now,

(f - fo,:: XEJ = J ((f - fo)(u),: XE(u)) du
Y]

= ((f - fltw),z) du = ().f

(f - £ )(w) du,z).
.z E 0

Thus (f —fo,: X.) = 0 if and only if
([ (f - fo)(w) du,z) = 0 for all z e 4.
E
That 1s, 1f and only if [ (f - fo)(w) du =20.
‘E

While it is not necessary for our subsequent work, one important consequence
of this lemma is the existence of E(fiio) for every f € LZ(Z,u;E) and sub O-algebra ZO'
Tnis follows since fO 18 the foot of the perpendicular from f to H0 if and only if f0
is the closest point from MO to f, the existence of which is ensured by the uniform

cczvexity of Lz(Z,u;H).
Another consequence is the following.

CIETLLARY 5. For f e L,(I,u;8), I|E'(f|£0)l|2 < il () Indeed the ~gping J + E'(fIZO)
<e z norm one linear projection onto Lz(in,u;if).

TG e = £

FIIGF. Il‘,cll (£p:5p/

(F=10f = Fphfy

(f,fo), by lemma 4.

W

NAIIfF, I, by the Cauchy-Schwartz inequality.
1%
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By a martingale (Zn,fh) in L (I,u;X) we mean a nested sequence
S.SL,% .00 08 Zn S ... S L of sub 0-algebras and a sequence of functions
1,...,f;,... with fh € Lp([n,u;X), which satisfy the martingale condition
(5)

Z{f |r_) for all n 2 m.
nom

As an example note that for any nested sequences of sub O-algebras

T, <

o1

, S .. S Zn S ... SL and any f ¢ LZ(Z,u;H), (Zr,E(f{Er)) is a martingale.

e

To check the martingale condition observe that for n 2 m and £ ¢ Tm we have

i

[ (
J E(f|L ) du J f du, by the definition of E(*|+),
E m E

[
J E(f]In) du, again by the definition of E(+|+) and the
E

fact that £ ¢ L .
n

Procf of the Main Theorem.

We are now in a position to prove Theorem 1.

‘¢, A proof of this result for gemeral p ¢ [I,~) is the following. By their
density we may assume that f 18 a simple function, then

f

T L fo WEC ; z. x_ g du
BRSRA < AL TR

It

T P
[0 _51 z, E(Xp |L N7 du
1=1 1

n P
s fq (T M= b EB(X; |T )07 du
1=1 1
n P
= jn (E'(iil llz x5i|z0)) du
4 P
< JQ E(( L ”Ii” XE;) |Eo) du, by Jensen's inequality.

=1 [

"

n
o (T Nz Il X )P du, by definition of £(-iy,) and the fact
Qo v E, - =0
=1 i Qe l,.

0
P P
= il .
[ 1707 @ =

"I, Setting un(E) = IE f% du, for all E ¢ Zn’ the martingale condition may be

re-expressed as: For n 2 m the restriction of v to ZT is Lo
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Let (Zn’fﬁ) be a martingale in L2(Z,U;H) with Hfh < X for all n. Let

2
v = Lnfir,u;ﬁ), then we have the following structure.
- 3
A nested sequence of closed subspaces Mo < Ml S ... € Mn < ... and a
voifermly bounded sequence f&’fl""’f%"" with f% € Mn'
By the martingale condition and corollary 5 we have Hf%ug < Hf%”2 for n < m.

Thus Hfouz ,Hf}"z,...,ﬂfnﬂz,;.. is an increasing sequence of real numbers bounded

abave by X, and so convergent from below to some real number X.

Further, for n < m

n

el )
il '12 2 Ilfnllz + Hjmllz

m

IIfn + jmll 2
2 llE(f, + Im‘Ln)”2 = Zf.Il,

‘again, by corollary 5 and the martingale condition), so

fo+7
Z—ZI, + k as mn > =,
2 2
tence, by the uniform convexity of LZ(I,u;H), f&’fl""’fh"" is a Cauchy sequence
zad so by the completeness of the space, converges to some _ ¢ LZ(Z,:;H).

If I denotes the O-algebra generated by U Zn’ it is trivial to check that
n
< U'Mn = LZ(Iaﬂu;H) - the proper home for our martingale limit.
d

‘™

On the basis of our earlier observations, the proof for arbitrary p e (I,=)

aad upiformly convex Banach space X is merely a paraphrase of the above.
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THE LARGEST PRIME

Readers of the Los Angeles Times (November 16, 1978) will no doubt know cf
the exploits of two freshmen students of USC Hayward, laura Nichel and Curt Noll, who,

7
for a high school computing project, showed that 22‘701 ~ 1 (5553 digirs) is prime.

z9
Noll continued this work and in February 1979 found that 22"“09 - 1 (587 digits) is
srime. A more recent announcement of the L.A. Times (May 31, 1979) reveals that the

the next Mersenne prime 1is 2’4497 - 1 (13395 digits) a result due tc Barry Nelson and

David Slowinski.
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