Dynamics of the Douglas-Rachford Method
for Ellipses and p-Spheres

Jonathan M. Borwein, Scott
B. Lindstrom, Brailey Sims, Anna

Schneider & Matthew P. Skerritt

Set-Valued and Variational Analysis
Theory and Applications

- L
Set-Valu

Set-Valued Var. Anal a
DOI 10.1007/s11228-017-0457-0

Variational
Analysis

Theory and Applications

@ Springer

@ Springer



Your article is protected by copyright and

all rights are held exclusively by Springer
Science+Business Media B.V.. This e-offprint
is for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer



PN
Set-Valued Var. Anal @ CrossMark
https://doi.org/10.1007/s11228-017-0457-0

Dynamics of the Douglas-Rachford Method for Ellipses
and p-Spheres

Jonathan M. Borwein! - Scott B. Lindstrom! -
Brailey Sims' - Anna Schneider? - Matthew P. Skerritt!

Received: 27 February 2017 / Accepted: 5 October 2017
© Springer Science+Business Media B.V. 2017

Abstract We expand upon previous work that examined the behavior of the iterated
Douglas-Rachford method for a line and a circle by considering two generalizations: that of
a line and an ellipse and that of a line together with a p-sphere. With computer assistance
we discover a beautiful geometry that illustrates phenomena which may affect the behav-
ior of the iterates by slowing or inhibiting convergence for feasible cases. We prove local
convergence near feasible points, and—seeking a better understanding of the behavior—we
employ parallelization in order to study behavior graphically. Motivated by the computer-
assisted discoveries, we prove a result about behavior of the method in infeasible cases.
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J.M. Borwein et al.

1 Introduction and Preliminaries

The Douglas-Rachford algorithm [15] was introduced over half a century ago in connection
with nonlinear heat flow problems to find a feasible point (point in the intersection) of two
closed constraint sets A and B in a Hilbert space H.

We will denote the induced norm by || - ||. The projection onto a proximal subset C of H
is defined for all x € H by

Pc(x) = iz eC:|x —z| = inf ||x —z’||}
7’eC

When C is closed and convex the projection operator Pc is single valued and firmly non-
expansive. When C is a closed subspace it is also linear and self-adjoint. For additional
information, see, for example, [6, Definition 3.7]. The reflection mapping through the set C
is then defined by

RC = 2PC —1,

where [ is the identity map on H.

Definition 1 (Douglas-Rachford Method) For two closed sets A and B, and an initial point

Xo € H, the Douglas-Rachford method generates a sequence (x,)5 , as follows:

1
Xn+1 € Ta,g(xy) where Ty p:= 3 (I + RpRa4). (D

Figure 1 illustrates the construction of one iteration of the Douglas-Rachford method.

Remark 1 (Notation) Throughout, x,, xo are as in Definition 1, A, B are closed. When the
two sets A and B are clear from the context we will simply write T in place of T4 p.

Theorem 1 (Bauschke, Combettes, and Luke [7], see also [17]) Suppose A, B € H are
closed and convex with non-empty intersection. Given xo € H the sequence of iterates T p
converges weakly to an x € Fix Ty g with Py(x) € AN B.

In finite dimensions convergence in norm for convex sets is therefore assured. Notwithstand-
ing the absence of a satisfactory theoretical justification, the Douglas-Rachford iteration
scheme has been used to successfully solve a wide variety of practical problems in which
one or both of the constraints are non-convex. Phase retrieval problems are one important

Ra(xo) o B

Fig. 1 One iteration of the Douglas-Rachford method
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instance, and the case of a line L and circle C in 2-dimensional Euclidean space—
prototypical of such problems—was investigated by Borwein and Sims [9] as a specific case
of the higher dimensional problem of a line and a sphere in Hilbert space.

Despite the seeming simplicity of the situation, the Douglas-Rachford method applied to
L and C proved surprisingly difficult to analyze. Among the partial results obtained in the
feasible case was local convergence to each of the two feasible points. Based on this and
extensive computer experimentation, Borwein and Sims were led to ask whether this could
be extended to convergence to one or other of the two intersection points for all starting
points except those lying on a “singular set” Sp: the line of symmetry perpendicular to L
and passing through the center of C. Borwein and Aragén Artacho [3] established sizable
domains of attraction for each of the feasible points, and the global question was answered in
the affirmative by Benoist [11] who obtained the result by constructing a suitable Lyapunov
function, see Fig. 2.

The singular set Sy is invariant under the Douglas-Rachford operator 7¢,; and contains
period 2 points if and only if L passes through the center of C in which case all the points
of L inside C are period 2 points. When L is tangential to C all points on Sy are fixed by
Tc,1; for other positions of L the iterates exhibits periodic behaviors when rational com-
mensurability is present, while in the absence of such commensurability the behaviors may
be quite chaotic. See [9] for more details.

In order to gain further insights into the behavior of the Douglas-Rachford algorithm in
the case of nonconvex constraint sets we consider two generalizations of a line and sphere
(circle) in 2 dimensional Euclidean space, namely: that of a line together with an ellipse and
that of a line together with a p-sphere.

These seemingly innocuous generalizations, while open to exploration and local analysis
about the feasible points, may be impossible to analyze in full. The singular set is no longer
a simple curve but rather exhibits a complex (and fascinating) geometry involving a rich
array of periodic points and associated domains of attraction. In the case of an ellipse and
line we observe the appearance of higher order periodic points as the ellipticity is increased.

Definition 2 (Periodic Points and Domains) The following terms, already used informally,
help inform our discussion.

1. A point x is a periodic point of period m (or a period m point) if T} ;x = x (A period
1 point is simply a fixed point of T4, p).

Fig. 2 Douglas-Rachford on the 2-sphere and line showing the level sets of the Lyapunov function [11]
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2. The domain of attraction (or attractive domain) for a period m point x is the set of all
Xo satisfying
lim TA™ (xo) = x. )
k—oo

et

A point x is attractive if its domain of attraction contains a neighborhood of x.

4. The singular set consists of all points not belonging to a domain of attraction for any
feasible point.

5. A period m point is said to be repelling if there exists a neighborhood N, of x such that

for every xg € N, \{x} the sequence (T/]if’;; (xo))gi | eventually lies outside of Ny.

Of course if S is a domain of attraction for a period m point x then fork = 1,2,---m — 1
it follows that T*(S) is a domain of attraction for 7% (x). This is a notable feature in many
of our graphics, see for instance Fig. 3.

1.1 Notation

By a suitable rotation and scaling of axes we may without loss of generality take our ellipse
and p-sphere respectively to be

2
E, = {(x,y)eR2|<pb(x,y) = x2+<%) = 1} and
Sp = {@ ) e R 6,00 = @7 + )" =1}, 3)

and will write:
Lmp = {(x,y) €eR®ly=mx+ B} and Ly = Ly.0.

When it is clear from the context what the parameters are we will simply write E, S or L
respectively. Similarly, when the context makes it clear we will write T in place of Tg  or
Ts L.

1.2 Computation of Projections

For the case of the 2-sphere, the closest point projection has a simple closed form. For
x # 0, Ps(x) = x/||x||. Such a simple closed form is immediately lost for any ellipse with

Fig. 3 Domain of attraction for period 3 points in the case of Eg, Lg
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Fig. 4 Partial domains of attraction of Tk, 1, for points of different periodicities

b # 1 or any p-Sphere with p ¢ {1, 2} because—where ¢}, 8, are as in (3)—the induced

Lagrangian problems

Pe, () = {¥' | AVd(x, () = Ve ). @p(x) =1}

Ps, (x)

[ 1 V@ )20 = Vo, 0.

0,(x") = 1}

yield implicit relations that no longer admit explicit solutions. Computation of the required

projections necessitates the use of numerical methods.

A description of the optimized function solvers used is available in the appendix [18].
Many of our implementations of these function solvers—for example, that used to generate
Fig. 3—employ the interactive geometry software Cinderella, available at https://cinderella.

de/.

Table 1 Periods observed for attractive domains for various ellipse and line configurations

E; E3 E4 Es Es
Ly 2 2 2 2 2
Ly 23 23 23 2,3
L3 23 23,5 2,3,4,5,7 2,3,4,5,7
Ly 2,3,5,7 2,3,4,5,79 2,3,4,5(x2),7,9
Ls 2,3 2,3,4,5,79,11,13 2,3,4,5,79,11,13
Le 2,3,5,7 2,4,5(x2),7,9,11,13,15
L7 3 2,3,4,5,79,11,13

Lg

23,5

Some periodicities were observed in more than one domain

@ Springer
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2 The Case of an Ellipse and a Line

In the case of an ellipse and a line, the singular set—in contrast to the case of a circle and a
line—is no longer a simple curve, and appears to contain periodic points in many cases. For
example, Fig. 4 shows periodic points for Tgg 1, with attendant subsets of their attractive
domains. The singular set is larger than suggested here (see Fig. 10 for a more complete
depiction).

For simplicity, we set the line intercept at 0 for our pictures and tables. It should be noted
that, in contra distinction to the case of a circle and line, similar behavior can be observed
with nonzero intercepts (although symmetries are lost).

The number and periodicity of the points appear to be related to both the eccentricity of
the ellipse, and the angle of the line. As the eccentricity is increased, we observe growth in
both the number of periodic points and the maximum periodicity. Table 1, obtained exper-
imentally using Cinderella, summarizes our findings. Note that the method used required
interactively moving a point in the geometry package, and visually observing the attractive
domains. As such it is regrettably possible that some periodic points were missed, either
because their domains of attraction were too small or they were not attractive points.

We can describe the period 2 points of Tk, ;,, with a closed form that, while complicated
to state, is quick to evaluate [18]. Determining period 2 points algebraically is useful for
corroborating some of the behaviors we observe in Cinderella. However, the degree of com-
plication associated with the analysis of even this simplest case of a non-fixed periodic point
suggests that fully describing all behavior globally with explicit forms would be an imprac-
tical undertaking. This, in part, led us to pursue the computer assisted evidence-gathering
approach we describe in Section 2.1.

The nature of the periodic points is also sensitive to small perturbations of the line. We
can see above that for lines of small slope there are only a few attractive periodic points,
and as the slope increases additional points with higher periodicity emerge. As the slope
becomes large, some of the attractive domains appear to shrink in size until eventually the
associated periodic point ceases to be attractive. This appears to be the eventual fate of all
periodic points.

This sensitivity to perturbations can be seen in Figs. 5 and 6. In the former we have con-
nected every second iterate, and see how a small change in slope can affect which feasible
point is converged to, as well as the appearance/disappearance of attractive domains. In the
latter we plot every second iterate for T, r,, with 300 iterates, starting at m = 2 (top left)
we slowly rotate the line until we have m = 3/2 (bottom right). Part of the line is visible in

o
= =)
(GO st o0 ®

Fig. 5 Sensitivity of behaviors to small changes in line slope
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Fig. 6 Evolution in behaviors near two period 2 points as the line slope is changed

the bottom right corner of each frame. In the initial configuration, the subsequence of iter-
ates started near to the periodic point are repelled from it. As we rotate the line, we see that
the “speed” at which they are repelled decreases until eventually the periodic point becomes
an attractive point instead of a repelling point.

2.1 Studying Convergence: Numerical Motivations

The complicated nature of the singular set precludes any possibility of constructing a
Lyapunov function in any sizable region about the feasible point. Indeed, attempts to
even numerically construct the level curves such a function might have near a feasible
point proved unstable. Instead we refine our numerical-graphical method of discovery. The
method we used for Fig. 4, though useful for discovery, is not, in itself, sufficient for fully
understanding the behaviors, even for one specific ellipse and line. There are several reasons
for this.

1. There may be other periodic points we cannot see because they are repelling or their
attractive domains are too small.

2. The potential for numerical error is accentuated by the fact that the projection onto the
ellipse is specified as the root function—induced by the Lagrangian system—whose
calculation is, in some configurations, complicated by the presence of nearby incorrect
roots.
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Fig. 7 Close up view of the spirals in seen in Fig. 4
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3. This method of visualization may be deceptive, as it precludes us from seeing accurately

the extent and shape of attractive domains.

As an example of the latter, notice how the patterns of the iterates in Fig. 4 form orderly
spirals. This lovely pattern seems to hold for all the cases we have looked at. If we zoom in
on the spirals we see what look like twisting galaxies (see Fig. 7). Intuition would suggest
to us—incorrectly—that this is perhaps indicative of smooth boundaries for the domains.

Fig. 8 Domains of attraction for the two feasible points of Tg, 1,
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Fig.9 Domains of attraction for Tgg ;. Compare with Fig. 4

2.2 Visualization Through Parallelization

Seeking clearer pictures with finer resolution, we implemented a new version of our code.
In this new version we specify a resolution and for each pixel we compute the midpoint,
calling it xo. Once computed, the location of x| oo is checked against a list containing the
feasible points and approximate periodic points, and the pixel is colored according to which
list member x1 000 is nearest to.

The efficacy of this technique is demonstrated in Figs. 8 and 9. The former clearly depicts
the complex structure of the domains of attraction for the two feasible points in the case

Fig. 10 Domains of attraction for T, 1
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of Ty, e, where two period 2 repelling points are present. Note the interweaving of the
attractive domains near the repelling points. The latter shows the domains of attraction for
Tk, 1 in the same region as shown in Fig. 4.

This new implementation was written in such a way as to leverage the highly parallel
nature of GPU devices, although it may also be run on regular CPUs. This allowed us to
compute the colorings for many pixels simultaneously, reducing the time needed to produce
the images and simultaneously affording us the ability to produce images with a much finer
resolution. With this method we were able to see the behavior of the system over a larger
area, as shown in Fig. 10. Note that these images benefit greatly from color coding of the
domains. Color versions of the above figures and other images we produced can be found
in the appendix [18].

3 Line and p-Sphere

Projections onto the 1-sphere can be determined explicitly, so exact analysis is possible.
Consequently, much of the behavior is readily determined in particular periodic points with
periods higher than 2 are observed. When p = 2, we recover the circle for which the
convergence properties are known, (see Section 1). Our observations from the case p > 2
suggest a conjecture: that when the line is not parallel to either of the axes there is at most
one pair of periodic points and they are repelling.

For 1/n-spheres where n > 2 is a natural number, we see the appearance of period 2
points with attendant local domains of attraction, examples are shown in Fig. 11. It can be
seen—proven easily—that, for the sphere Sy,, with line L1, any point (—¢, ) or (¢, —t) for
t € (0, zi,,] is a period 2 point. This continuum of period 2 points is analogous to what is
observed in the case of a 2-sphere. More interesting is the apparent emergence of attractive
domains which have nonzero measure.

These observations already hint at the larger measure and greater complexity of the sin-
gular manifold in the case of a line and p-sphere, when p # 2, compared to that for a line
and 2-sphere. When we rotate the line to, say, L, there appear to be only finitely many
period 2 points, but they are no longer constrained to lie in an affine submanifold.

4 A Theoretical Interlude: Local Convergence to a Feasible Point
Borwein and Sims [9] used the Perron theorem on the stability of almost linear difference

equations [16, Corollary 4.7.2] to establish local convergence of the Douglas-Rachford algo-
rithm, x,41 = Tk, (x,), to an isolated point f € L N K when L is a line and K is the (non

Fig. 11 Subsequential convergence to—and attractive domains for—period 2 points. Left: T, , 1, right:
T51/3,L|/2
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convex) unit sphere in n-dimensional Euclidean space. We outline a strategy for extending
this to the case when L is still a line, but K is a smooth hypersurface ((n — 1)-manifold).
We consider its application when L and K lie in R?; L is the line ax + By = y, K is the
ellipse Ep as in (3).

The strategy is to show that, in a neighborhood of the feasible point f, the reflection
in the supporting hyper-plane Hy to K at f—as in Fig. 12—provides an o-order approx-
imation to the reflection in K so that the Perron theorem can be applied to the system of
difference equations corresponding to the Douglas-Rachford algorithm. Succinctly, we want

Rk (p) = RH/,(p) + A, where ||A]| = o(]|p — f]) for p sufficiently near f.

For the Euclidean reflection this follows if || Pk (p) — Pu,(p)Il = o(llp — fI). When this
happens we have, for p in a neighborhood of f,

Tkx,L(p) = = [p+ RL (Rx(p))]
P+ R (RHf(P) + A)]
p+Ri_y(Ru,(p)+A—f)+ f]

[

[

[P+ Ry (Ri,—f(p— )+ )+ A= f)+ []

[p+Ri—s (Ru—f(p— £)) + R—p(A) + f],  since Ry is linear
[

=N =N === =

1
(P— )+ Ry (Ru,—s(p— )]+ ERLff(A) +f

Thus we have that
Tx..(p) = f + Tw—p.a—pp— )+ A

where A’ = %RL_f(A) has |A’|| = ollp — fll since Ry _ s is a bounded linear operator.
Thus, by the theorem of Perron (see, [9] theorem 6.1 or [16] Corollary 4.7.2), the system
of difference equations corresponding to the Douglas-Rachford algorithm for K and L,

Xpy1 = Tx,L(xp)

is exponentially asymptotically stable at f (in particular ||x, — f|| — O for x¢ sufficiently
near f) provided all the eigenvalues of the linear operator T(x,— ), (L— f) have moduli less
than one.

Fig. 12 Approximation of Pg by Py, near f
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Remark 2 When M is a subspace, the projection Py, is linear (as is the case when M =
L — f) and the Douglas-Rachford operator for N and M becomes

1
Inw = 5 U+ QPy —D@Py —1D)] “4)
= 2PyPy — Py — Py + 1 ®)
= PyPy + (I — Py)(I — Py). (6)

When N is also a subspace (for instance when N = Hy — f) this may be written as
Tnm = PuPn + Py Pyt

where * denotes the orthogonal complement.

As a curiosity, we observe that if in the case of two subspaces we define a rwisted
Douglas-Rachford operator by Vyy = Py Py + Pyi Py, then, since Py Py =
Py Py1 = 0, the iterates are x, = Vy,,(x0) = un + v,, where u, 11 = Py Py(u,) and
Vn+1 = Py1Py1(vy). The sequence of twisted Douglas-Rachford approximants is thus
the sum of two sequences (u,) and (v,) resulting from the application of von Neumann’s
alternating projection algorithm to the pairs of subspaces M and N, and N and M~ respec-
tively. Since the Friedrichs angle 6 between M and N is the same as the angle between M+
and N, the twisted Douglas-Rachford algorithm converges with the same rate as the von
Neumann algorithm; namely at a linear rate proportional to cos? 6 [13], the same as the rate
exhibited by the standard Douglas-Rachford algorithm [5].

Now we consider the special case of an ellipse and a line. Without loss of generality we
consider the ellipse Ep, as in (3), and the line L : ax 4+ By = y, where b > 1, 8 > 0 and,
to ensure the existence of f = (xo, yo) € L N E N |R|?, eithera < y < Bb or Bb < y and
a =y — g2

Following the strategy outlined above leads us to consider the Eigenvalues of T for two
lines through the origin

Li:ax+By=0 and Lr:Ax+By=0

where, in our context, the latter line, being parallel to the tangent to E at f, has A = xp and
B = yg/b*. 1t is readily verified that the orthogonal projection onto L; has the matrix

_ L (B —ap
UJLJ_W(—O{,B o2 ) @)

with a matching expression for [Pp,]. Substituting these expressions into Ty, ., =
2PL1 PL2 — PL1 — PL2 +1 yields

14
Te0a) = (_ww ;)
where = A+ BB, w = aB— A and A = (a2 + B2)(A2 + B?), which has eigenvalues
% (¥ £ iw) with modulus squared equal to
¥? (@A + BB)? ((@A + BB)> + (@B — BA)?)
e (w2 + wz) 24 g2\ (A2 2)2
(2 + B%)" (A% + B?)
(@A +BB)?
~ (02482 (A2 + BY)
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Thus, as expected, for any two lines intersecting in a single point the Douglas-Rachford
algorithm with any starting point spirals exponentially to their common point.

Therefore the Douglas-Rachford algorithm for a line and an ellipse E is locally
convergent at each of the feasible points f provided

IPE(P) = Pry (Il = o(llp — fID,

for all p in some neighborhood of f.

To see this we follow an argument suggested by Asen Dontchev [14]. While we present
the argument in the particular case of E, = {x|¢p(x)—1 = 0}, the astute reader will observe
that it applies to any smooth hypersurface K := {g(x) = 0} at any point f = (xp, Yo) € K
at which the gradient Vg is non-singular (true for the ellipse as Vg(x) = (2x, 2y /bz)) and
so applies to p-spheres except near the extreme points of the sphere when 0 < p < 1.

We begin by noting that for the supporting hyperplane (tangent) to E at f

Pu,(p)=f+ Pu;—r(p— )
where

[PH f]_ b* ( Y§/b4 _XOyO/b2>
—f1= .

b2+ 32 \—xo00/b> x5

Next we observe that the nearest point projection (u(p), v(p)) = Pe(p) at p = (¢, n) is
the solution of

1 1
minimize: EHPE(P) — pll2 =5 ((14 - §)2 + - 77)2)

2
subject to: g (Pg(p)) = u* + (%) —1=0,

which, since Vg (Pg(p)) is non-singular, is characterized via the method of Lagrange mul-
tipliers by V1 ((u — ¢)? + (v — n)?) + AVg (Pg(p)) = 0 together with g (Pg(p)) = 0,
that is,

fiiu—¢+2xm=0

b v—n+2kb%:0
g: u2+<3)2—1=0.
b
As an aside, this yields the implicit specification
P, n) = ( 3 , by ), here ¢ + b =1.
1420 b2 421 (1 +2x0)? (bz+2k)2

In order to apply the implicit function theorem to ensure that u, v and A are differentiable
functions of ¢ and 7 in a neighborhood of f we require the Jacobian of the above system
of equations with respect to the dependent variables, u, v and A at f, J(f), to be non-
singular. Since Pg(f) = f we see from the first (and second) equation that for p = f the
corresponding Lagrange multiplier is necessarily 0. Thus,

1 0 2x0
sy = W teo) [0 1 2.

a(u, v, }\) (x0,y0,0) 2X0 2y0/b2 0
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T
more generally J(f) = (Vgl( ) VgE)f) ), which is indeed non-singular, and in our
case
1 b ya /bt —xoyo/b* x0/2
J(H'=——— | —xon/b* x5 yo/2b?

T opAy2 2
Do+ \ xoi2 yos20® —1/4
Thus the implicit function theorem applies, yielding

([Pﬂfﬂ)zzam,wx) _ g2 S8 =-fo”<é)v

/
[2(H)] 0.1 |ixgso a(c. )
b* ﬁw4-ﬁww#>
whence |[Pj = — 0 which we recognize as
[ E(f)] b4x§+y§ (_xOyO/bZ X% g
[P;{/ (f )] and we are able to conclude that near f

IPE(p) = Pr, ()l = If + Pp(H)(p = HH+A = (f + Puy—r(p— )| = lIA]

where ||A| = o(]|p — f) as required.
Summarizing the above, we have the following local convergence result.

Theorem 2 Let K be a hypersurface in R" and f € K such that K is smooth in a neigh-
borhood of f and let Hy be the unique supporting hyperplane to K at f. If L is a line such
that L N\ Hy = {f}, then the Douglas-Rachford algorithm Tk y, is locally convergent to f.

5 Important Lessons About Global Behavior

What we have observed in our computer-assisted study of these two simple cases of a line
together with an ellipse or a p-sphere is remarkably informative: it suggests likely explana-
tions for the behavior of the algorithm both for feasible and infeasible cases. We consider
feasible cases first.

5.1 The Feasible Case
Aragén Artacho, Borwein, and Tam experimented with using the Douglas-Rachford method
to solve Sudoku puzzles [1]. The left hand images of Figs. 13 and 14, illustrate the dis-

tance to the solution by iterations of Douglas-Rachford for two different sudoku puzzles.

Al escargot

Normalized Distance from Solution

20004000600 BOO 1000 1200 1400 20 40 60 80 100 120 140 160 180 200

Iterations

Fig. 13 Distance from iterates to solution. Left: for a sudoku puzzle [1]. Right: for Tg, 1,
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'Nasty' Sudoku 157

Normalized Distance from Solution
o
®
3

0-605 500 1000 1500 2000 2500 0 T T T T T T T
20 40 60 80 100 120 140

Iterations

Fig. 14 Distance from iterates to a solution. Left: a sudoku puzzle [10]. Right: Tg,, 1,

First consider Fig. 13. On the left, we see the algorithm struggle for a long period of time
before finally converging. Compare this to the image on the right: for Tg, 1, with 210 iter-
ates, distance of each iterate—to the particular feasible point the sequence converges to—is
plotted. The subsequences xox and xp,—1 are colored light and dark gray respectively. They
correspond respectively to iterates landing in the domain of attraction for the left and right
feasible points; see Fig. 8. Without the geometric intuition gleaned from Fig. 8, we would
not know to color these two subsequences distinctly, and the error plot would not reflect
the behavior as clearly. Once the iterates have finally climbed free of the influence of the
repelling period 2 points, we see a sudden rapid convergence to the relevant feasible point.

Now consider Fig. 14. At left, we see distance from the solution of the iterates for a
different sudoku puzzle. This time the error stabilizes after a time without any indication of
impending convergence. At right, we see the iterates for Tg,, 1,. The iterates approach the
ellipse before being pulled into the attractive domain for some period 11 points, preventing
convergence.

Experiments have also been conducted using the Douglas-Rachford method to solve
matrix completion problems associated with incomplete Euclidean distance matrices for
protein mapping [2, 4, 10]. Consider Fig. 15. The left image shows the relative error of
iterates when solving the Euclidean distance matrices for various proteins. The right image

— 1POA
1HOE

Relative Error

10°

5000 10000 15000 20000 25000 30000
Iterations

100 200 300 400

Fig. 15 Distance of iterates from solution (scale logarithmic). Left: for five proteins [10], Right: for the
iterates of Tgg 1, pictured in Fig. 16

@ Springer



J.M. Borwein et al.

Fig. 16 A convergent sequence of iterates of Ty 1, traces the outline of the domains

shows the relative error for the iterates of Tgg 1, when the sequence of iterates is started
near to domains of attraction.

The exact iterates used to generate this data are shown in Fig. 16; they appear to trace
out the shapes of the attractive domains for periodic points, narrowly avoiding them on their
way to eventual convergence. Points started relatively close to domains of attraction for
periodic points (as in the right hand side of Fig. 13) appear to take longer to converge than
those started elsewhere.

While we cannot say with any real certainty that the behavior when solving these
Euclidean distance matrices is analogous to iterates climbing away from repelling points or
dodging and weaving between a nest of attractive domains, it is surprising that a system as
simple as that of a line and ellipse can create behavior so similar to that observed in far more
complicated scenarios.

5.2 Infeasible Cases

For the infeasible cases of line and the p-sphere or ellipse, we observed that the iterates of
the Douglas-Rachford algorithm appear to walk to infinity with a roughly linear step size.
In both infeasible cases, it is possible to strictly separate the two sets in question. This led
to the following theorem.

Theorem 3 Let xg be a point in, and A and B be closed subsets of a Hilbert space H and
let x,, := TX’ g (x0). Suppose one of the following hold.:

1. A is compact and co(A) and cl(co(B)) are disjoint.
2. B is compact and cl(co(A)) and co(B) are disjoint.

Then ||x, || tends linearly to oo with a step size of at least d(A, B).

Proof we suppose that (1) applies. The proof when (2) applies is obtained by interchanging
the roles of A and B. Now, we can strictly separate co(A) and cl(co(B)) with a hyperplane
H = f~!(«) for some linear functional f. See [12, Theorem 1.7] for details. By translation
invariance, let « = 0. Then H is a subspace, so we can uniquely describe any x € X as
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x = hy+y, where h, € Hand y, € HL. We can impose several additional properties on f:

[f]=1f(hy +y)| = llycllx forallx € X 3
f(x) <0 forallxe A )
f(x) >0 forallx € B. (10)
Equations (8), (9), and (10) imply that f(x) > d(A, B) forallx € B — A. Now
Rp(Ra(xy)) + xp Rp(Ra(xy)) — xp
Xppl —Xp=—""—Xp = ———————————
2 2
_ 2P5(Ra() — Ra(n) = xn
- 2
_ 2Pg(RA(xz)) — 2Pa(xp) — Xn) — Xy
2

= Pp(Ra(x)) — Pa(xn) € B — A.

Now x, 11 — x, € B — A implies that f(x,+1 — x,) > d(A, B). Thus we have that, for all
n, f(xp+1) > d(A, B) + f(x,). This shows that ||x, |, — oo with a linear step size of at
least d(A, B). O

From this result we obtain the following corollary, the computer-assisted discovery of which
motivated the pursuit of the more general Theorem.

Corollary 1 In the infeasible case of a line L with an ellipse E or a p-sphere S, we have that
lxn || = oo with a linear step size greater than or equal to d(E, L) or d(S, L) respectively.

Using these results and the following remark, we can naturally extend some of the convex
theory to the non-convex case.

Remark 3 As a consequence of [8, Theorem 4.5] we have, for convex subsets U, V of a
Hilbert space H, with U N (v + V) # @, where v = Puiqand—Ty.v)) (0) is the minimal
displacement vector, and for x € X, that (Py Tﬁ’vx)n converges weakly to a point in U N
v+ V).

We extend this result in our context using Theorem 3.

Theorem 4 Let A, B be the respective boundaries of two disjoint, closed, compact, convex

sets U,V in H (in R" it suffices to have only one be compact) so that A, B satisfy the

requirements of Theorem 3. Let x, 11 = Ta g(xn) and v := Pejgand—T1y v)) (0), the uniquely

defined element in cl(ran(ld — Ty y)) such that ||v|| = ig}f(”x — Ty.vx|, and let vV =
X

Peiran(td—T4 5))(0), the uniquely defined element in cl(ran(ld — T4 p)) such that 1Vl
in)f(||x — T4, px||. Then, for x € X, we have that (Py T:{ gX)n converges weakly to a point
X€E ’

in AN @ + B).

Proof By the closure and compactness we have attainment of elements which minimize the
distance. Thus A N (v' + B) = U N (v + V) # B where v is defined as in Remark 3.
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Let f be defined as in Theorem 3 so that f(#) < O for all u € U. Then the sequence
f(x,) is monotone increasing and so there exists some n’ € N such that f(x,) > 0 for
all n > n’. Suppose n > n’. Then we have that x,, ¢ U. Thus P4(x,) = Py(x,), and so
Ra(x;) = Ry (x,). We also have that R4 (x,) ¢ V. Thus Pp(Ra(x,)) = Py (Ra(x,)), and
80 Rp(Ra(xy)) = Ry (Ra(x,)). Thus we have that T4 p(x,) = Ty, v (x,), and so

(PAT} 5" x)n = (PATS gxu)n = (PAT(: y%u ) (11)
for all n € N. We have from Remark 3 that the sequence on the right converges to a point y
inUN@+V). O

5.3 Closing Remarks

Given that we are investigating the Douglas-Rachford method applied to some of the
simplest possible instances of a non-convex set, the emergence of such complexity is
extraordinary. More interesting from a technical standpoint is the similarity with which the
behavior in such simple situations appears to resemble some of what is observed for much
larger and more complicated ones.

We also hope that we have succeeded in making a case for computer-assisted discovery,
visualization, and verification. “A heavy warning used to be given [by lecturers] that pic-
tures are not rigorous; this has never had its bluff called and has permanently frightened its
victims into playing for safety. Some pictures, of course, are not rigorous, but I should say
most are (and I use them whenever possible myself).”—]J. E. Littlewood, 1885-1977 [from
Littlewood’s Miscellany, p. 35 in the 1953 edition], said long before the current powerful
array of graphic, visualization and geometric tools were available.

Acknowledgments The authors wish to especially thank one of the referees for their careful reading of
the manuscript and their several suggestions which have significantly improved the readability of the final
version.
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