
Introduction 

These notes a re  based on lecture courses given t o  IV'th year honours 

and post-graduate students a t  the University of New England over the l a s t  

few years. They introduce that  area of functional analysis which has 

become known as  the "Geometric theory of Banach spaces". There has been 

a resurgence of in te res t  i n  Banach space theory following a number of 

important developments over the l a s t  decade or  so: 

Geometric aspects of the theory of vector valued measures, par t icular ly 

spaces with the   ad on-~ikodh property; 

The study of general convex functions and Mcnotone Mappings, as  in  the 

theory of (weak) Asplund spaces; 

The theory of weakly compactly generated spaces and attendant renorming 

resul ts ;  

Super-Properties; 

The theory of Banach space valued random variables; 

Considerable advances i n  the theory of the "classical Banach spaces". 

These developments are  only hinted a t  i n  the current notes, the 

"classical" problem of ref lexivi ty being the main application considered. 

Also, some of the more specialized concepts of current in te res t  i n  Banach 

space geometry ( fo r  example uniform ~ a t e a u x  d i f fe ren t iab i l i ty ,  uniform 

rotundity i n  directions, Vlasov's local compact uniform rotundity) have 

been omitted. None-the-less many ideas derived from recent work have 

been included. The course work is meant t o  provide the sound background 

i n  elementary Banach space geometry necessary for the study of these 

new and exciting areas. 

The reader is  assumed t o  have a working knowledge of general functional 

analysis and topology (as  contained i n  the books by Simmons and Rudin, 

for  example). Many of the tools commonly required i n  the geometric theory 



of Banach spaces have been s m m z i z e d  i n  50. Because of t he  se l ec t ive  

nature  of t h e  course t h e r e  a r e  however exceptions. The wst notable 

omissions are:  

The 1~rx in -~ i l 'man  Theorem: every compact convex subset of a locally 

convex linear topological space i s  the closed convex hull of i t s  

&reme points, and its improvement t o  Choquet type theorems. 

Many of  t h e  r e s u l t s  associa ted  w i t h  t h e  name of Baire. (The Baire 

category theorem has i n  f a c t  been assumed i n  t h e  course, but  belongs 

w r e  properly to t h e  general theory of metric spaces and so  is not 

included i n  50.) 

I wish to thank my colleagues who as s i s t ed  i n  the  development of t h e  

course, pa r t i cu la r ly  those s tudents  who wi t t ingly  o r  unwitt ingly served 

a s  guinea pigs .  Special  thanks a r e  due to Mrs. Ferraro who transformed 

long s c r o l l s  of blotch y manuscript i n t o  very readable typescr ip t .  t 

B. Sims 
April ,  1979 
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50 Preliminaries,  Including Basic Notation 

In  t h i s  s ec t ion  we l ist  those r e s u l t s  from the  General Theory of  

Banach spaces which a r e  necessary too l s  f o r  our work. You should have 

seen mst of them before. Proofs a r e  only included f o r  a few r e s u l t s  

which may be unfamiliar t o  you. The order i n  which r e s u l t s  appear is  no t  

necessar i ly  the  normal order i n  which they would be proved. I t  is  not  

e s s e n t i a l  t h a t  you know the  proofs,  but  you must understand what each 

r e s u l t  is  saying and so  be able t o  apply it i n  a va r i e ty  of circumstances. 

None-the-less, t h i s  sect ion should not be " learnt"  a s  p a r t  of t h e  course, 

but r a the r  t r ea t ed  a s  reference mater ia l .  

Although much of  our theory remains va l id  i n  normed l i n e a r  spaces,  

o r  with obvious modifications,  i n  spaces over the  complex f i e l d  of 

s ca l a r s ,  we w i l l  r e s t r i c t  ourselves t o  r e a l  Banach spaces. 

Unless otherwise s t a t ed  x o r  (x ,  l l . l l )  w i l l  denote a r e a l  ( i n f i n i t e  

dimensional) Banach space. B[x] = {x E X: llxll < 11 i s  t h e  u n i t  b a l l  of 

X. The boundary of B [XI , S ( X )  = {x E 11x1 = 11 i s  t h e  u n i t  sphere. x 
I n  general B (x) denotes the  open b a l l ,  centre  x and radius  r t h a t  is, 

B (x) = Iy  E X: nx - y N  < r }  , while Br[xl is  the closed b a l l  

{y e X: (Ix - yll < r }  . Thus B[Xl = B1[Ol. 

Br [XI 

A l i n e a r  mapping T: X1 -+ X 2  where ( X I ,  11.11 l )  and ( X n ,  1 1 . 1 1  2)  a r e  Banach 

spaces i s  bounded = (norm) continuous i f  B ~ l l  = Sup llTxl12: x E S ( X l  ) 1 < -, 

and then llTxl12 < IITll~xlll f o r  a l l  x E X1. 

CLOSED GRAPH THEOREM: A linear map T: xl -+ x2 i s  continuous i f  and only 

i f  whenever the sequence (xn) c x i s  such that  xn + x and T X ~  + y we 

have y = TX. 



NOTE: While t h e  condition here  resembles t h e  sequent ia l  character iza t ion 

of continuity:  xn + x * Tx + Tx, it is much weaker. By t h e  ciosed 

graph theorem we do not  need to es t ab l i sh  the  convergence of  (Txn) from 

t h a t  of  (x,). It is s u f f i c i e n t  t o  assume both sequences converge and 

then show y = Tx. 

For our purposes the important consequence of  the  OPEN MAPPING 

THEOREM is: I f  a continuous linear mapping T: xl + x2, where xl and x2 

are both ~ m c h  spaces, i s  1-1 and onto then T i s  invertible and i t s  

inverse T - ~  i s  also a continuous linear map. 

A l i n e a r  mapping T s a t i s f i e s  these  condi t ions  i f  and only i f  t he re  e x i s t s  

s c a l a r s  m, M > 0 such t h a t  mlxl 5 BTXI 5 Mixl f o r  a l l  x € X1. Since a 

mapping is continuous i f  and only i f  t h e  inverse images of open s e t s  

(unions of open b a l l s )  a r e  open, we have: Two norms RSI1 and 1 -12  a r e  

equivalent Banach space norms f o r  X ( t h a t  is, both give  r i s e  to the  same 

open se t s )  i f  and only i f  the  i d e n t i t y  map I: X + X i s  a continuous map 

from ( X , I * i l )  to (x,R-i2I and t h i s  happens i f  and only i f  t he re  e x i s t s  

s ca l a r s  m, M > 0 such t h a t  rnRxul 5 8xn2 5 MlxRl f o r  a l l  x E X. 

[Since f i n i t e  dimensional normed l i n e a r  spaces a r e  always complete and 

l i n e a r  mappings between f i n i t e  dimensional spaces a r e  always continuous, 

t h i s  shows t h a t ,  a l l  norms on a f i n i t e  dimensional spgce a r e  equivalent.]  

Of pa r t i cu la r  importance is  t h e  s e t  of all continuous l i n e a r  funct ionals  

from X to R, denoted by X*. With point-wise de f in i t i ons  of  addi t ion and 

sca la r  mul t ip l ica t ion and norm defined by 

X* is a Banach space, t h e  space of X. 

We w i l l  wr i t e  X** f o r  (x*) * t h e  dual of-  t he  dual,  X*** f o r  (X**) e t c .  

Typically x, f ,  F, F w i l l  be elements of X ,  X*, X**, X*** respectively.  

For x E X the  evaluation functional x is defined by 

= f ( x )  fo r  a l l  f E x*. 

The mapping J O :  x I+ x i s  an isometry ( t h a t  is, llxll = Ilxll) from X i n to  

X**. The range of J O ,  denoted by X i s  the  natura l  embedding of X i n  

X**. Since X is a Banach space, X is a closed subspace of X**. I f  

X = X*' we say X is ref lexive .  

I 
A l i n e a r  functional f:  X + 61 i s  continuous ( i - e . ,  belongs t o  X*) i f  and 

only i f  i t s  kernel (Ker f = {x E X: f ( x )  = 0)) i s  a closed subspace of X. 

I f  f E X* i s  not i den t i ca l ly  zero and xo  E X i s  such t h a t  f ( x o )  # 0, then 

f o r  any x E X we note t h a t  x = Axo + k where X = f (XI/£  (xo) and 

k = ( X  - A X  ) E Ker f .  Thus, X = <X > .¶ Ker f ,  t he  d i r e c t  sum of t h e  one 
0 0 

dimensional subspace spanned by x o  and Ker f ,  and so Ker f has co-dimension 

one i n  X. The converse is a l so  true: I f  M i s  a subspace of co-dimension 

one i n  X, i . e .  X = <x0> .¶ M f o r  some xo E X ,  xo  # 0,  then M = Ker f f o r  

some f E X* [any x E x may be wri t ten  uniquely a s  x = Xx + m f o r  some 
0 

X E 61andm E M ,  def ine  f ( x )  = X.] 

HAHN-BANACH THEOREM: kt p be a semi-norm on x. Let M be a subspace of 

x and f a linear functional from M t o  61 such tha t  If (m)  ( < p(m) for a l l  

m E M. Then there e x i s t s  a l inear functional ; on x such tha t  

i) f l M = f  

and ii) / f ( x )  I s p(x)  for a l l  x E X .  

[f is usually referred t o  a s  a Hahn-Banach extension of £1. 



We note t h e  following consequences of t h i s  theorem. 

1) (SUPPORT THEORPI) For each x o  E S(X) there eccists an f o  E s(x*) 

with f o ( x 0 )  = UfOi llxoA = 1. 

2) X* i s  over X t h a t  is, i f  f  (x o) = 0 f o r  a l l  f  E X*, then xo  = 0,  

o r  i f  x  # y then the re  e x i s t s  f  E X* with f ( x )  f f ( y ) .  

[Note: almost by de f in i t i on ,  X is  t o t a l  over X*.] 

3) I f  M i s  a closed subspace o f  x and x o  & M there eccisto f  c B[X*] 

with f  (x0) = dist(xO,M) f 0 and £IM = 0 (M < Ker f )  . 
[p(x) = dist(x,M) = in£  {Rx - all: m E MI is a  semi-norm on X.] 

4 )  REISZ' LEMMA: For m y  r -wi th  0 < r < 1 und any proper closed subspace 

M of X, there e z i s t s  x E S(X) with dist(x,M) > r. 

Proof. By 31 the re  e x i s t s  f  E X* with 

f(m) = 0 f o r  a l l  m E M but  f  # 0. 

Hence the re  e x i s t s  (xn) c S(X) with 

f  ~fp (xn1 + 1. But then 

f  f  
llxn - mlt 2 l m  (xn) - - (m) 1 

UfU 

f  
= I- (xn) 1 + 1. 

U f n A  

[Note: A s  a  r e s u l t  of 4 )  t he  f  i n  3) has I f  l = 1 .I  

5) SEPARATION THEOREMS. 

( a )  Mazur's Separation Theorem (specia l  case; see Day p. 23 .) 

Let K be a convez s e t  wi th  in ter ior(K)  # B . I f  xo # i n t e r i o r ( l 0 ,  

then there e z i s t s  f  E X* with f ( x o )  > f ( k )  d 
for a l l  k E  interior(^). / 

We say f  separa tes  xo from K. 

Proof. By a  t r ans l a t ion  we may without )((f)  

l o s s  of gene ra l i t y  suppose 0  c i n t e r io r (K) ,  G., f o r  some r > 0,  

Br(0) 5 K. 

Let p  be the  minkowski gauge functionat of K, 

p(x) = in£  {A: x/A E K ,  A > 01. 

p  i s  a  semi-norm on X; i n t e r io r (K)  = {x E X: p (x )  < 11 and c l ea r ly ,  

-1 
p(x)  < (4 r  ) 11x11 - 

0 
'w 

Define f  on <x0> by fg(Axo) = A ,  then since xo # in ter ior(K)  we 

have f o ( x 0 )  = 1 5 p(xo)  and so lfO(AxO) I 5 p(AxO) fo r  a l l  A .  Let 

f  be a  Hahn-Banach extension of f o  from <x0> t o  X ,  then 

I f (x )  I p(x)  5 r-'1 llx! fo r  a l l  x  E X,  so f  E X*. Further,  0, 
f ( k )  5 p(k)  < 1 = f ( x  0 ) fo r  a l l  k  E i n t e r i o r  (K) a s  required. 

(b) Eidelhei t  separation Theorem: Let K1 and K 2  be convex s e t s  

with i n t e r io r (Kl )  # @ and ~p n i n t e r io r (Kl )  = @ , then there e x i s t s  

f  E S(X*) such tha t  Sup f  ( K 2 )  5 inf  f (K1) .  

Proof. Let K = K 2  - K1, then K has i n t e r i o r  points  and 0 i s  not 

one of  them. So, by (a)  there  e x i s t s  f  E S(X*) such t h a t  0  > f ( k )  

a l l  k E K. Thus i f  kl E K1 and k2 E K2 we have f ( k 2  - k l )  < 0 or 

( c )  (Basic Separation Theorem). I f  K i s  a ctosed convex subset of 

x and xo  $ K then there e x i s t s  f  E s(x*) such tha t  f ( x 0 )  > sup f ( ~ ) .  

Proof. Since K i s  closed, t he re  e x i s t s  r > 0 such t h a t  Br(xo) C K = @. 

Apply (b) with K1 = Br(xo),  K2 = K and observe t h a t  inf f  (Br(xo) 1 # f  (xo)  . 

RGMARK. The s ing le  point  xo  i n  ( c )  can be replaced byany compact 

convex subset of X d i s j o i n t  from K. (Can you prove t h i s ? )  



TOPOLOGIES ON X 

So f a r  we have only considered the  -on X. This 

is the  topology on X generated by t h e  metric d(x,y) = l x  - yl  . The s e t  

of open b a l l s  {B,(x): r > 0 and x E XI i s  a base fo r  t h i s  topology. Indeed, 

fo r  each point x E X {B (x) :  q is  a s t r i c t l y  posi t ive  r a t iona l  nmber} is  
q 

a countable open base a t  x.. Further, t he  norm topology is  a l i n e a r  space 

topology t h a t  is, i f  N is an open base a t  0, then f o r  any X E 6? 

XN = {AN: N E N }  is a l s o  an open base a t  0 and f a r  any x E X 

x + N = {X + N: N E N) is an open base a t  x. Thus, the  operations of 

addi t ion and sca la r  mul t ip l ica t ion a r e  continuous with respect  t o  t h i s  

topology. 

.%Q other  l i n e a r  space topologies a r e  the  weak and weak* topologies 

defined respect ively  on a space and on its dual. 

The weak (w) topology on X, sometimes denoted by O(X,X*) is  t h e  weakest 

topology on x with respect  t o  which the  elements of X* a r e  continuous. Since 

a l i nea r  functional f w i l l  be continuous i f  and only i f  

-1 -1 
fq1[-E,E) = f (-m,E) n f (-E,m) is  an open subset of X fo r  each E > 0, 

we see t h a t  a subbase fo r  the  w topology a t  0 cons i s t s  of s e t s  of the  form 

N(f,E) = {X E X: f ( x )  < E )  f o r  E > 0 and f a  X*. 

Not only is every functional i n  X* continuous when X is equipped with the  

W topology bu t  t he  elements of  X* a r e  t h e  only l i n e a r  funct ionals  continuous 

with respect t o  t h i s  topology. Thus a linear functional i s  w-contimus i f  

and only i f  it i s  norm continuous. (Note: t he  same is not t r u e  of opera tors) .  

MAZUR'S THEOREM: The  W-closed convex hull and the norm closed convex hull 

o f  m y  set s c x coincide. 

Proof: Let  S denote the  norm closed convex h u l l  of S (equal t o  t h e  norm 

closure  of the convex h u l l  of S) and l e t  ZS denote the  w-closed convex 

- 
h u l l  of S. Since a w-open s e t  is  norm open co S s 2 . 5 .  I f  x ,! co S, then 

the re  e x i s t s  f E X* such t h a t  f (x) > Sup f (co S) . Now 

{y: f (y) 5 Sup f (co S) 1 is a w-closed s e t  ( a s  f is  a l so  w-continuous) which 

--W does not contain x bu t  contains co"~, so x ,! co S. 

The weak* (@) topology on X*, sometimes denoted by O(X*,X) is  t h e  weakest 

topology on X* with respect  t o  which the  elements of X a r e  continuous. A 

subbase fo r  t h i s  topology a t  0 cons i s t s  of s e t s  of  t h e  form 

N(x,E) = { f  E x*: j ( f )  < E) 

= ( f  E x*: f ( x )  < E )  fo r  E > 0 and x E X. 

A linear fwzctiaal F on X* i s  continuous with respect to the w* topology 

i f  and only i f  F = x for some x E x. 

Thus, unless X is  ref lexive ,  t h e  w* topology on X* is s t r i c t l y  weaker than 

the  w topology on X* with respect  t o  which every element of X** is continuous. 

BANACH ALAOGLU THEOREM: B[X*l i s  compact i n  the w* topology. 

[Note: No s imi lar  r e s u l t  holds f o r  t h e  w topology. Indeed B[Xl is w compact 

i f  and only i f  X is ref lexive . ]  

The Separation Theorems 5) page 4 ,  remain t r u e  i n  o the r  l i n e a r  space topologies.  

Forexample, i f  K i s  a w*-closed convex subset o f  x* and f ,! K, then there exists  

a w* continuous linear function02 4 E ; swh  that j ( f )  > sup ;(K) or 

f ( x )  > Sup {k(x ) :  k E K}. 

We note the  following Corol lar ies .  

1) GOLDSTINE'S THEOREM: B[Xl = {ii E ;(: H ~ U  5 1 )  i s  w* dense i n  B[x**l, t h a t  

is  t h e  w* closure of B[Xl equals B[X**l. 

Proof: Let K denote the  w* c losure  of B[X]. Since B[Xl c B[X**] and B[X**l 

is w* compact and so ce r t a in ly  w*-closed we have K 5 B[X**]. 



~ m ,  assume the re  e x i s t s  F € B[X"] but  F P K. Since B[X1 is  

convex so too is K, thus the re  e x i s t s  f E X* with f (F) > Sup f (K) and 

so ~ f l  = i i l  2 Z ( F )  > sup I(K). However. 

2) s (x*) ' i s  w* d a s e  i n  B [x*] . 
[Notes: This is  only t r u e  f o r  X i n f i n i t e  dimensional. A s imi l a r  r e s u l t  

is  t r u e  in the  w topology on X.1 

proof: WB need to show that f o r  any f E B[X*l and &-neighbouzhood Nf* 
a' 

of f t he re  e x i s t s  g E S (X*) n Nf*. 

 ow N ~ *  has the  form 

N ~ *  = ig x*: ( (g - f )  (xi) 1 < E J  

f o r  some E > O  and f i n i t e  s e t  x l ,  x2, ..., x E X. 

Let M = <xl, x2, ..., x > ( t h e  l i n e a r  span of  x l ,  x2, . .., xn),  

Since X is i n f i n i t e  dimensional we may choose an xo E S(X)\M and form 

M' = <x0, x l ,  ..., xn> = <X > 8 M. Any element of  M' has t h e  form 
0 

x = axO + m fo r  some unique a E A and m E M. 

Define g o  on M' by 

go(axo  + m )  = a + f (m) ,  

and extend g o  t o  a l l  of X by t h e  Hahn-Banach Theorem. Then, #gOi  2 1 a s  

gO(xO) = 1, fu r the r ,  s ince  gO(xi) = f (x i )  f o r  i = 1,2  ,..., n, we have 
\ 

90 E Nff  

Now N f f  is  convex, so fo r  any 

90 E Nff  
\ 

  ow N ~ *  is  convex, so fo r  any 
\ 

A E [0,11 

gA 3 Af + (1-A)go E Nff  

b f 

and, s ince  i f #  2 1, #gall 2 1 

and the  norm function is  continuous 

the re  e x i s t s  a A. E [0,11 with l g ~  = 1. 

910 is  t h e  required norm 1 element of Nf*. 

A sometimes useful  r e s u l t  is  

The w* topolom on B[X*l i s  a metric topology i f  and only i f  x i s  separable. 

Similar ly  

The wtopology on B[x] i s  a metric topology i f  and only i f  x* i s  seperable. 

Neither topology i s  a metric topology on t h e  whole of  the  space unless X is 

f i n i t e  dimensional. 

Nets and Sequences 

For a metric topology, i n  which the re  is a COUNTABLE open base a t  

each point ,  many topological proper t ies  a r e  useful ly  characterized i n  

terms of  sequences.  or example: When x and Y are metric spaces, 

f :  x + Y i s  continuous i f  and only i f  xn + x * f (xn) + f (x) ; 

A subset c o f  a metric space i s  compact i f  and only i f  every sequence 

of points from c has a subsequence converging to  some element o f  c .  

For other  l i n e a r  space topologies such a s  the  w o r  w* topologies 

sequences a r e  not  enough. [Examples demonstrating t h i s  a r e  t o  found i n  

Kelley, B on p.76 o r  Wilansky, problem 44 on p.142.1 This inadquacy is  

overcome by the  notion of  a net (o r  Moore-Smith convergence) which 

general izes  t h e  idea  of sequence, but  r e t a i n s  much of our i n t u i t i o n  about 

sequences. The elements of a sequence a r e  indexed by t h e  Natural Numbers 

N.  In  considerations of convergence t h e  natura l  ordering of N is  important. 

The idea behind ne t s  is  t o  allow index s e t s  w r e  general than N .  

DEFINITION: By a d i rec ted s e t  A we understand a s e t  A on which an order  

r e l a t i o n  r is  defined such that :  

i) I f  a ,  8 ,  Y E A a n d a  r  8 ,  8 2  y t h e n a  r y ;  

ii) a 2 a f o r  a E A: 

iii) I f  a ,  6 E A then the re  e x i s t s  Y c A such t h a t  Y 2 a and y b 6 



N with the  natura l  ordering is  a d i rec ted se t .  In a topological space, 

the  family of s e t s  i n  an open base a t  any po in t  is d i r ec t ed  by C_ . 

DEFINITION: A net i n  x is a function x from some di rected s e t  A i n to  

X. (c . f .  t he  d e f i n i t i o n  of sequence.) 

AS with s q e n c e s ,  we w i l l  wr i t e  xu f o r  x (a )  and denote t h e  ne t  by 

o r  simply (xu) .  

Let X be a topological space, we say the  n e t  (xu) i n  X converges 

to x i f  given any neighbourhood N of x the re  e x i s t s  a. c A such t h a t  

a 2 U o  implies xa € N. 

To make th ings  work out ,  the  d e f i n i t i o n  of subnet is somewhat more 

general than work with sequences might suggest. 

Let  x: A -+ X be a ne t  i n  X. 

Let B be any other  ordered s e t  wi th  a mapping a_: B -+ A having the  property,  

that f o r  any given a. E A t he re  e x i s t s  B o  E B such t h a t  B) r a 

whenever B 2 B o  ( i n tu i t i ve ly ,  "the values  ? ( B )  become a r b i t r a r i l y  l a rge  

a s  B increases) .  The composite x o a_: B + X is  a subnet of x. 

By analogy with sequences, we w i l l  wr i t e  (xa ) t o  ind ica t e  a subnet B 

of (xu).  

"Fortunately", we r a re ly  need t o  use these  d e t a i l s .  For most of our 

appl ica t ions  it is s u f f i c i e n t  to know: The net (xu) converges to x i f  

and only i f  every subnet converges t o  x and i f  (xu) does not converge to 

x then there e x i s t s  a neighbourhood N of x cmd a subnet (% B) with 

xa 4 N for any B. B 

I n  terms of Nets we have: 

1) A subset A of x i s  closed i f  and only i f  no net i n  A converges to 

a point outside of A. 

2 )  f :  X -+ Y i s  continuous i f  and only i f  for each net (xu) i n  X which 

converges to a point x, the net f (xa )  -+ f ( x ) .  

3)  A subset A of x i s  compact i f  and onty i f  every net i n  A has a 

subnet converging t o  some point of A. 

Note: (xa) c X i s  such t h a t  % I: x i f  and only i f  f (xa) + f ( x )  f o r  a l l  

w 
f E X*. Similar ly ,  fa  + f i f  and only i f  % ( X I  + f ( x )  f o r  a l l  x E X .  

EXAMPLES 

The following spec i f i c  spaces may be used to  i l l u s t r a t e  our theory. 

HiZbert spaces. Inner-product denoted by ( . , - ) .  

T h e  sequence spaces 

Let x = (x l ,  x2, ..., xn, ... ) denote an i n f i n i t e  sequence of r e a l  

numbers. The s e t  of  a l l  such sequences 6 is  a l i n e a r  space under 

"component-wise" de f in i t i ons  of  addi t ion and sca la r  mul t ip l ica t ion.  
m 

A l i n e a r  functional f: 61m + 61 has the  form f (x) = 1 f xi f o r  some 
i=l 

s e t  of s ca l a r s  f l ,  f 2 ,  ... . Thus f may i t s e l f  be iden t i f i ed  with an 
m 

element of 61 , f = ( f l ,  f p ,  ... ) and we can wri te  g (x )  = f - x  where 

stands fo r  t h e  usual "dot" product of vectors.  

From & we can e x t r a c t  a number of important Banach spaces. 

am: t h e  subspace of a l l  bounded sequences with norm defined by 

IlxUm = sup Ixn( . 
n 

c0: t he  subspace of  em consis t ing o f  a l l  sequences convergent t o  0 .  

L1: t he  subspace of  a l l  absolutely summable sequences wi th  norm 
m 

defined by l1xlil = 7 IxnI . 
n=l 

m 

P for  1 < p < m: the  subspace of a l l  sequences x f o r  which 1 lxnlP < m ,  P n=l 
with norm defined by llxlp = y-. 

n=l 

NOTES: 1) The nota t ions  e l ,  9. P and em a r e  consis tent .  Clearly el 

is t h e  r e s u l t  of  s e t t i n g  p = 1 i n  the  de f in i t i on  of 9. 
P '  

while l i m i t  llxll = sup lxnl = Uxll,. 

P P n  



2) For p > q 

Uxlp 5 Bxl and so 
9 

e l ~ . . . ~ a , ~ . . . ~ a  . . . . G I  = . . . E L -  
4 P 

t 
Hilbert space. 

3) fi = c0*, e = el* = co**. (Thus L o , l l  and 1- are  non-reflexive.) 
1 

1 1  
For 1 < p < !?. = !?. where q is  such tha t  - + - = 1. 

P q P 9 

(Thus, fo r  1 < p < - 1 is reflexive.) 
P 

4)  With the exception of 1- a l l  these spaces are  separable t h a t  is, 

they have countable dense subsets. 

In each case the s e t  of sequences with only f i n i t e l y  many non zero 

components is a countable dense subset. 

In em, the s e t  of sequences with components either 0 o r  1 is  i n  

correspondence with the binary representation of rea l  numbers i n  

[0,11 and so is  uncountable. Any pair of d i s t i n c t  elements from 

t h i s  s e t  are distance 1 apart.  Since any dense s e t  must 

have elements a rb i t ra r i ly  close to each of these sequences it 
> 

carmot be countable. 

Continuous fmc tion spaces 

C[a,bl the s e t  of a l l  continuous functions mapping the closed 

(bounded) interval [a,b] into fi is  a Banach space with addition and 

scalar multiplication defined point-wise and norm defined by 

Bfll, = Max { l f ( x ) l :  x E [a,bl} 

[Note: [arb] could be replaced by any compact topological space.] 

The s e t  of polynomials (with rational coefficients) is  a countable 

s e t  which by Weierstrass' Theorem is  dense i n  C[a,bl. Thus C[a,bl is 

separable. C[a,bl is not reflexive. 

The Lebesgue Function Spaces 

Let IJ be Lebesgue measure on R = [0,11, o r  m r e  generally on any 

f i n i t e  measure space (i2,Z.u) . 
For any Lebesgue integrable function f: R + fi l e t  _f denote the 

equivalence class  {g: If - gl &I = 01 = {g: f - g = 0 almost everywhere}. 1, 
Then, since f = + g, g, = A_f  and f is  Lebesgue integrable i f  - 
and only i f  I f 1 is, the space of a l l  such equivalence classes 

El R ,  i s  a mmed l inear  space with l f l 1  = In/  f 1 du. Indeed 

Ll(R,p) is a Banach space. 

For 1 s p 5 we can construct a Banach space 1: ( R , u )  with elements 

those 2 for which 1 l f l P d p  < -  and normdefi*ed by f = y ~ ~ f ~ ~  dp. 
R - P 

We have 

1 1  
where - + - = 1 

P q 

and for p > q 

llgl 5 U_fll 
P q 

Further, as  se t s ,  we have by Holder's inequality 

Em(n,p) C . . .C Ep(n ,u )  C ... C E q ( ~ , p )  C ... c E 2 ( n , u )  c ...c E, (n,p) . 
4 

Hilbert space 

reflexive + 

separable 



$1 SUPPORT FUNCTIONALS 

By a hyperplane i n  X we mean a t r ans la t e  of a subspace of co-dimension 

1 i n  X. Thus H i s  a hyperplane i f  and only i f  H = x 0  + M f o r  some x o  E X 

and subspace M of X with X = <yo> $ M fo r  some y # 0. By the  discussion 
0 

on p.3 M = Ker f f o r  some f E S(X*). This leads  to  

PROPOSITION 1. H c x i s  a hyperplane i f  and o n l y  i f  for  some f E s (x*) 

and c E v e  haue H = = {x E X: f (x) = c l  . 

Proof. (4 I f  H is a hyperplane, then H = x o  + Ker f fo r  some x o  E X 

and f c S (X*) . SO h E H i f  and only i f  h = xo  + m where f (m) = 0. Thus 

fo r  a l l  h c H we have f ( h )  = c where c = f ( x o ) .  Conversely, i f  f (h) = c ,  

then h = x o  + (h - x o )  and f ( h  - xo) = 0, s o h  E H. 

(4 I£ H = {x x: f ( x )  = C )  f o r  some f E S(X*) and c E & then 

choosing any x o  E H we have f o r  any h E H t h a t  h = xo + (h - x o ) ,  where 

f ( h  - xO) = 0. So H i s  contained i n  xo  + Ker f .  Conversely, i f  

X E  x 0 + K e r  f then f ( x )  = f ( x o )  = c a n d  s o x r  H.  ThusH = x o  + K e r  f 

and i s  a hyperplane. 

REWLRK: This correspondence between Hyperplanes i n  X and points  i n  X* i s  

reminiscent of the  dua l i ty  between l i n e s  and p o h b s  i n  project ive  geometry 

and p a r t l y  explains the term dual space. 

-1 A hyperplane H = f (c)  d ivides  X i n t o  two closed "half-spaces'"; 

H+ = {X E X: f ( ~ )  2 C) 

- 
and H = {X E X: f ( x )  5 C )  

where H+ n H- = H. 

A half-space i s  a convex s e t  whose complement i s  a l s o  convex. 

d i rect ion of 
increasing f 
values. 

M = Ker f 

= f - l  (c)  

We say the Hyperplane H supports B[Xl a t  x E S(X) i f  x E H and 

B[X] c H-. In tu i t ive ly ,  H i s  a "tangent plane" t o  B[Xl a t  x. 

PROPOSITION 2. H suppor ts  B[xl a t  x E S(x) i f  and o n l y  i f  H = f- '( l)  

for some f E S (x*) ~ 6 t h  f (x) = 1. 

Proof. (*) Let H = where f E S(X*) , then 

and, s ince  B[Xl c H-, f ( y )  5 c f o r  a l l  y E S(X), so 1 = Sup f (y) 5 c.  
YES (X) 

(4 I f  f E S(X*) is such t h a t  f (x) = 1 then x E H = f - l ( l )  . 
Further,  i f  y E B[X] then f ( y )  < If11 = 1 and y E H-. Thus x E H and 























( ~ e t  f n ( x o )  + 1 where x 0  i s  a smooth point ,  then i f  f < f 

we have f (xo )  = Limit fn (x0)  = 1, so f = f t he  unique support functional 
n 

a t  x ,,. 
W *  

NOW, assume f n  ;f f o ,  then the re  e x i s t s  an  open w*-neighbourhood 

N of  f and a subnet (f  ) of ( f n )  with fna  # N f o r  any a .  Since B[X*I 
"a 

i s  *-compact, t he re  e x i s t s  a subnet (fna ) of (f  ) with f n  f 
6 "a a 6 

f o r  some f € BiX*]. Further,  s ince  X* \ N is w*-closed, f 6 N. But, 

f (xo)  = Limit fn ,  (x0) = 1, SO f = f o  E N, a contradiction. 
6 6 

In  t h e  next theorem we c o l l e c t  together a number of  important 

equivalences to smoothness. Several of these  character iza t ions  can be 

deduced eas i ly  from r e s u l t s  of t h e  l a s t  sec t ion (see Exercise 1 

immediately following the  proof) .  The proof given below does not 

r equ i re  any of the  work i n  $2 beyond lenma 1 and its corol lary .  

THEOW 2. Let x 0  E s (x) , then the following are equivalent. 

i) x o  is a smooth point. 

ii) All support mappings are contimous norm to w+ at xo. 

iii) There exists a support mapping l~hich is m n to * continuous 
at xO. 

i v )  The nonn function is &team differentiable at xo ,  t h a t  is 

g+(xOeY)  = f o r  a l l  y E X o r  the  ~ i t e a u x  der ivat ive  

Ilxo+X~l - Axpll 
a t  x O  i n  the  d i r ec t ion  y, g(xo,  y) = l i m i t  X 

x+q 
e x i s t s  fo r  each y E X. 

Proof i) * ii) Let x )+ f be any support mapping, then i f  

Uxn - xOll + 0 we have Ifxn(x0) - 11 = Ifxn(x0) - fxn(xn) 1 
5 llfxnU Uxn - x0U 

= llxn - x0ll + 0. 

x* Thus, by Theorem 1, fxn + fxO, es tabl ishing cont inui ty .  

ii) ' iii) Obvious. 

xo+Ay 
iii) * i v )  For any Y X IXO+XYII + x a s  + 0+. 

Thus, i f  t h e  support mapping x I+ f i s  continuous mrm t o  w+ we 

SO, fxO(y)  = Limit fxO+Xy ( Y )  and applying lemma 1 of $2, p.28, 

lI"O+XYB 
with gx = fx  , y ie lds  

f x  (Y)  = Limit 
0 A*+ X 

but  then, 

g-(xo,y) = -9+(xo,-Y) = -fx 0 (-Y) = fx  0 (y)  = g+(x0,y)  . 

i v )  *i)  Let > 0, then i f  x J+ gx is any support mapping 

9 ( x o p ~ )  = 9+(x0,y) 2 gx (y) by lemma 1 of $2, and 
0 

Ixo-X~A - IxoA 
g(xo,y)  = l i m i t  X 9, ( Y )  . 

* 0 

by Corollary 2 of 82. 

Thus fo r  any support mapping x P gx and Y E X . gX0(y)  = q(x0 ,y )  

and so a l l  support  mappings coincide a t  xo. 

MERCISES: 1) a )  Deduce the  equivalence of i) and iv )  i n  the  above 

theorem from Theoran 6 ard 71 of 62 (p.31 and 32). 

b) Using Fl , p.34 of $2, deduce t h a t  i) * ii) 

*c) Using Exercise 2 on p.29 of  $2 deduce t h a t  iii) * ii) 

2) Show t h a t  t h e  norm is ~ i t e a u x  d i f f e ren t i ab le  a t  x o  i n  

every d i r ec t ion  i f  and only i f  g+(xo,  y) is  a l i nea r  function of y. 



A sometimes useful  r e s u l t  is  a "pre-dual" character iza t ion for  

-0th p i n t s  of X* analogous t o  Theorem 1 and a l s o  due t o  gmul'yan. 

vmm 3: Let f be a support jkmtwnal fb B[X], that  i s  f E D(s(x) ) . 
Then f i s  a smooth point o f  S(X*) i f  and only i f  wheneuer (xn) c S(X) 

has f(x,) + 1 we have that  (x,) i s  w-mnvergmt. 

proof. Observe t h a t  s ince  f E D(s(X)), there  e x i s t s  x € S(X) such 

t h a t  f ( x )  = 1, thus  x E D(f) .  

(q I f  f is a smooth p i n t  4 is t h e  unique element bf D(f) .  Now, 

- + -  W 
i f  f (xn) + 1, then ( f )  -+ 1 and so by Theorem 1, xn + x o r  x + x. 

(4 Assume f is not a smooth p i n t ,  so the re  e x i s t s  F E D(f) ,  

F # x ^ .  Since X* separa tes  p i n t s  of X** we may choose a g E X* and 

k E 61 such t h a t  ~ ( g )  > k > x^(g) = g(x ) .  For each n l e t  

1 
U n  = {G EX**: G(q) > k  and G(f) > 1  - ; I ,  

then Un # gi, a s  F E Un,  and U n  is  +-open. By Goldsteine's Theorem 

(p.7). t he re  e x i s t s  xn E B[X] such t h a t  in E Un. The sequence (Gn) 

1 
is t h e r e f o r e  such t h a t  < ( f )  > 1 - ; and so f (xn )  -+ 1. Thus, xn is 

w -convergent to some y E B[X] . Further,  f (Y) = l i m i t  f (xn) = 1, so 

y E D(f).  Now, t h e  sequence (zn) = (x,y,x,y,x,. . .) is  such t h a t  

f ( zn )  -+ 1, thus zn is w-convergent and so x = y, but t h i s  is a contra- 

d i c t ion ,  a s  g(x)  < k while g(y)  = l i m i t  g(xn) = l i m i t  xn(g) 2 k. 

EXERCISE: Show t h a t  (1,0,0,0,. . .) is  a smooth p i n t  of Em . 

We now consider t h e  important question of existence of smooth p i n t s .  

EXAMPLE ( a  space with m smooth points)  : 

The sequence spaces l i s t e d  on p.11 can be generalized to  uncount- 

ab le  index se t s .  In  pa r t i cu la r ,  l e t  r be any uncountable s e t  and 

def ine  8 ( r )  to be t h e  s e t  of  functions 
1 

x: r + 6 1 :  y H x  
Y 

such t h a t  

i) x = 0 f o r  a l l  but  a countable number of Y E r 
Y 

and ii) 1 /xyl < m. 

 YE^ 

[Note: t he  sum i n  ii) makes sense, s ince  by i) it is r e a l l y  an 

absolutely convergent s e r i e s  and so is  independent of any ordering 

on r.1 

L1 ( r )  is  a non-separable Banach space with norm defined by 

The dual of E l  (T) is Em(r) t h e  s e t  of bounded functions 

f :  r + 61 : y t+ f y  , with norm defined by ll f 1, = Sup I f y  ( . 
Y E T  

For x E k l ( r )  and f E em( r )  f ( x )  = 1 f y  xy. 
Y E r  

To see  t h a t  any x E S(E ( r ) )  is not a smooth point  it su f f i ces  
1 

to note t h a t  f E D(x) whenever f has the  form f y - ~ g n ~ y i f x  - # O  
Y 

and I f I S 1 f o r  the  r a i n i n g ,  uncountably many, values of y. 
Y 

(Here and elsewhere, sgn A = A/\ 1 f o r  A # 0.) 

In con t ra s t  t o  t h e  above example we have 

THEOREM 4 (MAZUR, iiber konvexe menqen i n  linearem normierten gumen, 

Studia Math. 4 (1933) pp.70-84.): In  a sepamble Banach space x 

the  se t  o f  smooth points i s  a dense G~ subset o f  ~ ( x ) .  

The proof of  Mazur's Theorem occupies the  remainder of  t h i s  sect ion.  

By de f in i t i on ,  a Gg s e t  is  t h e  in t e r sec t ion  of a countable number of 

open se t s .  Further,  s ince  X is complete. Ba i r e ' s  Category Theorem 



shows t h a t  any countable in t e r sec t ion  of dense open s e t s  is i t s e l f  

dense. (This follows inrmediately from De Morgan's ru le s  of s e t  

theory and the  observation t h a t  the  complement of a dense open 

subset i s  nowhere dense.) 

Thus, to show t h e  s e t  of smooth points  i s  a dense Gg subset of 

S(X) it suf f i ces  t o  show it i s  a countable in tersect ion of dense 

open subsets of S ( X )  . 
[These remarks a lso  indicate  the  s ignif icance of "GgW i n  t h e  above 

theorem: The intersection o f  the se t  of smooth points o i t h  any 

other dense open subset i s  i t s e l f  a d- Gg subset.] 

Since X is separable there  e x i s t s  a dense sequence (yn) i n  

S(X). For any m, n E N, l e t  

o r  equivalently, by Theorem 6 and 7 )  of 52, p.31, 32, 

For each m and n it is  c lea r  t h a t  G contains the  smooth points of 
m. n 

S(X). 

Conversely, i f  x i s  not a smooth point,  then the re  e x i s t  two 

d i s t i n c t  elements fx, gx E D ( x ) .  Since X separates t h e  points  of 

1 
X* the re  ex i s t s  yo e S(X) and m E N such t h a t  ( fx  - gx) (y4) > ; , 

but then, by t h e i r  density i n  S(X) the re  e x i s t s  y such t h a t  

( fx  - gx) (yn) t , so x p' G . Thus, the  s e t  of smooth points 
m.n 

Of S(X) i s  precise ly  n G m t n  . To es tab l i sh  Mazur's Theorem it 
m,n 

i s  therefore  su f f i c i en t  to show G i s  a dense open subset of S(X) 
m.n 

f o r  each m, n 6 N .  

We f i r s t  prove G m P n  i s  open i n  S(X) by showing t h a t  F = S ( X ) \ G , , ~  
m. n 

is closed. 

LEMMA 5: F m.n = {X 6 s ( X ) :  there e d s t e  fx,  gx E D(x)  v i t h  

(fx - 9,) (Y,) 2 1 i s  closed. m 

Proof. Let ( x k )  5 Fmen be such t h a t  xk + x,  and fo r  each k l e t  

fk ,  geE D(xk) be Such t h a t  ( f k  - gk)(yn) 2 . Since BtX*] i s  

w. w*-compact, there  e x i s t s  a subnet of ( f k ) ,  (fk,) with fka + f f o r  some 

f E B[X*]. Similarly there  e x i s t s  a subnet of (gkb), (gk, ) such 
0 

W: g fo r  some g e B [X*] . 

= I ( f  - f Q ( x ) l  + Ifka(x) - fk , (xk , ) I  

I ( f  - fb)  (x) I + ifka! Ilx - xkaA 

+ o a s  * : f a d  11" - xkall -0. 

so f E D ( x ) .  

Similarly,  g E D(x). 

Further, ( I  - g) (yn) = l i m i t ( % *  - g h  I (yn) t , so x E F 
0 0 m,n ' 

We complete the  proof of Mazur's Theorem by es tabl ishing the  density 

of each G i n  S (X) . 
m, n 

For any x, y E X l e t  D + H X  + ryll (1) denote the  "right-hand" der ivat ive  

a t  X E & o f  the  r e a l  valued function of a r e a l  var iable  r tt Ilx + ryll. 

That i s ,  

D+ fix + ryll (1) = limit ilx + ryll - llx + XyO 

r+X + 
r - X  

= l i m i t  n x  + X Y  + hyu - IIX + X Y U  

h-co+ h 





ggre f ina l  RPIARKS 

1) With only minor modifications t o  the proof, Mazur's Theorem can 

v a l i z e d  t o  show: If O i s  any continuous convez fimction a a 

e Z e  s p c e  X then the set of points in S ( X )  at  which @ i s  &team 

&fferentiabZe i s  a dense c6 subset. 

2) The extension of Mazur's Theorem t o  spaces other than separable 

ones is a problem of current interest .  (It is known to hold i n  a wide 

class  of spaces, including a l l  reflexive spaces.) In 1968 [Acta 

Mathematics 121, pp.31-471 Edgar Asplun3 i n i t i a t 9  the study of spaces 

for  which the generalized Mazur Theorem (above) holds. He called such 

spaces "weak-differentiability spaces". Since h i s  death they have 

become known a s  weak Asplund Spaces, an3 have been the subject of 

considerable in te res t  (see Day §4,ch.7for some d e t a i l s ) ,  though many 

open questions still remain, fo r  example: Is  every smooth space a 

weak AspZund space? 

$4 Rotundity 

Let P, P' be two Banach space properties (for example smoothness). 

We say P' is  a dual property to P i f  

X has P - X* has P' 

P and P' are in  (complete) duality i f  each is a dual property of the 

other, t h a t  is X has P (P') * X*  has P' (PI. When some, but not a l l ,  

of the above implications hold we w i l l  speak of "part ia l  duality"; for  

example, when X* has P' * X  has P. 

I n t h i s  section we are  interested i n  properties which are in 

duality with smoothness. 

We begin by strengthening the notion of support. 

DEFINITION: x E S(X) is  an exposed point of B[Xl i f  there ex i s t s  a 

support hyperplane H t o  B[X] such that  H fl B[Xl = {XI. That is, i f  

there ex i s t s  f E S(X*) such that  f ( x )  > f ( y )  fo r  a l l  y E B[Xl, y f x. 

In t h i s  case we say x is  exposed by f .  (Note: such an f is necessarily 

an element of D (x) ). . 
Some poss ib i l i t i es  are  i l lus t ra ted  below. 

x1 exposed by f . 

x2 exposed by f 2  but not by f g .  

x3 and x,, are  not exposed points. 



[yw might l i k e  to construct spec i f i c  (2 dimensional) spaces i n  which 

of these  p o s s i b i l i t i e s  occur.] 

~f f c S(X*) is exposed by F where F = ; c i ,  so F i s  6-continuous,  

+hen we say f is  6 - e q m s e d  by ; (or  simply x) .  

dur , s t a r t ing  po in t  i s  provided by 

PROPOSITION 1: x i 8  a Smooth point o f  S(X) i f  and sty i f  there 

exists an f c S(X*) which i s  we-exposed by x . 
Proof. D(x) = ~ ~ ( 1 )  n ~ [ f l  so,  i f  x is a smooth point ,  ; 
6-exposes the  unique element of D(x). Conversely i f  1; +-exposes 

f then f is  the unique element of ;-'(11 n B[XTf and x is a smooth 

point.  ,, 
COROLLARY 2: f i s  w*-exposed by ; i f  and only i f  whenever ( fn)  c s(x*) 

w* 
i s  such that fn(x)  -+ 1, then we have f n  -+ f .  

Proof. Replace "smooth" i n  the  above proposit ion by the  8mu11yan 

equivalent given in Theorem 1 of 53, p. 35, noting t h a t  f is the only 

possible w* l i m i t  of ( fn)  . ,, 
EXERCISE 3: Let  x S(X). Show t h a t  the following a r e  equivalent 

f o r  f x  c D(x). 

i) f is  a smooth point  of S(Xe). 

ii) x is &-exposed by f 
x' 

iii) i f  ( X  ) i s  such t h a t  fx(xn) + 1, then x 5 x. 

Show t h a t  any (and hence a l l )  of these  conditions implies t h a t  x 

is an exposed point.  (Would you consider it l i k e l y  t h a t  the  converse 

is generally t rue?)  

LOCAL RESULTS 

DEFINITION: x e B[X] is  an extreme point of BIX] i f  whenever 

1 
x1 , x2 E B [XI a r e  such t h a t  x = 5 (xl + x2) , then we have x l  = x2  = x. 

[ A  point  which i s  no t  an extreme point i s  termed a "passing point".l 

EXAMPLE: The points  x l ,  x2  and xq of the previous diagram a re  extn?me 

po in t s  of B[X], xg i s  a passing point.  

EXERCISE: i) Show t h a t  x i s  an extreme point  of B[X] i f  and only i f  

x does no t  belong t o  any open l i n e  segment i n  B[XI. 

i i )  Show t h a t  the only possible extreme points  of B[X] a r e  

points  of S (X) . - 
iii) Show t h a t  x is an extreme po in t  of B[XJ i f  and only i f  

whenever y i s  such t h a t  Ux + yll = Ux - yH = 1 then y = 0.  

PROPOSITION 4: I f  x i s  an exposed point of B[X], then x i s  an extreme 

point. (That the converse need not  hold, is  i l l u s t r a t e d  by the point  

x,, of the  previous diagram.) 

Proof. Assume x c S(X) is not an extreme point  of B[XI. That is, 

the re  e x i s t s  x l ,  x2 c B[X] , xl # x2 with x = i ( x l  + x2) .  NOW, l e t  

f c S(X*) be such t h a t  f (x) = 1, then i ( f  + f (x2) ) = 1 while 

f ( x l ) ,  f (xp) 5 1 and so  f (x l )  = f (x2) = 1. ~ h u s  f does not  expose 

x ,  and so x i s  not exposed by any f c S (Xe) . ,, 
COROLLARY 5: I f  x c s (x) i s  a smooth point of ~ 1 x 1 ,  then the mique 

element of Dlx) i s  an extreme point o f  BIXel. 

Proof. Immediate from Proposit ion 4 and ( the  proof) of Proposit ion 1. 

EXERCISE 1: i )  Prove tha t :  i f  f x  c D(x) i s  a smooth point of B[X*l, 

then x i s  an extreme point  of B[Xl 



ii) Show t h a t  B[c,,l has no extreme points.  Hence, deduce 

t h a t  no support funct ional  in S ( i l )  is a smooth point.  

2) Characterize the  extreme points  of B[ i l l  , B[i,l and 

B[C[a.bll. 

PROBLEM (Optional) : Say t h a t  x t S(X) is fully ~ 0 S e d  i f  x is exposed 

by every element of D(x).  (The point  x2 of the previous diagram is 

not  f u l l y  exposed, though it is exposed.) Such points  were impl i c i t l y  

considered by Ruston (1949) and e x p l i c i t l y  by Giles (1976). who c a l l s  

them "Rotund points". Show t h a t  

i) (a) x is f u l l y  exposed i f  every point  of  V(x) i s  a smooth point;  

(b) i f  f c S(X*) is f u l l y  exposed, then every point  of 

~ - ' ( f )  = {x t S(X) : f (x) = 1 )  is a smooth point.  (Note: 

~ - l ( f )  may be empty). 

and ii) x t S(X) is f u l l y  exposed i f  and only i f  Ix  + yl = 2, y t S(X) 

implies y = x. 

GLOBAL RESULTS 

w e r y  element of S(X) i s  w*-exposed and so  every element of S(X) j.s an 

exposed point. We therefore  have: 

If  every point of D ( s ( x ) )  i s  a smooth point,  then every point of 

S ( X )  i s  an  extreme point. 

DEFINITION: X is rotund i f  every point of S(X) i s  an extreme point  of 

PMPOSITION 7: The fottowing are equivalent: 

i) x i s  rotund; 

ii) i f  x ,  y t S ( X )  and = 1, then x =  y; 

iii) every point of S ( X )  i s  a ( f u l l y )  exposed point. 

1 
Proof. i) * ii) For x, y E S(X) l e t  z = - ( x  2 + y ) ,  i f  nzll = 1, then 

z i s  an extreme point  (de f in i t i on  of rotundity) and 

so x = y = z. 

ii) * iii) For any x E S(X) and f t D(x) ,  i f  f (y) = 1 and 

y 6 S(X) then 1 2  (TI 2 f ! ~ ]  = 1 and so  

y = x. Thus f exposes x. 

iii) * i) follows from propostion 4. 

From our work s o  f a r  we have: 

Some other  useful  character iza t ions  of ro tundi ty  a re  provided by 
PFOPOSITION 6: The following are equivazent. 

i) x i s  m o t h  ; 

ii) every point of D(S(X)) i s  a w*-ezposed point ; 

iii) every point of  D ( s ( x ) )  i s  an edreme point. .  

Proof. i) * ii) is h e d i a t e d  from Proposition 1. 

ii) * iii) is immediated from Proposition 4. 

iii) *i) assume x is  not a smooth point,  then the re  e x i s t s  

1 
f l ,  f 2  E D(x)  with f l  # f2 .  Let  f = ~ ( f ~  + f e ) ,  then 

f + D(x) and f is not an extreme point.  ,, 

EXERCISE 8: Show t h a t  each of the  following is equivalent t o  X being 

rotund. 

i) S(X) contains no non- t r iv ia l  l i n e  segment. 

ii) For x, y E S(X), x # y and E (0 ,1 ) ,  llhx + (l-X)yll < 1. 

iii) I f  x, y E X a r e  such t h a t  Ix  + yll = llxll + llyll and Y # 0, then 

x = Xy fo r  some A .  

i v )  Every subspace of X i s  rotund. 

V) Every 2-dimensional subspace of X is  rotund. 

v i )  For every convex subset c of X and every x t X there  i s  a t  most 

I f  every point  of D(S(x)) is a -th point ,  then, by Exercise 3, 



one bes t  approximation from C t o  x. 

v i i )  Every f E S ( X f )  a t t a i n s  i ts  norm on S (x) a t  most once, t h a t  

is, i f  x, y E S(X) and x # y, then V(x) fl Dty)  = $?I . 

THEOREM 9 (V. Klee, 1953) i) I f  Xf i s  m o t h ,  then x i s  r o w -  

and ii) I f  xf i s  rotund, then x i s  m o t h .  

Proof. These r e s u l t s  follow d i r e c t l y  from preceeding r e s u l t s  and a s  

an EXERCISE you should obta in  them t h a t  way. We w i l l  however give 

d i r e c t  proofs, based on the above arguments. 

i )  Assume X is not  rotund, then the re  e x i s t s  d i s t i n c t  points  x, y 

and z = i ( x  + y) i n  S(X). Choose any f c D(z),  then 

:(f(x) + f ( y ) )  = 1 while f ( x ) ,  f ( y )  5 1, so  f ( x )  = f ( y )  = 1 and 

i ,  y t: D(f ) ,  so f is  not a -th point.  

ii) Assume X is  not smooth, then there  e x i s t s  x € S(X) and 

f l ,  f 2  E D(x)  with f l  # f 2 .  f = i ( f  + f 2 )  is a point  of S(X) 
2 1 

and so Xf is  not rotund. 

The p a r t i a l  dua l i ty  between rotundi ty  and smoothness of  Theorem 9 

is i n  general b e s t  possible (see  l a t t e r ) ,  however when X is  ref lexive  

the  complete dua l i ty  between rotundi ty  and smoothness is  an immediate 

corollary.  

EXAMPLE: Since a Hi lbe r t  space H i s  smooth (Example 1) p.35) and 

Hf = H, every Hilbert space is both r o w  and smooth. 

EXERCISE: 1 )  From the  parallelogram Law, deduce d i r e c t l y  t h a t  any 

Hi lbe r t  space is rotund. 

l 2) i) Show t h a t  kp (1 < p < m) is rotund. 

ii) Show t h a t  c,,, L1, L_ and C[a,bl a r e  not rotund spaces. 

Equivalent Renonnings t o  gain Rotundity 

Whether o r  not  a space is smooth (rotund) depends on the  pa r t i cu la r  

norm used. For example, the  space of ordered p a i r s  of r e a l  numbers is 

both rotund and smooth with respect  to the  euclidean norm 1 1 - 1 1 2 ,  however, 

it is  nei ther  with respect to e i t h e r  of the equivalent norms l l - n l ,  1 ( - 1 I m  

A norm dependent property of  t h i s  type i s  an isometric property. 

Proper t ies  re ta ined by a l l  equivalent norms a r e  known a s  i somrphic  

proper t ies  ( fo r  example, ' r e f l ex iv i ty ' . )  For any isometric property 

P the  question na tu ra l ly  a r i s e s  of whether a given space ( X , I I - I I )  admits 

an equivalent norm, I - I I '  , with respect  t o  which X has P. I f  t h i s  is 

the  case we wri te  X is <P>. Thus, X is  <rotund> i f  X can be equivalently 

renormed to be rotund. 

LEMMn 10 (Klee 1953): I f  there e z i s t s  a continuous tinear one-to-one 

mapping T from (x, ll- l )  in to  a rotund space Y ,  then x can be equivaZentty 

remmed  t o  be rotund. 

Proof. For x E X l e t  ixll' = [ x i  + llT XI , then 

so 0.I ' is an equivalent norm on X. Further,  i f  Ilx + yll ' = Uxl ' + Ily( ', 

and y # 0 then T y # 0 (T one-to-one) and 

So, IlTx + Ty( 5 IIT x( + IT y l  5 ITx + Tyl . 

Now Y is rotund, so  T x = AT y f o r  some A ,  and s ince  T is one-to-one we 

have x = Ay. Thus, X is  <rotund> . 



































convexity t h a t  ixl; - ~ l ; l I  + 0, but  then llxn - ~ , l l  + 0. 

(+ Assume X is  not uniformly rotund, then f o r  some E > 0 and 

1 
every n t he re  e x i s t s  a p a i r  xn, yn E S(X) with 11-1 > 1 - ;, 

but  llxn - ynll 2 E .  The sequences (x,), (y ) v i o l a t e  t h e  assumption. 

EXERCISES: 1) show t h a t  x i s  uniformly rotund i f  and only i f  every 

separable subspace of x i s  uniformly rotwzd. 

[Hint f o r  (4: I f  X i s  not uniformly rotund choose (x  ) and (y ) as  

i n  the  previous proof and consider M = span({xnl u {yn)) . I  

2) ~f x i s  uniformly rotund, show t h a t  whenever (xn, c B[X]  i s  such 

that  11- 11 + 1 as n, m + - we have (xn) i s  a Cauchy (and hence 

by t h e  completeness of X,  convergent) sequence. 

3)  I f  X i s  uniformly rotund show t h a t  every element of S(X*) i s  a 

support funct ional .  Assuming Jame's Theorem (pp.17-18) deduce t h e  

Mil'man-Pettis Theorem: Every uniformly rotund Banach space i s  

ref lexive .  

[REMARK: We w i l l  develop an a l t e r n a t i v e  proof shor t ly .  The Mil'man- 

P e t t i s  Theorem is one of t h e  "most proved" r e s u l t s  i n  t he  Geometric 

Theory o f  Banach spaces. I t  was f i r s t  proved by D.P. Mil'man (1938) 

and independently by B.J. P e t t i s  (1939). Since, then a number of 

shor ter  proofs have been found, i n  p a r t i c u l a r  a l t e r n a t i v e  proofs have 

been given by Kakutani, Ruston (1949) and Ringrose.] 

4) show t h a t  ei~ery non-empty closed convex subset of a uniformly 

rotund space i s  a Tchebycheff se t .  That is, every such s e t  conta ins  a 

unique c l o s e s t  po in t  t o  any point  i n  t he  space. 

5 )  (opt ional )  Show t h a t  X i s  uniforml; convex i f  and only i f  whenever 

(x,), (yn) c S(X) a r e  such t h a t  Ilf%+ fynll + 2 f o r  some support map 

x It f x  we have Hxn - ynI + 0. (Sims/Yorke 1978) . 

Inquadrate Spaces 

DEFINITION: X is  inquadrate i f  6 ( ~ )  > 0 f o r  some E 6 (0,21. m a t  is, 

the re  e x i s t s  E E (0.21 and 6 > 0 such t h a t  Ilx - y l l  < E whenever 

x, y E S ( X )  and 1-1 > 1-6. ~t w i l l  be convenient t o  r e f e r  t o  such 

a space a s  being "E-inquadrate". Clear ly ,  X i s  uniformly rotund i f  and 

only i f  X i s  €-inquadrate for every E E (0,21. 

m e  following i s  an adaptation of Ringrose's proof t h a t  uniformly 

rotund Banach spaces a r e  ref lexive .  

LEMMA 2: Let M be a closed proper subspace o f  x*. I f  M i s  €-inquadrate 

for some E E (O,:), then M i s  not s t r i c t l y  nonning for x. 

Proof. By Reisz' lemma (p .4) ,  t he re  e x i s t s  f E S(X*) with 

d i s t ( f ,M)  > E. Let  6 > 0 be such t h a t ,  f o r  x ,y  E S(M) with )(*I > 1-6 

we have nx - y 11 < E ( 6  e x i s t s  s ince  M is  E-inquadrate) . Choose x E S(X) 

such t h a t  f ( x )  > 1-6 and l e t  N be  t he  r e l a t i v e  w*-open neighbowhood 

of f i n  B [X*] given by 

Now, assume M is s t r i c t l y  norming f o r  X,  then by lemma 2 of §V, 

p.77, t he re  e x i s t s  ml E M n N. Moreover, i f  m2 is any o the r  element of 

m + m  m + m  

1 '1 2 [ v ] ( x )  > 1 - 6 ,  so  llml -m211 < E. M n N we have - 

We the re fo re  have 

w* 
f E r W *  = M , again by lemma 2 o f  §V. 

s BE[mll, s ince  B [mil is  w*-compact and hence 

w*-closed. 

So If  - ml((  5 E ,  cont radic t ing  the  f a c t  t h a t  d i s t ( f ,M)  > E. 



AS a co ro l l a ry  we have: 

THEOREM 3: If x is E-inquadrate fo r  some E E (0,1) , then x is  

reflexive. 

Proof. I f  X is c-inquadrate, then X is an c-inquadrate closed subspace 

o f  X** which s t r i c t l y  norms X*, so  by lemma 2 2 cannot be  a proper 

subspace. That i s ,  X = X**, o r  X is  ref lexive .  

COROLLARY 4 (Mil'man-Pettis Theorem): If X is mifomnly rottmd, then X 

is reflexive. 

REMARK: The above de f in i t i on  o f  inquadrate is due to R.C. James (1964) 

who termed such spaces "uniformly non-square". The term inquadrate i s  

due t o  Day. The concept was motivated by e a r l i e r  work of Anatole Beck 

In  1963, Beck character ized  separable  Banach spaces X i n  which sequences 

o f  " iden t i ca l ly  d i s t r i bu ted  X-valued random va r i ab l e s  s a t i s f i e d  a law 

o f  l a rge  numbers". He introduced t h e  notion of (k ,~ ) - convex i ty .  

DEFINITION: X is (k,E)-convex, where k 6 N and E > 0 i f  f o r  each Set  

o f  k elements, x l ,  x2, ..., xk E BLXI, t he re  is a t  l e a s t  one choice of 

x1 + X2 + ... t xk 
+ and - s igns  such t h a t  1 k 

< (14) . 

\ EXERCISE. Show t h a t  X is (2 ,~)-convex fo r  some E E (0,  if and only if 4 - X is inquadrate. Hence conclude t h a t  X is r e f l ex ive  i f  X is (2,C)-convex 

f o r  some E E (0.1). 

Geometric a spec t s  of (kg€)-convexity were considered i n  d e t a i l  by 

Giesy i n  1964 [Trans. Amer . Math. Soc., 125, pp.114-1461 . James [ I s r ae l  

J. o f  Maths, 18  (1974) pp.145-1551 gave an example of a non-reflexive 

3 space which is ( in€)-convex,  thus  showing t h a t  t h e  conclusion o f  t h e  

above exerc ise  is i n  general  f a l s e  f o r  k- > 2. 

The notion o f  inquadrate has played a p a r t  i n  t h e  r ecen t ly  developed 

theory of "super-reflexive" spaces. 

DEFINITION (James 1972). For Banach spaces X and Y, Y is  f i n i t e l y  

represented i n  X (Day's X mimics Y) i f  given E > 0, f o r  each f i n i t e  

dimensional subspace M of Y t he re  e x i s t s  a one-to-one l i n e a r  mapping 

T: M + X with I i ~ x i  - 1x0 1 < E f o r  a l l  x c S(M) . That is, every f i n i t e  

dimensional subspace of Y is a r b i t r a r i l y  near ly  i sometr ic  wi th  a subspace 

of X. 

EXERCISES: 1) Show t h a t  t he  condition "For eacH E > 0 the re  e x i s t s  

T: M + X with I UT xll - 1x1 1 < E f o r  a l l  x E S(X)" is equivalent to 

"For each E > 0 the re  e x i s t s  T : M + X with O ~ l l - l l ~ - ~ !  < 1 + E ,  where 

T - ~  denotes t h e  inverse  of T a s  a mapping from M to T(M). 

2) Show t h a t ,  i f  Y is f i n i t e l y  represented i n  X and X is  

uniformly rotund (inquadrate) then Y is  uniformly rotund ( inquadra te) .  

2 
3) Show t h a t  i2 i s  f i n i t e l y  represented i n  c o .  (Indeed, it 

may be seen that  every Banach space is  f i n i t e l y  represented i n  c o ) .  

[Hint: approximate t h e  u n i t  c i r c l e  by a polygon made up of l i n e s  of t h e  

form f y1 (11, with l f i l  = 1 i = 1, 2, . . . , n , and consider t h e  mapping 

I f  P i s  any Banach space property,  we say X is super-P i f  whenever 

Y is f i n i t e l y  represented i n  X, then Y has P. 

EXERCISE: Show t h a t  i) Every f i n i t e  dimensional Banach space i s  super- 

r e f l ex ive .  

ii) Every uniformly convex Banach space is  super- 

r e f l ex ive .  



James and Enflo have shown tha t  the following a re  equivalent. 

i )  X is  super-reflexive. 

i i )  X is < uniformly rotund > . 
i i i )  X is < inquadrate > . 

Many other super-properties have been investigated ( for  example, super- 

  ad on-~ikodh property) and have proved t o  be equivalent to  super- 

reflexivity. 

Properties i n  duality with uniform mtrmdity .  

DEFINITION: X is  uniformly Fr6chet differentiable i f  

Limit I x  + Ayu - Ix' exis ts ,  and is  approached uniformly over 
A* 

A 

AS i n  Proposition 1 of §v, x i s  uniformly ~ r z c h e t  differentiable i f  

and only i f  given E > 0 there e z i s t s  6 > 0 such tha t ,  for each 

x E s (x)  and y E x with By[ < 6 there e z i s t s  some f E S(Xf) (necessarily 

the unique element of D(x)) d t h  Ilx + zR - IxU - f (2) I < olzl . 

DEFINITION: X is  uniformly smooth i f  given E > 0 there ex i s t s  6 > 0 

such that ,  fo r  each x E S(X) and y a X with lyl < 6 we have 

Ix + Y I  + nx - yll < 2 + E I Y I  . 

REMARK: ~ ( t )  = sup{ ' I X  + y"  + I x  - yn - 1: !XI = i and lyl i t }  is  
2 

known a s  the modulus of smoothness. X is uniformly smooth i f  and only 

i f  ~ ( t ) / t  + 0 as t + 0'. 

Not surprisingly, as  shown i n  the next proposition, uniform smoothness 

and uniform Frgchet d i f fe ren t iab i l i ty  a re  equivalent. 

T H E O R ~  5: The folbwing a m  equivalent. 

i )  X* i s  uniformly rotund. 

i i )  there escists a support mapping x I+ f x  f m m  S(X) into  S(X*) 

which i s  ~miformfi  cat inuous norm t o  norm. In which case 

x b f is  necessarily the  unique support mapping on X. 
X 

i i i )  x i s  uniformly  re-chet dif ferent iable .  

iv) x i s  lmiformly smooth. 

Proof. i )  * i i )  . Given E > 0, l e t  6 > 0 be such tha t  If [ = Igl = 1 
I 
I and 1 ~ 1  > 1-6 implies i f  - g l  < o. Then, i f  [xu = Iy[ = 1 and 

Ix - yJ < 26 we have 

[f + f I 2 (fx + f ) (x) 
x Y Y 

= 1 + f (x) 
Y 

f + f  
T h ,  > 1-6 and SO Ifx - f y l  < o, establishing the 

uniform continuity of x ), f x- 

i i )  * i i i ) .  Given o > 0 l e t  6 E (On$) be such tha t ,  for  x, y 6 S(X) 

with Ix - y[ < 46 we have Ifx - fy l  < o. Then, for any x E S(X) and 

z # 0 with l z l  < 6 we have 
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