. E Sims

Introduction

These notes are based on lecture courses given to IV'th year honours
and post-graduate students at the University of New England over the last
few years. They introduce that area of functional analysis which has
become known as the "Geometric theory of Banach spaces”. There has been
a resurgence of interest in Banach space theory following a number of
important developments over the last decade or so:

Geometric aspects of the theory of vector valued measures, particularly
spaces with the Radon-Nikodim property;

The study of general convex functions and Monotone Mappings, as in the
theory of (weak) Asplund spaces;

The theory of weakly compactly generated spaces and attendant renorming
results;

Super-Properties;

The theory of Banach space valued random variables;

Considerable advances in the theory of the "classical Banach spaces”.

These developments are only hinted at in the current notes, the
"classical” problem of reflexivity being the main application considered.
Also, some of the more specialized concepts of current interest in Banach
space geometry (for example uniform Gateaux differentiability, uniform
rotundity in directions, Vlasov's local compact uniform rotundity) have
been omitted. None~the-less many ideas derived from recent work have
been included. The course work is meant to provide the sound background
in elementary Banach space geometry necessary for the study of these

new and exciting areas.

The readef is assumed to have a working knowledge of general functional
analysis and topology (as contained in the books by Simmons and Rudin,

for example). Many of the tools commonly required in the geometric theory
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of Banach spaces have been summarized in §0. Because of the selective
nature of the course there are however exceptions. The most notable
omissions are:

The Krgin-uil'ﬁan Theorem: every compact convex subset of a.locally
convex linear topological space ig the closed convex hull 5f its
extreme pointg, and its improvement to Choquet type theorems.

Many of the results associated with the name of Baire. (The Baire
category theorem has in fact been assumed in the course, but belongs
more properly to the general theory of metric spaces and so is not

included in §0.)

I wish to thank my colleagues who assisted in the development of the
course, particularly those students who wittingly or unwitﬁingly served
as guinea pigs. Special thanks are due to Mrs. Ferraro who transformed

long scrolls of blotch‘y manuscript into very readable typescript.

B. Sims
April, 1979
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§0 Preliminaries, Including Basic Notation

In this section we list those results from the General Theory of
Banach spaces which are necessary tools for our work. You should have
seen most of them before. Proofs are only included for a few results
which may be unfamiliar to you. The order in which results appear is not
necessarily the normal order in which they would be proved. It is not
essential tha; you know the proofs, but you must understand what each
result is saying and so be able to apply it in a variety of circumstances.
None-the-less, this section should not be "learnt" as part of the course,

but rather treated as reference material.

Although much of our theory remains valid in normed linear spaces,
or with obvious modifications, in spaces over the complex field of
scalars, we will restrict ourselves to real Banach spaces.

Unless otherwise stated X or (X,l*!) will denote a real (infinite
dimensional) Banach space. B[X] = {x € X: x|l < 1} is the unit ball of
X. The boundary of B[X]l, S(X) = {x ¢ )( fixf =1} is the unit sphere.
In general Br(x) denotes the open ball, centre x and radius r that is,
B_(x) = {y € X: Ix - yl < r} , while B [x] is the closed ball

ly € X: x - yl €} . Thus B[x] = B, [0].
Br[x}

A linear mapping T: X; - X, where (Xl,"'"l) and (XZ'"'HZ) are Banach

spaces is bounded = (norm) continuous if IT| = Sup {"TxHZ: X € S(xl)} < w,

and then lITxll, < ITHxl, for all x e X,.

CLOSED GRAPH THEOREM: 4 linear map T: X, - X, 18 continuous if and only
if whenever the sequence (x_) <X s such that x> X and TX >y we

have y = Tx.



NOTE: While the condition here resembles the sequential cha;acterization
of continuity: X, > x = 'I‘xn + Tx, it is much weaker. By the closed
graph theorem we do not need to establish the convergence of (Txn) from
that of (xn) . » It is sufficient to assume both sequences converge and

then show y = Tx.

For our purposes the important consequence of the OPEN MAPPING
THEOREM is: If a continuous linear mapping T: X; + X,, where X, and X,
are both Banach spaces, is 1-1 and onto then T is invertible and its
inverse 1} is aleo a continuous linear map.

A linear mapping T satisfies these conditions if and only if there éxists
scalars m, M > 0 such that mlxl < §Txl s Mix§ for all x € X;. Since a
mapping is continuous if and only if the inverse images of open sets
(unions of open balls) are open, we have: Two norms ll'l1 and |-|2 are

equivalent Banach space norms for X (that is, both give rise to the same

open sets) if and only if the identity map I: X + X is a continuous map
from (X,I'll) to (X,f-k,) and this happens if and only if there exists
scalars m, M > 0 such that mllxll1 < ||xI2 S Mllxll1 for all x € X.

[Since finite dimensional normed linear spaces are always complete and
linear mappings between finite dimensional spaces are always continuous,

this shows that, all norms on a finite dimensional space are equivalent.]

Of particular importance is the set of all continuous linear functionals

from X to R, denoted by X*. With point-wise definitions of addition and

scalar multiplication and norm defined by
1£) = sup {|f) |: x € SO} all £ e x*,

X* is a Banach space, the dual space of X.
We will write X** for (X*)* the dual of_ the dual, X*** for (X**)* etc.

Typically x, £, F, F will be elements of X, X*, X**, X*** respectively.

For x € X the evaluation functional x is defined by
x(f) = £(x) for all f e X*.
The mapping J,: x b x is an isometry (that is, Ixl| = lIxl) from X into

X**_  The range of Jo, denoted by X is the natural embedding of X in

X**, Since X is a Banach space, X is a closed subspace of X**., If

X = X** ye say X is reflexive.
x** X***
J

Iy

A linear functional f: X » & is continuous (i.e., belongs to X*) if and
only if its kernel (Ker f = {x e X: £(x) = 0}) is a closed subspace of X.
If £ € X* is not identically zero and x5 € X is such that f(xg) # 0, then
for any x € X we note that x = )\xo + k where A = f(x)/f(xo) and
k= (x - )\xo) € Ker £f. Thus, X = <x0> ® Ker f, the direct sum of the one
dimensional subspace spanned by X and Ker £, and so Ker f has co-dimension
one in X. The converse is also true: If M is a subspace of co-dimension
one in X, i.e. X = <X > ® M for some xo € X, X # 0, then M = Ker £ for
some f € X* [any X € X may be written uniquely as x = )\xo + m for some
A e ®and m € M, define £(x) = A.]
HAHN-BANACH THEOREM: Let p be a semi-norm on X. Let M be a subspace of
X and £ a linear functional from M to & such that {f(m)| < p(m) for all
m e M. Then there exists a linear functional £ on X such that

1 f|, =t
and  ii) |f(x)| € px) for all x e X.

[f is usually referred to as a Hahn-Banach extension of f].



We note the following consequences of this theorem.

Br(O) < K.

1) (SUPPORT THEOREM) For each x; ¢ S(X) there exists an £ ¢ S (X*) Let p be the minkowski gauge functional of X,

with £(x,) = Teol Ixgl = 2.
p(x) = inf {A: x/A € K, X > 0}.
2) X* is total over X that is, if f£(xg) = O for all f e X*, then x; = 0,

R ' is a semi-norm on X; interior(K) = {x € X: p(x) < 1} and clearly,
or if x # y then there exists f ¢ X* with f(x) # f(y). p is ( p 4

-1
A < (hr xi .
[Note: almost by definition, X is total over X*.] p(x) (R ) I

Define fo on <x,> by fo(Xxo) = A, then since Xg £ interior(K) we

3) If M is a closed subspace of X and x, £ M there exists f € B[X*] 0

. hi £ =1 =< d £,(x < A £ 11 x. Let
with £(x;)) = dist(x ) # 0 and £|, = 0 (M < Ker £). ave Folxg) plxg) and so [£5(xg)| = pOxy) for a ©

f be a Hahn-Banach extension of f_  from <xy> to X, then

[p{x) = dist{(x,M) = inf {lx - mll: m € M} is a semi-norm on X.] 0

).-1
4) REISZ' LEMMA: For any r with O < r < 1 and any proper closed subspace [£x) | < px) = @::’/ )Ixl for all x € X, so f € X*. Further,

; 7 < k) < = k i i : .
M of X, there exists x € S(X) with dist(x,M) > r. £00) pk) 1 f(xo) for all € interior (K) as required. p

Proof. By 3) there exists f € X* with
(b) Eidelheit separation Theorem: Let K, and K, be convex sets

f(m) = 0 for all m € M but £ # 0.
with interior(K;) # @ and Ky n interior(K;} = @ , then there exists
Hence there exists (xn) < S(X) with
£
£l

f € S(X*) such that Sup f(Kz) < inf f(Kl)'
(xn) + 1. But then

£ £ Proof. Let K =K, - Kl’ then K has interior points and 0 is not
Ix - ml 2 Im (x) - Tel (m) |
one of them. So, by (a) there exists f € S(X*) such that 0 > f(k)
=l E— xo] »1 )
[F3 T ° all k € K. Thus if k; € X; and ky ¢ K, we have f(k; - k)) < 0 or
s f(k < B
So inf |x -m] + 1. ( 2 f(kl) O
n O
m
(c) (Basic Separation Theorem). If K s a closed convex subset of

[Note: As a result of 4) the £ in 3) has |fl

1.1
X and xg £ K then there exists f € S(X*) such that £(xg) > sup £(K).

5) SEPARATION THEOREMS.
Proof. Since K is closed, there exists r > 0 such that Br(xo) nK=#g@.
(a) Mazur's Separation Theorem (special case; see Day p. 23 .)

Apply (b) with K = Br(xo), Ky = K and observe that inf f(Br(xO)) # £(xg) . 0
Let K be a convex set with interior(K) # ¢ . If X, £ interior(K),

then there exists £ € X* with £(xy) > £(k)
REMARK. The single point Xg in (c)} can be replaced by any compact
for all k € interior(K).

convex subset of X disjoint from K. (Can you prove this?)
We say f separates X from XK.

Proof. By a translation we may without (f)

loss of generality suppose O ¢ interior(X), i.e., for some r > 0,




TOPOLOGIES ON X hull of S. Since a w-open set is norm open co§ gcos. Ifx £ co S, then

So far we have only considered the norm (strong) topology on X. This

there exists f € X* such that f£(x) > Sup flco S). Now

is the topology on X generated by the metric d(x,y) = lx - vyl . The set {y: £(y) < Sup f(co S)} is a w~closed set (as £ is also w-continuous) which

of open balls {Br(x) :r>0and x € X} is a base for this topology. Indeed, does not contain x but contains Sa¥S, so x £ e

[m]
for each point x € X {Bq(x): g is a strictly positive rational numberl} is
. The weak* (w*) topology on X*, sometimes denoted by 0(X*,X) is the weakest

a countable open base at x.. Further, the norm topology is a linear space

topology on X* with respect tc which the elements of X i
topology that is, if N is an open base at 0, then for any X ¢ & P e nts o are continuous. A

subbase for this topology at O consists of set h
AN = {AN: N ¢ N} is also an open base at O and for any x € X pology sets of the form

x + N=1{x + N: N € N} is an open base at x. Thus, the operations of N(x,€) {f € X*: %(f) < €}

addition and scalar multiplication are continuous with respect to this {f ¢ X*: £(x) <€} for € > 0 and x € X.

topology. A linear functiomal F on %* is continuous with respect to the w* topology

T linear space topologies are the weak and weak* topologies . ) -
Two other D polog ; tf and only ©f F = x for some x e X.

defined respectively on a space and on its dual. Thus, unless X is reflexive, the w* topology on X* is strictly weaker than

The weak (w) topology on X, sometimes denoted by 0(X,X*) is the weakest

the w topology on X* with respect to which every element of X** is continuous.

topology on X with respect to which the elements of X* are continuous. Since

. . . BANACH ALAOGLU THEOREM: BI[X*] is 3 *
a linear functional f will be continuous if and only if [x*] compact in the w* topology.

- - - [Note: No simil esult h i
£ 1(_5'5) = f l(-m,s) n £ l(-s,m) is an open subset of X for each € > O, ilar resu olds for the w topology. Indeed B[X] is w compact

. if and only if X is reflexive.
we see that a subbase for the w topology at O consists of sets of the form Y 1

N(£,€) = {x e X: £(x) <€} for e >0 and f e X*. The Separation Theorems.5) page 4, remain true in other linear space topologies.

; ; ; ; Forexample, 1f X 18 a w*-closed * .
Not only is every functional in X* continuous when X is equipped with the » if o convex subset of X* and £ ¢ X, then there exists

. N . a w* continuoug linear L X €% % °
w topology but the elements of X* are the only linear functionals continuous functioncl x € ¥ such that x(f) > Sup x(K) or

. . . . . f{x) > Su k : k .
with respect to this topology. Thus a linear functional is w-continuous if p {kx) € K}

and only if it is norm continuous. (Note: the same is not true of operators). We note the following Corollaries.

MAZUR'S THEOREM: The w-closed convex hull and the norm closed convex hull 1) GOLDSTINE'S THEOREM: B[X] = {% ¢ X: Ixl < 1} 7s w* dense in B[X**], that

of any set s c X coineide. is the w* closure of B[X] egquals B[X**].

Proof: Let co S denote the norm closed convex hull of S (equal to the norm Proof: Let K denote the w* closure of B[X]. Since B[X] < B[X**] and B[X**]

closure of the convex hull of S) and let co S denote the w-closed convex is w* compact and so certainly w*-closed we have K ¢ B[X**],




Now, assume there exists F € B[X**] but F ¢ K. Since B[X] is
convex so too is K, thus there exists f € X* with £(F) > Sup £(K) and
s bel = B€] 2 £(F) > sup £(K). However,

Sup £(K) > Sup g(B[X]) = sup {f(x): x € BIx]} = I£l, a contradiction. o

2) S(x*) ig w* dense in B[X*].
[Notes: This is only true for X infinite dimensional. A similar result

is true in the w topology on X.)

' . *
Proof: Wé need to show that for any f € B[X*] and w*-neighbourhood Ng¢

o
*
of £ there exists g € S(X*) n Nf .
Now Nf* has the form
Nf* = {gex: |(g-0x)| <€l
for some £ >0 and finite set Xy X240 ceer X € X.
Let M = <x), X35 -.0r X, > (the linear span of x;, Xz, «--» xn),
Since X is infinite dimensional we may choose an xg € S(X)\M and form
M' = <x°, v eens x> = <x0> @ M. Any element of M' has the form
x = ax; + m for some unique & € @ and m € M.
Define g, on M' by
go(axo +m) = a + £(m),
and extend g, to all of X by the Hahn-Banach Theorem. Then, fggf 2 1 as
gglxg) = 1, further, since gy(x;) = f(x;) for i =1,2,...,n, we have
* : 5 \
€N 0 \
9o f \ .\‘ \
Now N.* is convex, so for any «\ N
£ N \
NN
X € [0,1] \
® \
gy = AE + (1—)‘)g0 € Ng
and, since [fl < 1, Hg°|| 21
and the norm function is continuous BIX*]

there exists a AO ¢ [0,1]) with llg;‘oll = 1.

N is the required norm 1 element of Nf‘. O

A sometimes useful result is
The w* topology on BIX*] is a metric topology if and only if X is separable.
Similarly
The w topology on B[X) is a metric topology if and only if X* is seperable.
Neither topology is a metric topology on the whole of the space unless X is

finite dimensional.

Nets and Sequences

For a metric topology, in which there is a COUNTABLE open base at
each point, many topological properties are usefully characterized in
terms of sequences. For example: When X and Y are metric spaces,
£:X *~ Y ig continuwous if and only if X, *x = f(x) > £x);

A subset C of a metric space is compact if and only if every sequence
of points from C has a subsequence converging to some element of C.

For other linear space topologies such as the w or w* topologies
sequences are not enough. [Examples demonstrating this are to found in
Kelley, B on p.76 or Wilansky, problem 44 on p.142.,) This inadquacy is
overcome by the notion of a net (or Moore-Smith convergence) which
generalizes the idea of sequence, but retains much of our intuition about
sequences. The elements of a sequence are indexed by the Natural Numbers
N. In considerations of convergence the natural ordering of N is important.

The idea behind nets is to allow index sets more general than N.

DEFINITION: By a directed set A we understand a set A on which an order
relation > is defined such that:
i) ifa, Bb Ye Aand a 2 B, B2 Y then & 2 v;
ii) a2 a for @ € A;

iii) If &, B e A then there exists Y € A such that Y 2 @ and v > B
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N with the natural ordering is a directed set. In a topological space,

the family of sets in an open base at any point is directed by € .

DEFINITION: A net in X is a function x from some directed set A into
X. (c.f. the definition of sequence.)
As with sequences, we will write Xy for x(®) and denote the net by

(x.) or simply (xa).

Xalaeh
Let X be a topological space, we say the net (xa) in X converges
to x if given any neighbourhood N of x there exists uO € A such that
@ 2 a, implies x, € N.

To make things work out, the definition of subnet is somewhat more
general than work with sequences might suggest.
Let x: A+ X be a net in X.
Let B be any other ordered set with a mapping &: B > A having the property,
that for any given @, ¢ A there exists BO € B such that a(B) 2 @,
whenever B 2 B, (intuitively, "the values a(B) become arbitrarily large
as B increases). The composite x o &: B + X is a subnet of x.

By analogy with sequences, we will write (x“B) to indicate a subnet
of (x,).
"Fortunately”, we rarely need to use these details. For most of our
applications it is suffici;ant to know: The net (x,) converges to x 1f
and only if every submet comverges to x and if (x,) does not converge to
x then there exists a neighbourhood N of x and a subnet (xq B) with
Xa g £ N for any B.

In terms of Nets we have:
1) 4 subset A of X i8 closed if and only if no net in A comverges to

a point outside of A.
2) £: X > Y is continuous if and only if for each met (x,) in X which

converges to a point x, the net f(x ) > £(x).

11.

3) A subset A of X is compact if and only if every net in A has a

subnet converging to some point of A.

Note: (xa) c X is such that x, ¥ x if and only if f(xu) + f(x) for all

*
f ¢ X*, Similarly, fu Y, £ if and only if fu(X) + f(x) for all x € X.

EXAMPLES

The following specific spaces may be used to illustrate our theory.

Hilbert spaces. Inner-product denoted by (,*).

The sequence spaces

Let x = (xl' Koy eser Xpy ...) denote an infinite sequence of real

numbers. The set of all such sequences Gf is a linear space under

"component-wise" definitions of addition and scalar multiplication.
©

o0
A linear functional f£: & - & has the form f(x) = ) f; x; for some
i=1

set of scalars £+ f3, ... . Thus f may itself be identified with an
element of ﬁm, f = (fl, fz' ...) and we can write f(x) = f-x where -
stands for the usual "dot" product of vectors.

From Rm we can extract a number of important Banach spaces.

L _: the subspace of all pounded sequences with norm defined by

Ixil_ = st:lp |xn| .

cg: the subspace of {_ consisting of all sequences convergent to O.
2,1: the subspace of all absolutely summable sequences with norm

K-
defined by Ixf, = 1 x| -

n=1

zp for 1 < p < »: the subspace of all sequences x for which Z |xn|p < e,

P/ = n=1
with norm defined by lIxfi_ = / I |x |p .
P =l P

NOTES: 1) The notations 11, 1p and % are consistent. Clearly 9,1
is the result of setting p = 1 in the definition of JLP r

while limit x| = sup Ixnl = yxl .
pe n



12.

Hilbert space.
3) &, = co*, L =4 %= co**. (Thus 10,9.1 and £ are non-reflexive.)

For 1 <p <= JLP* = !Lq where g is such that

{Thus, for 1 < p < = JLP is reflexive.)

4) With the exception of £ all these spaces are separable that is,
they have countable dense subsets.
In each case the set of sequences with only finitely many non zero
components is a countable dense subset.
In &, the set of sequences with components either 0 or 1 is in
correspondence with the binary representation of real numbers in

[0,1] and so is uncountable. Any pair of distinct elements from

this set are distance 1 apart. Since any dense set must

have elements arbitrarily close to each of these sequences it
™
cannot be countable. a

Continuous function spaces
Cfa,b) the set of all continuous functions mapping the closed
(bounded) interval [a,b] into & is a Banach space with addition and

scalar multiplication defined point-wise and norm defined by

I, = Max {|fx]: x € [a,b]}
[Note: [a,b] could be replaced by any compact topological space.]
The set of polynomials. (with rational coefficients) is a countable
set which by Weierstrass' Theorem is demse in Cf[a,b]. Thus C{a,b] is

separable. C[a,b] is not reflexive,

The Lebesgue Funetion Spaces
Let U be Lebesgue measure on @ = [0,1], or more generally on any
finite measure space (R,L,u).

For any Lebesgue integrable function f: 2 + & let f denote the

equivalence class {g: I |£ - g| au =0} =1{g: £ - g =0 almost everywhere}.
Q

Then, since f + g = f + g, Af = Af and f is Lebesgue integrable if
and only if |f| is, the space of all such equivalence classes
£, (2,1 is a normed linear space with [fl, = [Q|f| du. Indeed

51(Q,u) is a Banach space.

For 1 < p £ » we can construct a Banach space -Cp(Q,IJ) with elements
P
those f for which I |f|p du <« and norm defined by f p " /J’|f|p du.
Q Q

We have

£p*(9,u) = L (@) where % +

Q=

and for p > g N

UEl_ < Bl o
- P - q

Further, as sets, we have by HSlder's inequality

L& ...C.cp(n,u) < ... €£q(n,u) C...SLEWS.L S .

*
Hilbert space

reflexive

separable
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81 SUPPORT FUNCTIONALS

By a hyperplane in X we mean a translate of a subspace of co-dimension

1 in X. Thus H is a hyperplane if and only if H = xy + M for some x; € X
and subspace M of X with X = <yy> @& M for some Y, # 0. By the discussion

on p.3 M = Ker f for some f e S(X*). This leads to

PROPOSITION 1. H < X i& a hyperplane if and only if for some f € S(X*)

and ¢ € Rue haveH:f_l(c) ={x € X: £(x) =c} .

Proof. (=) If H is a hyperplane, then H = x, + Ker £ for some *y € X

and f € S{X*). So h e H if and only if h = X + m where f(m) = 0. Thus

for all h ¢ H we have f£(h) = ¢ where ¢ = f(xo) . Conversely, if £(h) = c,

thenh=x0+(h—x0) andf(h-x0)=0, so h € H.

(& IfH={xeX: £(x) = c} for some £ € S(X*) and ¢ ¢ R then

choosing any Xq € H we have for any h ¢ H that h = x_ + (h - xo) , where

0

f(h - xo) = 0. So H is contained in X + Ker f. Conversely, if
xex0+1<erfthenf(x) =f(x0) = ¢ and so x € H. ThusH=xD+Kerf

and is a hyperplane. O

REMARK: This correspondence between Hyperplanes in X and points in X* is
reminiscent of the duality between lines and points in projective geometry
and partly explains the term dual space.

A hyperplane H = f-l(c) divides X into two closed "half-spaces'*;

H+

{x € X: £(x) 2 c}

and H = {x € X: f(x) € c}

+ -
where H n H = H.

* A half-space is a convex set whose complement is also convex.
Sp

direction of
increasing £
values.

M = Ker £

X, + M
£
We say the Hyperplane H supports B[X] at x € S(X) if x € H and

B[X] ©H . Intuitively, H is a "tangent plane” to B[X] at x.

PROPOSITION 2. H supports BIX] at x ¢ S(X) if and only if H = £ 1(1)

for some £ e S(X*) with £(x) = 1.
Proof. (=) Let H = f_l(c) where f ¢ S(X*), then

c=1f(x) <sup f(y) = |f) =1
yeS(X)

and, since B[X] € H, £(y) < ¢ for all Y eSS, sol = sup £(y) < c.
yeS{X)

(9 If f e S(X*) is such that £(x) =1 thenx ¢ H = £71(1).
Further, if y e B[X] then f(y) < ffl =1 and y € H . Thus x € H and

B[X] < H , so H supports B[X] at x. o

H=f1()

a support hyperplane for

S
x) B[X] at x.
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This proposition shows that there is 'a one-to-one correspondence
between support hyperplanes for B[A] and linear functionals in S(X*)
which attain their norms. A functional f ¢ S(X*) attains its norm

if there existé x € S(X) with £(x) = Sup f(y) = jf] = 1. Such a
yes (X)

functional is referred to as a support functional for B[X] at x. The

support theorem 1) on page 4 can now be-rephrased as:
3. There exists a support functional for BIX] at every x € S (X)
OR
For each x ¢ S(X) there exists a Hyperplane which supports B[X]
at x .

[Intuitively, there is a "tangent" at every point of s(X).]

EXAMPLES

1) Let X = 2{2) the space of ordered pairs of real numbers with

T 2% _ (2
ixl =1 (x, /%) h = |x1| + |x2l , ‘then 2, =2, the space of ordered
pairs of real numbers with Ifl = I (£,,£;) = Max [f] NEN and
£x) = £ox = £x) * £2Xp
s (2) (2) . below
The unit balls of 2.1 and Em are illustrated below.
unique support
\ /'unlque support hyperplane functional for x|
at X ~
(0.1} -1,1) Lo,
(-1,0) (1,0)
' Ny (2)
hY B[2, "]
N
support \\ “
yperplanes - ~
P d
at X, ~— — v
—— - (© §\\\ 1
<« ' S¥ES LD ~ (1,-D)

~

support functionals
for x,

~For any point X, on the segment of S(Eiz)) joining (0,1) and (1,0)
we have x; = (¢,1-0) for some & € [0,1}. If f1 is a support functional
for X, we have ‘fl = (fl,fz) where

I = Max £, ],]|£,]
and fl(’f) = afl + (1-a)f2 =1.

The only solution of which is f; = (1,1).

Similarly, any functional of the form (a,-1l) with o € [-1,1] supports

()

B2, "] at x, = (0,-1).

~2

2. For X infinite dimensional every f e S(X*) is not necessarily a

support functional.

1 1 1 1
= * = = (=, 7, = -
Let X Cor then X 9.1. Let £ (2, i g e 2n' ...), then
£, = z 1 =1. For x = (x,, X5, ...) € S(X) we have
1 n 1 2
n=1 2
-
Ixn| < sup |xp| = fxl, =1 and £(x) = ¥ fnxn= 1} xp/2n , for this
m

n=1 n=1
last sum to equal 1 we must have x = 1 for all n. This is impossible as

(1,1,1,...) £ oy -

EXERCISES: 1) Identify at least one support functional for each x € S(CO) .
‘At the point (1,0,0,...) € S{c 0) , show there is only one support functional.
Give an example of a point at which there are infinitely many support functionals.
2) Show the conclusion of Example 2 is false for reflexive
spaces that is,
If X is reflexive then every f ¢ S(.x*) i8 a support functional for

some x € S(X).

The observations made in Example 2 and Exercise 2 are greatly strenghened

by a rather recent, deep result of R.C. James [Reflexivity and the

Supremum of linear functionals, Ann. of Math. 66 (1957) pp.157-169] which
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states:
A Banach space X is reflexive if and only if every element of'

S(X*) attains its norm on S(X) (that is, is a support functional).

We will not prove this theorem [see Diestel or Holmes for a
"simplified” proof], nor will we use it to develop theory. None-the-
less, several of our results can be proved very simply if we assume
James' Theorem. When this is the case, such a proof will be called

for as an exercise.

A related, very useful, result was established by E. Bishop and
R.R. Phelps [announced in Bull. A.M.S. 67 (1961) pp.97-98]. They show
that in any Banach space the set of functionals in S(X*) which do
attain their norm on S(X) is a norm dense subset of S(X*). For obvious
reasons, this property of all Banach spaces is referred to as
Subreflexivity. We will prove this result. While it is probably the
deepest (hardest) proof which we shall encounter, given the right
approach, the ideas underlying the proof are fairly simple.

A subset K of X is a cone (vertex the origin) if, whenever x ¢ K
we have Ax € K for all A 2 0. A cone is completely determined by the
norm one elements in it. Indeed, K consists of all the half-lines from
O through norm one elements of K. [If x ¢ K, x # 0, then x = x/|Ix| is
a norm one element of K. Further x = lxll x, € {)‘xlz A 2 0} the half-
line from O through %) .1

For any £ € S(X*) and k € (0,1) define K(f,k) to be
{x e X: klix} < £(x)}. Clearly K(Ff’,‘k/)/is/}a ceone. The norm one elements
of K(f,k) are precisely those p;oints of S(X) which lie in the positive
half-space determined by the hyperplane £1(x), thus K(f,k) is as

illustrated below.
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(k)

— =3 Ker f

It is readily checked that K(f,k) is closed and convexr (do so).

Further, as k approaches O, K(f,k) becomes more nearly a half-space.

We will say that the cone K supports B[X] at Xg if (x(+K) NB[X] = {xO}

We now have the ingredients needed to outline the strategy of the
proof. Given any f ¢ S(X*) and k € (0,1) we first show that there

exists Xy € S(X) at which K(f,k) supports BI[X].

Then since, B[X] has a non-empty interior, L Xo * K(£f,k)

we may apply the Eidelheit separation 1
£, (1)
theorem (p.5) to obtain fO € S(X*) such 0

that R

1= sup £y(x) = fo(xy) = inf £q(x),
x€B[X] x€K(f,k)

(see the figure opposite). er £
The remainder of the proof amounts to

showing that, since the half-olane {x: fO(x) 2 0} contains K(f,k), which
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for k small, is itself nearly a half-plane, then the "directions" of

f and £, are near to one another.

LEMMA 4 (Existence of Support points): Let £ € S(X*), k € (0,1) and
x € B[X) then there exists X, € B[X] such that
i) -xo € x + K(f,k)

and  ii) K(f,k) supports B[X] at x;.

s . R ivel
Proof: Let Bn = B[X] n (xn + K(f,k)) where (xn) is defined inductively

1
N + = .
by X, =%, X . € Bn is such that Sup f(Bn) < f(xn+l) a

R x + K(f, k)

Xy + K(f,k)

\ £ 1 (sup £(8,)=1) \

Clearly Bn is closed, and Bn t ] (xn € Bn) .

+ K(f,k
Also x ., € B <X/ (£,k)

so xn+l + K(f,kK) ¢ xn + K(f,k) + K(f,k))

x + K(f,k) , as K(f,k) is a convex cone.
n
Thus B, S B/ -

Further, if y € B then

n+l '

(Sup f(Bl))

Ny - xn+l“ <k “fly-x ..), asy-x € K(£f,k)

n+l n+l

1A
~
g
o
h
w
[}
=
h

< .
X +l) as y € Bn+1 Bn

So, diameter B <

Cantor's intersection theorem* now applies (since X is complete) and

so 0 B consists of a single point x;.
n .
Since X, € B) we have: i) X, € X + K(f,k).
Finally, since X, € Bn = B[X] n (xn + K(f,k)) c x, + K(f, k), we
have X, + K(f,k) <c xn + K(f,k) + K(f, k)

= x, + K(f,k) , again K(f,k) is a convex cone.

Thus (x0 + K(f,k)) n B[X] ¢ Bn for all n and so:

i) (xy + K(£,K) n BIX] = {x;}. g

K(%c)

is W convex TondNrery@ then K + K = K. Prove this property characterizes
%conesw are convioc .

REMARK: In applying the Cantor intersection theorem, the completeness

EXFRCISE: 1In the above proof we twice used the observation that if k\

of X is vital. Indeed it can be shown that the conclusion of Lemma 4
is false for incomplete spaces [E. Bishop and R.R. Phelps, Support
functionals of convex sete, Proc. Symposia in Pure Math. AMS, 7 (1963)

pp.27-35.]

* Cantor's Intersection Theorem states: A metric space (X,d) is complete if
and only 1f for every nested sequence of closed non-empty sets
Fy 2 Fp 2 F32 .. such that diameter Fn + 0 we have ﬁ F, contains exactly
one point.
If you are not familiar with this result you should attempt to prove it (at
least the "only if" part). You should also give an example to show that
the assumption 'diameter F, + O' is necessary.
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As a consequence of the above proof we also have fo(y) < 0. Then y £ K(£,k) so k = klyl > f£(y) and

£(x) f(y) + £f(x - y)

COROLLARY 5: Given £ € S(x*) and k € (0,1), if x € B[X] is chosen so

A

. e € -
that £(x) > 1 - €, then the x, of lemma ¢ also satisfies |x; - xI < ¢ . £y) + Ix - vl
<k + €.
Proof: Since X € B1 we have x0 - x € K(f£,X) and so

- < .
Ixg = xl £k 1 £(xg - %) Thus f£(x) < k for all x € S(X) n Ker f,- Since x ¢ S(X) n Ker £,

-1 implies -x € S(X) n Ker £, we have *£(x) = £(¥x) <k or [£(x)| k. [

< (1-1(@-e9), as fxy) < I£l onﬂ =1,

) [m]

o =

LEMMA 8: Let X > 0 and £, £ € S(x*), If |£(x)| < k whenever

x € S(X) n Ker £, then either ﬂfo - ff < 2k or lfo + ff < k.
Having established their existence, we now investigate the consequences

Proof. Let g denote a Hahn-Banach extension of fl from Ker f, to

of having at X, a support cone to B[X] of the form K(f,k). Ker fq

X, then [lgll £ x. Further, since (f - g)(x) = 0 for all x € Ker fo we

LEMMA 6: Given £ € S(X*) and k € (0,1), there exists £, € S(X¥) such have Ker (£ - g) 2 Ker f,. Thus, by the remarks on p.3, for any chosen

that £, attains its norm (at the x, of lemma 4) and ¥, £ Ker(f - g) and any x € X we have

K(f,k) ¢ {x e X: fo(x) > 0}. fo(x)

Ly 4k
£4lyg) 70

Proof: By lemma 4 there exists x, € B[X] such that (x0+l((f,k)) n B[X] = {xo}.

0

Clearly |lxgl = 1, otherwise, for a sufficiently small § > 0 and x € K(£f,k) where k € Ker £, and also

we would have x, + 8x € B[X] n (x, + K(£,k)). Thus B(X) = {x ¢ Xx: [x[ < 1}, (f - 9) (x)
0 0 X = yo + k.

(£ - g)(y,)
the interior of B[X], is disjoint from Xg + K(f,k) and so, since both B[X] 0

and x, + K(£,k) are convex, the Eidelheit separation theorem applies to Since these decompositions are unique,

give £ ¢ S(X*) such that Sup £,(BIX]) < inf fi(xy + K(£,K)).

£ (x) -
hi = (£ - g)(x) for all x € X,
. £,(yy) (f - 9 (yy
But, then fxy) <1 = Sup fo(B[X]) < inf fo(x0 + K(£f,k)) ]
S £,(x), as 0 e K(£,k), or (£-g) = af; (wherea = (f - g)(yq)/E(yy))-

thus, fo(xo) =1 (so fo attains its norm at xo) and [Note: we have just proved a particular case of the general result;

"If Ker f1 2 Ker f, then f1 and £, are linearly dependent”.]

1 21+ inf fo(l((f,k)) or O < inf fo(l((f,k)) as required. )

Now,
LEMMA 7: Let £ € S(x*), k e (0,1) and let £ € S(X*) be such that |

| [t - Ja|j = [0eh - BE - gl| < gl sk .
K(f,k) g {x e X: £,(x) 2 0}. If xe S(X) n Ker £, then leo | < k.

Proof: Given any € > 0, choose y € S(X) cuch that ||x - y| < € and




24.

Thus, if o 20, then

g - €1 = L -o)fy-gl s [1-a| + g0
= |1-Ja|] + gl < 2.
Similarly, if & < 0, then
I€g + €1 = I +a)fg-gl < [1+a| + gl
= J1-laf] + gl < 2.

REMARK: At this point we could establish subreflexivity, however
since a slightly stronger conclusion [observed by Béla Bollobas,
Bull. London Math. Soc. 2 (1970) pp.181-182.] is easily within our

grasp, we will continue.

EXERCISE: Given any £ ¢ S(X*) and € > 0, show that by setting

k = g in the sequence of lemmas 4, 6, 7 and 8 we obtain a functional
fo € S(X*) which attains its norm and is such that either

If - £4l < e or £ + foll < ¢. Hence show that there is a support
functional within distance € of £ and so conclude that X is

subreflexive. [Hint. Show that if fo attains its norm, so does

-f9.]

LEMMA 9: Let f € S(X*), k € (0,1) and let £, e S(X*) be such that
K(f,k) € {x € X: £45(x) 2 0}, then either If - £, < 2k or

If + £ | < 2k. Further, if k < % then the last case is’ impossible,
that is, If - £8 < 2.

Proof. The first part of the lemma follows immediately from lemmas
7 and 8.

Now, assume k < %, then there exists x ¢ S$(X) such that

f(x) > 2k (Jf] = sup £(s(X*)) = 1.), then £f(x) > klx}] so
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x € K(f, k) and fo(x) 2 0. We therefore have

I£+£1 > | £ + £,) x| 2z £ > 2k. 0

Combining lemmas 4, 6 and 9 together with the corollary 5 we

have:

THEOREM 10 ("Phelps-Brondsted-Rockafellar"): Given € > 0, k € (0,%),
f e S(X*) and x € S(X) such that £(x) > 1 - €, there exists
£, € s(x¥) and x, € 5(X) such that:

1) f4lxy) = 1;

ii) fix - xoll < g/k;

and  iii) [f - foll < 2k.

REMARK: The Phelps-Brondsted-Rockafellar proof [see Holmes pp.l1l65 and
166} is shorter and sharper, but I believe less "transparent", than
ours. They obtain the conclusion with k ¢ (0,1) and iii) replaced
by If - foll < k, though f, is not guaranteed to be of norm 1 and so

i). is replaced by £,(xy) = Ilfoll .

As a corollary of Theorem 10 we have
THEOREM 11: Given € > O and £ ¢ S{X*), x e S(X) with £(x) > 1 - €2/2,
there exists £, € S(X*) and x, € S(X) such that:

i) f,{xy) =1 (ie, f, attains its norm at x,);

ii) #x - xoll < g;
and iii) £ - f0|| <E .
In particular every Banach space is subreflexive.

Proof. Replacing € in theorem 10 by 92/2 and taking k = €/2 (which,

without loss of generality we may assume is less than %), we have:
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there exists f; € S(x*) and x; € S(X) such. that
i) fo(xo) =1;
i) Ix - x I < e?/ox = (/2D/(e/) = &

and iii) Jf - £, < 2k = 2¢/2 = €, as required.

some final REMARKS.

With some obvious modifications in definitions, lemma 4,
corollary 5 and Theorem 10 remain valid if B[X] is replaced by any
closed bounded convex set B in X. The proofs remain essentially
the same, except that, since B may have an empty interior, to
apply the Eidelheit separation theorem, we must first show K(f, k)
has non-empty interior (do so). In this more general setting
corollary 5 assumes real significance. It establishes the density

in the boundary of B of points at which there exist support

hyperplanes to B (ie points x, ¢ B for which there exists f; € S(X*)

with fo(xo) = Sup fo(B)) . Prior to these results it was an open
question whether an arbitrary closed bounded convex subset
necessarily had any such points.

For these generalizations and some alternative proofs to the

ones given here see both Diestel and Holmes.
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§2 The Duality Map and Support Mappings

In this brief section we introduce two fundamental concepts and
several miscellaneous ideas which will be of use later.
For x € S(X) let D(_x) denote the set of support functionals for B[X]
at x. That is, D(x) = {f € S(X*): £(x) = 1} . By the support theorem,

3) on p.16, D(x) is non-empty.

EXERCISE: Show that for any x € S(X), D(x) is convex. Also show
that D(x) is w*-closed and so conclude that D(x) is w*-compact.

[Hint: Use the Banach-Alaoglu Theorem of p.7.]

D: x v D(x) defines a set valued mapping from S(X) into the non-

empty subsets of S(X*). We will refer to D as the Duality Map for X.

A selector for D, that is, any mapping ¢: S(X) -+ S(X*) where

¢(x) € D(x), is a support mapping for X.

NOTATION: We will denote a typical element of D(x) by £ . Further,
when it is clear that a particular support mapping is being considered

we will write fx in place of ¢ (x).

REMARKS: 1) The Duality Map is analogous with the spherical image
map introduced into differential geometry by Gauss. Indeed, when

D was first introduced, by D.F. Cudia [Geometry of Banach Spaces.

Smoothness, Trans. A. Math. Soc., 110 (1964) pp.284-314], it was
termed the "Gaussian Spherical image map". Support mappings were
introduced and extensively studied by J.R. Giles following earlier
work by G. Lumer.

2) The duality map may be extended to all of X by defining

- X ifx=20
Dix) =
1=l D(x/Bxt) if x # 0.
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In this case it is more usual to extend the range of D also by
replacing D(x) with the cone generated by it, {A D(x): A 2 0}. The

defining relationship then becomes f € D(x) if and only if

£(x) = BElk=l .

X1

S(X)

Similarly, a support mapping ¢ may be extended to X by imposing
the requirement that it be positive scalar homogeneous, ¢ (Ax) = A (x)
for all A 2 0. Clearly, such an extended support mapping is a

selector for U, however not every selector for D is such a support

mapping.

LEMMA 1: Let x b £ ard x v g_ be two support mappings for X,
then for A > 0 and y € X we have

fix + Ayl - Bxi
gy = X < fyny (y)
Fxtryll

gxlx + Ay) = gy (x)

Proof. 9y (y)

A

Ix + Ayl - Uxd o1 _ R
< 3 , as Ilgxll 1 = x| g, (x)

Ix + Ayl - fxiyy (x)

Ixtyl
< Py ;o as fgn. () £ 1.
Ix+iyl

Feny X +AY) - fyny (X) iy
= + Ix+rvi X+AY
- bl r 3 Sy Yxnyl

Ixayl

= fx+x}! (y).

§x+ayl

) = 1.

COROLIARY 2: For A < 0 we have

fix + Ayl - Uxl
fxay () < : < g v .

x5yl

Proof. Replace A by -A and y by -y in the above lemma and multiply

throughout by -1. O

EXEIK:ISE 1) 1fx » fx and x ¥ 9y are two support mappings and
A > 0, deduce that, for each y € X
fﬂl (y) = gx(y) < fiﬂl (y) .
Ix-Avl Ixfyl
2) (Optional) Given any support mapping ¢, X € S(X) and
§ > 0, show that

D(Bg(x) n S <€ = $(Bg() 0 S(X)).

[Argue as follows. Suppose there exists x; € BG (x) n S(X) and
_wi
fxo € D(xo) such that £, £ co ¢(B6 (x) N S(X)). Use the separation
0
theorem to obtain a z € S(X) with

fxo(z) > Sup{d(y)(z): v € Bg(x) 0 S(X)}.

From Exercise 1) deduce that, for A > 0,

Xg + Az
ll;"'—)\zll) (z), and show that for A small enough
0

this leads to a contradication.]

fx ) = ¢ (

The relationship between support ‘mappings and the difference quotient
in lemma 1 and Corollary 2 suggests a connection between support
functionals and differentiability properties of the norm function.
This connection is made more precise in what follows and is an

observation basic to much of our subsequent theory.
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LEMMA 3: For fized x € S(X) and y € X, vy # O, the function

Ix + )‘)‘“ = Uxb ;o inoreasing for A > o.

Proof. Let 0 <u <A, then

S TR Ae -
ﬂx+uy“-l—||)‘x+)‘)\y+)\x|l 1

In

A=
'%le+)\y||+(T"l -1
B
N

fix + Ayl - 11. O

THEOREM 4: For x € S(X) and y e X, y # 0,

ix + Ayl - ixl

xists.
X e

g (x,y) = mimit
A0t

’

- R +
Proof. By lemma 3, Ix + )‘)‘“ Ix1 is decreasing as A + O

thus to establish the existence of the limit it suffices to show

that hx + )‘)\“ = Ixl ;o bounded below for small A. To see this,

observe that, for A < 1/[lyl we have

Ix + Ayl - Il
A

[ixll - Alyl] -1
A

_ 1 - Alyk -1
A

= -yl . o

g+(x,y) is known as the upper gateaux derivative of the norm at x

in the direction y.

REMARK: With a little more attention to detail, the last two

results can be established with any convex function in place of the

norm (see, Holmes C¢Ch.l, §7D, p.28).
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EXERCISE: Show that
i) lg+(x,y)| < ]yl for each x € S(x) and all y € X.

ii) g+(x,ax) =a for all a € R

LEMMA 5: For fized x € S(X), y e X, a e 8 and B > 0 we have

g (x,axtBy) = o + B3 (x,y) .

Proof. For any ¢, B € & we have

gt (x,ax+py) = limit fix + A(ax +)\B)Y" = Ixt
arot
(1 + o) lx + =2 o - il
. 1+a
= limit 3 , as [aA| < 1 for A small.
A0t i
8 [ B8
—— x+t —= vl - UIxl
= limit alx + &)\ vl + limit L+ax 1+ax
Aot 1+ Aot [1—& ]
+a
+ . BX + +
=a+Bg(x,y),smcel+a)\+0 as A >0 O

By lemma 1, we have for any fx e D(x) that fx(y) < g+(x,y) . 'We now

show that max{fx(y) : £ € Dix)} = g+(x,y) .

THEOREM 6: Given x € S(X) and y € X there exists fx e D(x) such that

fx(y) = g+(x,y) .

+ . .
Proof. If y = ax, then g (x,y) a (by Exercise ii) above.)

fx(y) for any £, € D(x).

Now, assume x and y are linearly independent and let M be the subspace
spanned by x and y.

Define f on M by

flax+tBy) = a + Bg+(x.y) , then

£(x) =1, so lfl 2 1. It suffices to show [£fll = 1, for then any Hahn-
Banach extension ;3 of £ from M to X will be an element of D(x) with

~ +

f(y) = £(y) = g (x,y). Now, for B > 0 we have

f(ax + By) = a + Bg+(x,y) = g+(x,ax+By) , by lemma 5.

so |flax + BY)l - |g+(x,ax+8y)| < llax + Byl , by Exercise i) above.
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on the other hand, if B < 0

flax + gy) = -(-a -8 g+(x,y)) = -g+(x,-ax—8y), again by lemma 5.
So |flax + By)| = |g+(x,-ax-f3y)| < ll-ax - Byl = Hox + Byl .

Thus, |fl € 1 as required. O

- . . - o Ik e gl = Ukl
7: The lower gateawr derivative g (x,y) = l;x_n);z —_—

exists and equals Min{fx(y): £, € D(x)}. To see this, note that

- +
from their respective definitions g (x,y) = =g (x,-y).

The conclusions of lemma 1 and Theorem 6 may be represented

diagramatically as follows.

r = |zl
ﬁﬂ\ .
yr =g (x,2)
r = fx(z) (fx e D(x))
.y r =g (x,2)
R
< ] !
V )
e : ]
/” 1 |
- |
' ! i
' i -
] > X

H]
N
1|
w
F
>
v

We conclude this section with an assortment of results which are not
vital for subsequent work. They do however provide additional

background.

Al (Sub-gradients) For any convex function ¢: X =+ R, we say
f € S(X*) is a sub-gradient (sub-differential) to ¢ at x e S(X) if

f(z - x) = f£(z) - £(x) < ¢(z) - &(x) for all z e X.

r = 9(2)
84\

resmeemd r = f(x) = 0(x)

khomee=-=-

A comparison of the last two diagrams suggests that any element

of D(x) is a sub-gradient of the norm function at x. Indeed we have:

PROBLEM: Show that f ¢ D(x) if and only if f is a subgradient of

the norm function at x.

B] PROBLEM: For any extended support mapping x # fx’ show that

the following primitive parallelogram law holds.
- - - 2 2
(£, + fy) (x +y) + (fx fy) x -y 2fxf< + 20yl<.

Hence deduce that D 18 g monotone map, that is, for any x, y € S(X)

and fx e D(x), fy € D(y) we have (fx - fy) (x -y) 2 0.

Cl (Hilbert space) Let H be a Hilk;ert space, show that#r 2, 45 QSCH)
(x,y) P wWIY® = 1 if and only if x = y.

Recalling, RIESZ' REPRESENTATION THEOREM: £ ¢ H* 1f and only if

fly) = (y,x) for all y € H and some x € H, show that D(x) is a

singleton set for each x € S(H). Hence conclude that there is a

unique support map for H, which is given by x & fx = (~x).

D] (semi-inner-products) G. Lumer [Semi-inner-product spaces,

Trans. Amer. Maths. Soc. 100 (1961) pp.29-43] introduced the notion

of a semi-inner-product for arbitrary Banach spaces, that is a

mapping (—,=): XxX + & which satisfies:
i) || < Ixlfyl and  (x,x) = i x 2
ii) (x+y,2) = (x,2) + (y,2)

iii)  (x,y) = A{x,y).

PROBLEM: Show that ¢: X - X* is an extended support mapping if and
only if (x,y) = ¢(y) (x) is a semi-inner-product for X. This shows

that every Banach space admits a semi-inner-product.
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§3 Ssmoothness
E] (orthogonality) In a Hilbert space we say two elements X, Y

. DEFINITION: x. € S(X) is a smooth int if th is a uni s rti
are orthogonal (written x L y) if (x,y) = 0. Show that (x,y) =0 ; 0 x) 00 po ere que pporting
" i i £ 1 Q hyperplane to B[X] at x3. That is, if D(xo) has only one element or, if
if and only if Ixll = lx + Ay or a € :

all support mappings coincide at x,.
G. Birkhoff [Orthogonality in linear metric spaces, Duke Maths. J. pping 0

. If - - . _
1 (1935) pp.169-172] used the relationship lx# < Ix + Ayl for all ’ every point of S(X) is a smooth point, then we say X is

i a smooth Banach space.
% € ® as' a definition of "x 1 y" in arbitrary Banach spaces. This

notion of orthogonality was subsequently studied by R.C. James EXAMPLES: 1) From Cl p.33, every Hilbert space is smooth.

[orthogonality in normed linear spaces, Duke Maths. J. 12 (1945)

2) Example 1) p.l16 shows that (0,~1) is not a smooth point

pp.291-302] and has become known as James' Orthogonality (see of 1{2)

. while all points of the form (¢,1-¢) with O < & < 1 are smooth

Diestel) . points.

3 i -
PROBLEM: For x, y € S(X), show that x 1 y (in the sense of James') ) The argument used in Example 2} p.17 shows that

i i =0 (1,1,1,...) € S{&_) is the only possible support functional for
if and only if there exists f ¢ D(x) with fx(y) = 0.

111 11 L ; )
L. (5¢£¢5s---) €5(2)). Thus (2,7,...,3n,...) is a smooth point of 2,.
Hence conclude that x L y if and only if for some semi-inner-product Seiege 1 Srhr 30, po )

Similarly (1,0,0,0,...) is a smooth point of Cp {see, Exercise 1)
on X we have (y,x) = 0.

. . p.17.1.
Give an example to show that x Ly need not imply y L x. (Hint:

2
try in li ).) EXERCISE: Characterize the smooth points of c; and £;.

i . tinuity) 1f T is any linear space topology on X* Smoothness and related concepts were extensively investigated by
F] 'pper-semi-continuity j

v -
| lued i from S(X) to S(X*) we say F is upper- V.L. Smul'yan [see for example; Sur la derivabilite de la norme dans
and is any set valued mapping

1'espace de Banach, Doklady (CR Acd. Sci. U.S5.S5.R.), 27 (1940), pp.643-648.].

upper-semi-continuous norm to T at x, if given any T-neighbourhood,

. . 5 o h that We begin with one of his characterizations.
N, with F(x) ¢ N there exists > suc a

F(BS(X) n s(X)) €N, THEOREM 1: x, € S(X) 18 a smooth point if and only if whenever (fn) < S(X*)

or equivalently if
-1

xn——> x, then eventually

has £ (xg) > 1 we have that (£) 18 w*-convergent.

Proof. (< ©Let f, g € D(x,), then the sequence th ) = (f,9,f,9,f,...)

is such that h (xo) + 1 (indeed h (x_ ) = 1 for all n). Thus h w: h
n n 0 n
F(xn) < N.

for some h, which implies f(y) = g(y) for all y ¢ X, that is, f = g and

PROBLEM: Show that the duality map D is upper-semi-continuous norm to w* so, x, is a smooth point.

at every x € S(X).
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< . wt

(= Let fn(xo) + 1 where X is a smooth point, then if fn > £

we have f(xo) = Limit fn(xo) =1, so f = f0 the unique support functional
n
at X g
*

Now, assume fn wf fo, then there exists an open w*-neighbourhood

N of £, and a subnet (fna) of (fn) with fnol £ N for any 6. Since B[X*]
4 . wh

is w*-compact, there exists a subnet (fnaB) of (fna) with fnaﬁ > f
for some f € B[X*]. Further, since X* \ N is w*-closed, £ £ N. But,

flxy = Liﬂéit f“as‘xo) =1, so £ = f, € N, a contradiction. n

In the next theorem we collect together a number of important
equivalences to smoothness. Several of these characterizations can be
deduced easily from results of the last section (see Exercise 1
immediately following the proof). The proof given below does not

require any of the work in §2 beyond lemma 1 and its corollary.

THEOREM 2. Let x, € S(X), then the following are equivalent.
i) x, is a smooth point.
ii) All support mappings are continuous norm to w* at x,.
iii) There exists a support mapping which is norm to w* continuous
at x,.

iv) The norm function is Gateaux differentiable at x,, that is

g'+(x0,y) = g- (xo,y) for all y € X or the Gateaux derivative
i i ; .. Ixptavl - Bixgl

at x, in the direction vy, g(xo,y) = limit ;) ’

: A0

d

exists for each y € X.

Proof i) = ii) Let x P fx be any support mapping, then if

Ix, = xgl + 0 we have |f, (xp) - 1| = |fy (xp) - £x (x|

I

By 0 Bx - xl

Ilx, - x40 ~o0.

) *
Thus, by Theorem 1, fy_ x5 £x,+ establishing continuity.
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ii) ® iii) Obvious.
xo+)‘y

iii) = iv) For any € X ——
Y Ix oy

+xgas A +ot.

Thus, if the support mapping x & fx is continuous norm to w* we

have
w*
fy oy o fxg as A >0 .
Bx0+>\yﬂ
So, £y (y) = Limit fepny ) and applying lemma 1 of §2, p.28,
0 Ix Ayl

with 9y = fx , yields

Ix +avl - Ix .l
i +
fy (y) = Limit 0_)\__0 =g (xgy) ,
] A0+
but then,
- + +
g (xpy) = -9 (x,-y) = —fxu(-y) = fxo(y) =g (x,y) .

iv) = i) Let A > 0, then if x b Iy is any support mapping

+
9(xgy) = g (xgy) 29y (v) by lama 1 of §2, and

Ixg=avl - %
glxgy) = Limie g0 7 Bl

< gy (¥),
-0 A *0

by Corollary 2 of §2.

Thus for any support mapping x # g, and y € X , gxo(y) = g(xq,y)

and so all support mappings coincide at Xge 0

EXERCISES: 1) a) Deduce the equivalence of i) and iv) in the above
theorem from Theorem 6 and 7] of §2 (p.31 and 32).
b) Using Fl, p.34 of §2, deduce that i) = ii)
*c) Using Exercise 2 on p.29 of §2 deduce that iii) = ii).

2) show that the norm is Gateaux differentiable at X, in

every direction if and only if g+(x0,y) is a linear function of y.
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peskT) ol B et £en)=> 1, Bar €6 o -Caned
whenese- Cx,) c5(xYw ot n 7, .
(M . L“A)
A sometimes useful result is a "pre-dual" characterization for define 11(1") to be the set of functions
v . ‘ ) )
smooth points of X* analogous to Theorem 1 and also due to Smul'yan. x:T+8.: v & xy

. such that
s t tional for B{X], that is f € D(S(X)).
. THEOREM 3: Let £ be a support func for B[ i) x, =0 for all but a countable mumber of Y € T
3 1 s(x*) if and only if whenever (x_) c S(X)
Then £ i8 a smooth point of s(x*) if y if n ’ and D) 5 ixYl ‘.

has f(x) + 1 we have that (x ) ig w-convergent. YeT

[Note: the sum in ii) makes sense, since by i) it is really an

that since f € D(s(X)), there exists x € S(X) such
Froof.  Ghsexve ' absolutely convergent series and so is independent of any ordering
=1, thus x € D(f).
that f£(x) 1, thu (£) on .1
(= If £ is a smooth point x is the unique element of D(f). Now,

. 11 (T} is a non-separable Banach space with norm defined by
. - - w i
if f(xn) > 1, then xn(f) + 1 and so by Theorem 1, x '+ x or x -»x. Ixi. = x|

1 YeT Y

(<3 Assume f is not a smooth point, so there exists F € D(f), The dual of £,(l) is £_(T) the set of bounded functions

F # X. Since X* separates points of X** we may choose a g € X* and £:T+&: v+ fYr with norm defined by ||f||m - Sup |f | )
Yel

For x € £,(I) and £ € & (T} f(x) = yEr £, x -

X € R such that F(g) >k > x{g) = g(x). For each n let

1
U, o= G e x**: G(g) >k and G{(f) >1—5},

To see that any x ¢ S(Rl(I‘)) is not a smooth point it suffices

then U ##4, asF €U, and U is wt-open. By Goldsteine's Theorem to note that £ ¢ D(x) whenever f has the form fY = ggn x, if x, #0

(p.7), there exists x_ € B[X) such that in € Un' The sequence (in) and |fY! £ 1 for the remaining, uncountably many, values of y.
: : n

is therefore such that ;n(f) >1 - %1 and so f(xn) + 1. Thus, X is (Here and elsewhere, sgn A = )\/])\l for A # 0.)

w ~convergent to some y € B{X]. Further, f(y) = limit f(xn) =1, so

In contrast to the above example we have

)‘/\ € D(f). Now, the sequence (zn) = (x,Y¥,X,¥,X,...} is such that

£(z ) + 1, thus z_ is w—convergent and so x = y, but this is a contra- THEOREM 4 (MAZUR, iiber konvexe mengen in linearem normierten Riumen,
n n

diction, as g(x) < k while g(y) = limit g(xn) = limit xn(g) 2 k. Studia Math. 4 (1933) pp.70-84.): In a separable Banach space X

the set of smooth points is a dense Gg subset of s(x).
EXERCISE: Show that (1,0,0,0,...) is a smooth point of II,Q .

The proof of Mazur's Theorem occupies the remainder of this section.
We now consider the important question of existence of smooth points.

By definition, a Gg set is the intersection of a countable number of

EXaMPLE (a space with no smooth poinis): open sets. Further, since X is complete, Baire's Category Theorem

The sequence spaces listed on p.ll can be generalized to uncount-

able index sets. In particular, let T be any uncountable set and
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shows that any countable intersection of dense open sets is itself
dense. (This follows immediately from De Morgan's rules of set
theory and the observation that the complement of a dense open
subset is nowhere dense.)

Thus, to show the set of smooth points is a dense G6 subset of
S(X) it 'suffices to show it is a countable intersection of dense
open subsets of S(X).

[These remarks also indicate the significance of "GS" in the above
theorem: The intersection of the set of smooth points with any

other dense open subset is itself a demse G; subset.]

Since X is separable there exists a dense sequence (yn) in

S{(X). For anym, n € N, let

1
Gm,n = {x € S(X): For all fx' g, € Dix), (fx - gx) {y)) < 'El} ’

or equivalently, by Theorem 6 and 7) of §2, p.31, 32,

G = {x ¢ s(X): g+(x,yn) - g_(x,yn) <x]f1} .

For each m and n it is clear that Gm n contains the smooth points of
r

S(X).

Conversely, if x is not a smooth point, then there exist two
distinct elements fx' 9, € D(x). Since X separates the points of

1
X* there exists Yo € S(X) and m € N such that (fx - g) (yg) > .

but then, by their density in S(X) there exists yn such that

1 .
f - 2 = .
( - gx) (yn) , SO X £ G - Thus, the set of smooth points

of S(X) is precisely N Gm . To establish Mazur's Theorem it
’
m,n

is therefore sufficient to show Gm n is a dense open subset of S(X)
’

for each m, n ¢ N.

L. 1
Further, (f - = 1i -~ =
e ( q) (Y1) mit (£ gy ) (Y ) 2 y SOXE€EF

We first prove G is o in S i =
P ', n pen in S(X) by showing that Fm,n S()()\Gm n

is closed.

LEMMA 5: F_ = {x € S(X): there exists £.9, € D(x) with

(£, - 90 (v) > 3} is closed.

Proof. Let (xk) c Fm n be such that xk + x, and for each k let
’

L

fk' Iy € D(xk) be such that (fk - gk) (yn) > z - Since B[X*] is
wk—compact, there exists a subnet of (fk) . (fka) with fku w: f for some
f € BIX*]. Similarly there exists a subnet of (gka), (gk(, B) such

x
that gkug s g for some g € B[X*].

Now,

l£eo ~ 1] < (£ - )| + [ £ () - 1]

e = i) 0| + [ fx () - £y () |

A

[(£ = £ 0 |+ Bl Ix -
e
+ 0 as fy, +fand||x—xku||—>o.
so f e D(x).
Similarly, g ¢ D(x).
,n - O

We complete the proof of Mazur's Theorem by establishing the density

of each Gm in s(x).

P3¢

' +
For any x, y € X let D |x + ry[(A) denote the "right-hand" derivative
at X ¢ ® of the real valued function of a real variable r & lx + ryl.

That is,

+ -
D" Ix + ryl() = limie JX*ryl - Bx+ Ay
+ r-2X
r+A
- limit Ix + Ay + hyll - Ix + Ayl

h+0* h
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x+iy . h v
- limit Ix+ryll Ix+Ayl
h
oot 3
lx+2yl

+, xHy s "
g (le+>‘y||'Y) , provided x+\y # O.

ix + ryl - Ix + Ayl
r-A

limit
A~

similarly, D fix + ryl(})
- x+>\x_
9 Taaryl'? -

The final lemma will show that the set of positive A for which

g5

ptix + ryl(A) - DTIx + ryf(\) 2

is finite.

. x4\
In particular then, taking y =y and putting z, = IxFhyal

have for any x € S(X) that the set of positive A for which
*z.,y) - g (z.,y) 2 &, is finite
g ZA'Y g leY m ’ -
Thus, it is possible to choose a sequence of scalars O‘k) such

X+Akyn
that Ak + 0% ana Zy € G _. So since z)

=-—— 73 > X we
m,n k  Ixry !

conclude that Gm a is dense in S(X).
’

Lemma 6: The set of positive values of A for which

ptix + ryl (A) - D Hx + ryl()) 2 i

18 a finite set.
Proof. Let 0 < >‘1 < AZ then

Ix + zyll - Ix + Ayl

+ A
D llx + ryl(kl) = limit
a7t r -2
1 1
< Ix + Aoyl - dx + Ayl

\ : , by lemma 3 of §2, p.30.
2" M
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Ix + Myl - 1%+ Ay

>‘1_>‘2

ix + ry] - Ix + Ayl
r - )‘2

A

limit
>k,

D Ix + ryl ()

-, %+ Ay

N P

y), by above.
4+ X+ )\2y

g (m,y), by Theorem 6 and 7) of §2.

+
D [x + ryll(kz), again by above.

A

Iy, by Exercise i) on p.31.

This shows that D |x + ryf(}) is an increasing function of A which is

bounded above.

Further, taking A, to be a point at which
DIx + ryl(A,) - DIx + ryl(A) 2 3
x +ryl (A, Ix + ryl ;) 2 =

we see that, for all A < Ay

g~

+ +
D fIx + ryl(d) < D {fx + ryll(kz) - .

. : . + .
So, >‘2 is a point at which the value of D [[x + ryl[(A) "jumps”
by at least I]-r‘l . Clearly there can only be a finite number of such

points. o

REMARK: Our proof of the last lemma is a specialization of the "classical"

proof that any convex function on an open interval of real numbers

faile to be differentiable for at most a countable number of points.

, again by lemma 3 of §2.
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gome final REMARKS
” wWith only minor modifications to the proof, Mazur's Theorem can
: .pe generalized to show: If ¢ is any continuous convex function on a
gsparable space X then the set of points in S(X) at which ¢ is Gateaux

' differentiable is a demse G, subset.

2) The extension of Mazur's Theorem to spaces other than separable
ones is a problem of current interest. (It is known to hold in a wide
class of spaces, including all reflexive spaces.) In 1968 [Acta
Matﬁenatica 121, pp.31-47] Edgar Asplund initiatet;l the study of spaces
for which the generalized Mazur Theorem (above) holds. He called such
spaces "weak-differentiability spaces". Since his death they have

become known as weak Asplund Spaces, and have been the subject of

considerable interest (see Day §4, Ch.7 for some details), though many
open questions still remain, for example: Is every smooth space a

weak Asplund space?
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§4 Rotundity

Let P, P' be two Banach space properties (for example smoothness).

We say P' is a dual property to P if
X has P ¢ X* has P’

P and P' are in (complete) duality if each is a dual property of the
other, that is X has P (P') < X* has P' (P). When some, but not all,
of the above implications hold we will speak of "partial duality”; for
example, when X* has P' = X has P,

In this section we are interested in properties which are in
duality with smoothness.

We begin by strengthening the notion of support.

DEFINITION: x € S(X) is an exposed point of B[X] if there exists a
support hyperplane H to B[X] such that H n B[X] = {x}. That is, if
there exists f ¢ S(X*) such that f(x) > f(y) for all y € B[X}, y # x.

In this case we say x is exposed by £. (Note: such an f is necessarily
an element of D(x)).

Some possibilities are illustrated below.

x; exposed by £ .
Xp exposed by f, but not by 5.

Xy and X, are not exposed points.
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[You might like to construct specific (2 dimensional) spaces in which
each of these possibilities occur.]
If £ € S(X*) is exposed by F where F = X € )E, so F is w*~continuous,

then we say f is w*-exposed by x (or simply x) .

Our starting point is provided by

PROPOSITION 1: x i8 a smooth point of S(X) <f and only if there

exists an f e S(X*) which is w*-exposed by x.

A1 ) -
Proof. D(x) = x (1) n B(M so, if x is a smooth point, x
w*-exposes the unique element of U(x). Conversely if x w*-exposes
f then f is the unique element of );-1 ) n B[)w and x is a smooth

point. O

COROLLARY 2: £ 18 w*-exposed by x if and only if whenever (£) < sx)

. x
i8 such that fn(x) + 1, then we have fn v, £.

Proof. Replace "smooth" in the above proposition by the §mu1'yan
equivalent given in Theorem 1 of §3, p.35, noting that f is the only

ible w* 1imi
possible w* limit of (fn) . O

EXERCISE 3: Let x € S(X). Show that the following are equivalent
for £ e Di(x).
i) fx is a smooth point of S(X*).
1i) X is wh-exposed by f .
iii) if (x ) is such that £ (x) + 1, then x_ ¥ x.
Show that any (and hence all) of these conditions implies that x

is an exposed point. (Would you consider it likely that the converse

is generally true?)

a7.

LOCAL RESULTS

DEFINITION: x ¢ B[X] is an extreme point of B[X] if whenever
1
Xy, Xp € B[X] are such that x = —2-(x1 + x,), then we have x; = x, = x.

[ point which is not an extreme point is termed a “passing point".]

EXAMPLE: The points x;, x, and x, of the previous diagram are extreme

points of B[X], X is a passing point.

EXERCISE: i) Show that x is an extreme point of B[X] if and only if

x does not belong to any open line segment in B[X].

ii) Show that the only possible extreme points of B[X] are
points of S(X). -

iii) Show that x is an extreme point of BI[X] if and only if

whenever y is such that fx + yl| = lx ~ yl =1 then y = 0.

PROPOSITION 4: If x is an exposed point of BIX], then x is an extreme
point. (That the converse need not hold, is illustrated by the point
of the previous diagram.)

er

Proof. Assume x € S(X) is not an extreme point of B[X]. That is,
there exists x;, x; € BIX], x; # x3 with x = %(xl + x,). Now, let

f € S(X*) be such that £(x) = 1, then %(f(xl) + f(x2)) = 1 while

£(x;), £(xp) <1 and so f(x;) = f(x,) = 1. Thus f does not expose

x, and so x is not exposed by any f € S(X*). O

COROLLARY 5: If x € S(X) 18 a smooth point of BIX1, then the unique

element of D(x) is an extreme point of BIX*].

Proof. Immediate from Proposition 4 and (the proof) of Proposition 1. O

EXERCISE l: i) Prove that: if fo € P(x) is a smooth point of B[X*],

then x is an extreme point of B[X]



48,

ii) Show that B[col has no extreme points. Hence, deduce every element of S(ﬁ) is w*—exposed and so every element of S(X) is an

that no support functional in S(9.1) is a smooth point. exposed point. We therefore have:

2) Characterize the extreme points of B[J?.l] B B[Em] and
BlCla,b}].

If every point of D(S(X)) i& a smooth point, then every point of
S(X) is an extreme point.

PROBLEM (Optianal): Say that x € S(X) is fully exposed if x is exposed -
’ DEFINITION: X is rotund if every point of S(X) is an extreme point of
by every element of D(x). (The point X, of the previous diagram is
B(X].
not fully exposed, though it is exposed.) Such points were implicitly

i : llowing are equivalent:
considered by Ruston (1949) and explicitly by Giles (1976), who calls PROPOSITION 7: The fo g q

i) X 18 rotund;

+
ii) If x, y € S(X) and Ex_z_yﬂ =1, then x = y;

iii) every point of s(X) is a (fully) exposed point.

them "Rotund points". Show that

i) (a) x is fully exposed if every point of P(x) is a smooth point;

(b) if f € S(X*) is fully exposed, then every point of

1
"~ oof. i ii S(X) let z = 3 + if iz} = 1, then
? l(f) = {x € S(X): £(x) = 1} is a smooth point. (Note: Proof. i) =ii) For x, y € S(X) let z 2(x vl Izl !

_ i i definiti £ tundit and
? l(f) may be empty) . z is an extreme point (defin on of ro y)
S0 X =y = zZ.
and ii) x € S(X) is fully exposed if and only if Ix + yl = 2, y € S(X)
ii) = iii) For any x € S(X) and f € D(x), if f(y) = 1 and

implies y = x. 'x + y“ > f[%] =1 and so

y € S(X) then 1 2 >

y = x. Thus f exposes Xx.
GLOBAL RESULTS

iii) = i) follows from propostion 4. 0

From our work so far we have:

Some other useful characterizations of rotundity are provided by
PROPOSITION 6: The follewing are equivatent.

i) X is smooth ; EXERCISE 8: Show that each of the following is equivalent to X being
ii) every point of D(S(X)) 18 a w*-exposed point ; ’ rotund.
iii) every point of P(S(X)) i8 an extreme point.. i) S(X) contains no non-trivial line segment.

: N ‘ . e ii A 0,1 Ax + (1-2 < 1.
Proof. i) = ii) is immediated from Proposition 1. ii) For x, y € S(X), x # y and e (0,1), Ihx ( )yl

is P : - h + = + and 0, then
ii) = iii) is immediated from Proposition 4. iii} If x, y € X are such that {x vl I Iyl Y # 0

. . . N x = Ay for some A,
iii) = 1) assume x is not a smooth point, then there exists

i E ub £f X i tund.
£, £, ¢ Dlx) with £) # £,. Let £ = 5(£ + £5), then iv) Every subspace of X 1s ro

. Ev: 2-dimensional subspace of X is rotund.
f € D(x) and f is not an extreme point. O v) ery Ame. a 3

. vi) For every convex subset C of X and every x € X there is at most
If every point of D(S(X)) is a smooth point, then, by Exercise 3,
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one best approximation from C to x.
vii) Every f ¢ S(X*) attains its norm on S(X) at most once, that

is, if x, y € S(X) and x # y, then D(x) n D(y) =@ .

THEOREM 9 (V. Klee, 1953) i) If X* is emooth, then X is rotund-

and ii) If x* is rotund, then X is smooth.

Proof. These results follow directly from preceeding results and as
an EXERCISE you should obtain them that way. We will however give
direct proofs, based on the above arguments.

i) Assume X is not rotund, then there exists distinct points x, y

NI

and z = 5(x + y) in S(X). Choose any f € D(z), then
S(£() + £(y)) = 1 while £(x), £(y) S 1, so £(x) = £(y) = 1 and
X, v € D(f), so £ is not a smooth point.

ii) Assume X is not smooth, then there exists x € S(X) and

£, £, ¢ D(x) with £, £ £, £= %(f1 + £,) is a point of S(X)

and so X* is not rotund. a

The partial duality between rotundity and smoothness of Theorem 9
is in general best possible (see latter), however when X is reflexive
the complete duality between rotundity and smoothness is an immediate

corollary.

EXAMPLE: Since a Hilbert space H is smooth (Example 1) p.35) and

H* = H, every Hilbert space is both rotund and smooth.

EXERCISE: 1) From the parallelogram Law, deduce directly that any
Hilbert space is rotund.
*2) i) Show that lp (1 < p <™ is rotund.

ii) show that Cqr £,, %, and Cla,b] are not rotund spaces.

Equivalent Renormings to gain Rotundity

Whether or not a space is smooth (rotund) depends on the particular
norm used. For example, the space of ordered pairs of real numbers is
both rotund and smooth with respect to the euclidean norm l|'“2, however,
it is neither with respect to either of the eguivalent norms Il-ﬂl, Felle
A norm dependent property of this type is an isometric property.
Properties retained by all equivalent norms are known as isomorphic
properties (for example, 'reflexivity'.) For any isometric property
P the question naturally arises of whether a given space (X, ||} admits
an equivalent norm, [+|' , with respect to which X has P. If this is

the case we write X is <P>. Thus, X is <rotund> if X can be equivalently

renormed to be rotund.

LEMMA 10 (Klee 1953): If there exists a continuous linear one-to-one
mapping T from (X,k-1) <into a rotund space Y, then X can be equivalently

renormed to be rotund.

Proof. For x € X let x|

1

Ixi + AT x§i , then

Ixf < Uxh* < (1 + §rh)ixl

so I*l' is an equivalent norm on X. Further, if lkx + yl' = Ixll* + Iyf"*,

and y # 0 then T y # 0 (T one-to-one) and

Ixf + 4T xf + Jyf + T ¥yl = fx+ vy + iT(x + vI} < Oxi + lyl + ITx + Ty|.

So, ITx + Tyl < ITxQ + Tyl < [Tx + Tyl .

Now Y is rotund, so T x = AT y for some A, and since T is one-to-one we

have x = Ay. Thus, X is <rotund> .
a
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THEOREM 11: If S(X*) contains a countable total subset, then X can

be equivalently renormed to be rotund.

Proof. Let (fn) be a total sequence in S(X*), that is, if fn(x) =

for all n, then x = O.

T (x)

Define T by

= (£, £,0/2, ..., fn(x)/n, P

then T is linear and one-to-one (as (fn) is total).

Further,

it xl, =

so T is a continuous mapping from X into 22.

©

! 1eg /m? <

n=1

result now follows from lemma 10.

O

I i—z] I«

n=1

Since 22 is rotund the

COROLLARY 12 (Clarkson, 1936): Every separable Banach space can be

equivalently renormed

Cla,b] are <rotund> .

Proof. Let (xn) be a dense sequence in S(X).

to be rotund.

In particular, then c

0’ El and

For each n select an

£, € D(xn). It suffices to show (fn) is a total subset of S(X*).

o

Now, for any € > 0 and x # O there exists n with lxn - iiil < g, thus

X
fn(m) >1 -¢ or fn(x) > (1 - €)lixl. WwWe therefore have

ixil = Sup fn(x) and so certainly (fn) is total. 0
n

COROLLARY 13: The dual of any separable Banach space c&n be equivalently

renormed to be rotund.

Proof. Let (xn) be a dense sequence in S(X). To prove X* is rotund

In particular then £  is <rotund> .

it suffices to show (ﬁn) is total over X*. Now if f # 0, then there

exists x € S(X) with £(x) # O and so by their density there exists X,

such that f(x,) # O,

so xp(£f) # O.

O
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EXERCISE: In case X = 21 or £ give an explicit one-to-one continuous
©

linear mapping from X into 22.

A word of caution about equivalent dual norms.

If |+#' is an equivalent norm on (X*,]-l) the dual of (X,l-1) , it
does not follow that l<l' is an eguivalent dual norm, that is, there exists
an equivalent norm on ‘X, hedl '}, such that I£fll' = sup {f(x): lxl* < 1} .

If such a norm on X exists it must be given by
Ixh* = Ixh' = sup {f(x): EI' < 1}.
In other words, we must have for each f ¢ X*

[Ed

sup {f(x): sSup {g(x): Jgl' < 1} < 1}

or
£(x)
o= —
I£h i;g Sup g(x) °
g#0 fql*

Denoting the Right Hand Side by ¢(f) we clearly have

o) < sup HE - g

X0 e

The difficulty is that for some f we may have ¢(f) ; I£]*' , however

if this is the case, for some A > 1

A
A B(E) = sup — LX) ygpe,
J‘#O Sup g(x)
g#0 lql*
For each x we therefore have
A
ﬂfﬁ' (x) < Sup ?é;{ = Sup {g(x): g € B'[X*]},
g#0
where B'[X*] denotes the unit ball in (X*,{-I").
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It now follows, from the separation Theorem for the w*-topology
L34 o W s
(see p.7), that Tl € B'[X*]" . Hence, B'[X*] is not w*-closed
and so certainly not w*-compact.
Thus a sufficient condition for l+l' to be a dual norm on X* is
that B'[X*] be w*-compact. That this is also necessary follows
immediately from the Banach-Alaoglu Theorem of p.7. We therefore

have:

THEOREM 14: An equivalent norm, l+I', on x* is a dual norm if and

only if its unit ball, B'[X*] = {g € X*: lgl' < 1} is w*-compact.
A useful reformulation of this result is provided by

LEMMA 15: An equivalent norm, |-l', on x* 18 a dual norm if and

. . . . » . . *
only if it is w*-lower semi-continuous, that is, <if £, VS £ then

IEl' < lim inf BE)'.
a

Proof. (< If B'[X*] is not w*-compact, then there exists a net
*
(£,) = B'[X*] such that £, "> f ¢ B'[x*] (why?), but then

I£l' > 12 1im sup F£ I' = lim inf [£ I'.

k
(=) Assume £, "> £ but Ifl'> 1lim inf Ig ', Let

k = 1im inf £ l' and choose a subnet (faﬁ) such that [£y Bll' >kt

Clearly k # 0 (otherwise fq, o so Mgl =0 = k). Now

f""ﬁ w* f N
— > = , thus we have a net in B'[X*] w*-convergent to an
IIfaBII k

element, f£/k, of norm greater than one, so B'{X*] is not w*-compact.

EXERCISES: 1) Let T be a continuous linear one-to-one mapping
from the dual space X* into a rotund dual space Y*.

Show that the equivalent rotund norm on X* given

2)

by Ifl*' =
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N€l + IT £ (c.f. the proof of lemma 10)

is a dual norm if T is w* to w* continuous.

Using 1) show that

i) &, admits an equivalent rotund dual norm hence

conclude that c( may be equivalently remormed

to be smooth.

[Hint,

let T: JLl > L, be the identity map.

Note that L’é = JLZ and that in %, the w and w*

topologies coincide.]

ii)%_ admits an equivalent rotund dual norm, so &,

18 <smooth> .

3) (optional) If X is separable, X* admits an equivalent

4)

5)

rotund dual norm.

[Hint.

See the proof of Corollary 13 and theorem 11.

Note, that since X is separable the w*-topology on

B[X*] is a metric topology and so sequences rather

than nets are sufficient.]

If X and Y are both smooth spaces and there exists

a continuous linear mapping T: X > Y show that

Ix0* = Ixi + i1 x|

X.

[Hint.

from that of the two original norms.]

Using 4) deduce that

i)

is an equivalent smooth norm on

Deduce the Gateaux differentiability of i1

cgand &, can be equivalently renormed so as to be

both rotund and smooth.

[Hint.

see exercise 2.]

ii) (Day) Every separable space can be equivalently

renormed so as to be both rotund and smooth.

[Hint.

Assume exercise 3.]
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§5 Fréchet Differentiability

1) If X* admits an equivalent dual norm which has property

P we sometimes write X* is <P>*, Thus 2 and 9.0.0 are DEFINITION: The norm of X is Fréchet (or Strongly) differentiable at
<rotund>*. x e S(X) if
wepat . " O b RS e B
2) Day ["Strict Convexity and Smoothness of Normed Spaces”, limit T
A0

Trans. Amer. Math. Soc., Vol. 78 (1955)] made a thorough
exists and is approached uniformly over y € S(X).
study of renorming the spaces Cgr 9.1 and ¢ (his m(I))

t i i smoothn . Amo - . . s s s A . :
© gain rotundity or €ss ng other results We say the norm is Fréchet differentiable if it is Prechet differentiable

he proved (his, Theorem 9) that £ has no equivalent at every x & S(X).
smooth norm. Since 2.1 has a rotund norm, this provides R
' If the norm is Fréchet differentiable at x it is certainly Gateaux

an example of a rotund space whosé dual is not smooth.

differentiable at x (see p.36) and so for each y € S(X) the above limit
A smooth space whose dual is not rotund has been constructed

equals £ (y) where f_is the unique element of Dix).
by Troyanski.

ca . . The next proposition collects together some obvious equivalents to
3) Finding equivalent smooth norms for a space X is a propo © s o9 a

difficult problem. The only known way appears to be the Frechet differentiability at x.

i i * . .
construction of an eguivalent rotund dual norm on X*. PROPOSITION 1: The following are equivalent:

4) Renorming Theorems are extremely important to the study i) The norm is Fréchet differentiable at x € S(X).

of Banach spaces, however the above results represent 1i) There exists fx ¢ D(x) such that

most of what was known until the mid-sixties. During

1imit "_XM - fx(y) =0
the last decade considerable progress has been made by A0
Asplund (averaging technique) and, following the and the limit is approached uniformly over y e S(X).
fundamental work of J. Lindenstrauss and D. Amir on iii) There exists f € D(x) such that

by -
Weakly Compactly Generated spaces, a number of powerful limit Sup Iz + 2yl =l el = o.
A0 yeS(X) *

renorming results have been obtained by Troyanski, John,
Zizler and many others. (See Diestel Chapters 4 and 5 iv) There exists £ € D(x) such that
for details and references; also see Day Chapter VII §4.) 1imic Xtz - xh - fx(2) o

220 Jz|
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v) There exists f_ e D(x) such that whenever the sequence
(z)) converges to 0 we have

Ix + zpll - Ixl - £x(zx)
2kl
vi) There exists fx e D(x) such that given € > 0 there exists

-+ 0.

§ > 0 such that

Pix + 28 - #xl - £,(2)| < elz| whenever fz] < 6.
Further, in each of the last five equivalents £, is the
only element of D(x).

H

Another important characterization of Fréchet differentiability is

provided by

THEOREM 2 (émul'yan, 1940): The norm is Fréchet differentiable at

x € s(X) if and only if whenever the sequence (£) < BIX*] is such that
£.(x) > 1, then ve have £, is norm convergent.

Further this can only happen if D(x) contains a single element, £ and

this element is the limit of the £ -

Proof. (=) If necessary, by replacing fn by (1 - %\) fn we may assume
Ilfnll <1l and so 1- fn(x) > 0 for all n. Now, assume f # fx' , then
there exists € > 0 and a subsequence (fnk) with "fnk - fxl! > 2¢ for
every k. So there exists yy e S(X) with (fnk - fx) (yk) > 2e. Let

-1

4 =€ [l -f,(x)] >0 and put z =0o vy , then ||zk|| =a >0,

so by the Fréchet differentiability at x, there exists N > 0 such that

(1R
-

€
o = 3 lzl 2 dx+z 0 - Ixl - fx(zk) , for k > N.

v

However lx + z | - Ixll - £ (z) =2 fp (x+2z) - 1-f(z)
(Fny = £ (2) = [1 = £ (0]

\

Uty — £JIny) - e oy
2 28 - ex
= e
We therefpre have % ak 2 @, so ak < 0, a contradiction.
(<« Let z > 0, then putting y = zp/llzgll, » = | Zyll in lemma 1 on

p.28 we have, for any support mapping x > fx ,

zx Ix + zil - fixl i3
< . < £ T
fx(|zk| ! T Tzl xtzy G 2kl )

Ix+zxli

or

0 < IX*Zl - gx - ez PR
“ zk“ xt+zk x Zp "
||x+zk||
, . hel
It is therefore sufficient to show f -+ £ and so by our
. X+Zk X
| x+zx]

assumption it is sufficient to show fx+zk (x) - 1. However,

Ix+zx |
B X + 2z
x+zk (x} -1 = fx+zk (x —||;+_zk“
| x+2y | lx+2y |

> 0 asz 0.
0O
(Remark: The last part of the proof shows that it is sufficient to assume
that (fn) c D(s(X)), indeed, that (fn) is contained in the range of some

support mapping.)

COROLLARY 3: The following are equivalent:
i)  The norm is Fréchet differentiable at x.

ii) ALl support mappinge are continuous norm to noym at x.
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iii) There existe a support mapping which is continuous norm to

norm at  x.
Proof. i) = ii) Let x & fx be any support mapping and suppose

[ |
(xn) c S(X) is such that X —p X, then

lfxn(x) -1} = ]fxn(x - xn)i < Ix-xQ1-0.
S £ (x) > 1 d by Th 2 g, Ul
) %0 X and by Theorem X — .

ii) = iii) is immediate

iii) = i) Let x & fx be a support mapping which is continuous

x + 2y u
IxFz1

norm to norm at x. Then, if z > 0 we have x ‘and so

i1
fx+zy — £, The result now follows from the first five lines in
||X+zk||

in the (<) part of the proof to lemma 2. o

EXERCISE: Assuming the Bishop-Phelps-Bollcbas Result (Theorem 11, §2,
p.25) deduce iii) = i) in Corollary 3 directly from the statement

of Theorem 2.

The following is another sometimes useful characterization of

Frechet differentiability.

COROLLARY 4: The norm igs Fréchet differentiable at x € S(X) if and

only 1f, given € > 0 there exists § > 0 such that

[0x + 2§ + Ix - 2§ - 2| < elzl whenever lzf < 6

Proof. («) Assume the norm is not Fréchet differentiable at x, then
by Theorem 2, there exists (fn) C S(X*) with fn(x) + 1 but (fn) does

not converge to fx. By passing to a subsequence if necessary we may

6l.

assume that lIfn - fxll > e for all n and some € > 0. Again by passing

€
to another subsequence if necessary we may assume that fn(x) >1 - >n *

Now, choose Y, € S(X) such that (fn - fx) (yn) > £ , then

1 1 1 1
- - - > - - -
Ix + N ynll + Ix z ynll 2 f (x+ 3 yn) + £ (x z yn)

1
= 1+ fn(x) + E[(fn - fx) (yn)l

£ 1
> - =— 4+ =€
2 2n n
€
> —
> 2+2n .
Thus, putting z =ly we have |z | =l—>0 while
' n n “n n n
ﬂx+zn|]+llx-zn|l—2 > e lzph .

(= From vi) of Proposition 1 we have, there exists § > 0 such

that, whenever |zl < &

£ €
- - < - - < -
5 Izl < OIx +z| - 1-£(z) 5 Izl .
In particular then, replacing z by -z we also have
£ €
-3 lzf < fx-2z] -1+ f.0z) < 3 Iz whenever flzl] < §.

Adding these two inequalities together yields the result. 0

Fréchet differentiability of a dual norm at £ € S(X*) is characterized by

any of the previous results, in addition we have the pre-dual characterization

THEOREM 5 (gmul'ya.n): The norm of X* is Fréchet differentiable at
f e S(X*) 1f and only if there exists x € S(X) such that whenever the

8sequence (xn) c B[X] has f(xn) > 1 we have X u X.

Proof. (=) If (xn) < B[X] and f(xn) »+ 1, then by Theorem 2, ;(n is norm

convergent to the unique element Ff of D(f). Since X is norm closed,
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N - -1
Ff € X, that is Ff = x for some x € S(X) and so X —— X

(<) oOur hypothesis is equivalent to: given € > O there exists
§ > 0 such that Jyl €1 and f(y) > 1 - & implies fy - x| < ¢
(otherwise, taking § = % for each n we could construct a sequence
violating the hypothesis). It suffices to show: given €'> 0 there

exists 6, > 0 such that fgl < 6, (g € X*) implies [1£+gl-1-g(x) | < elgl.
If g = 0 there is nothing to prove so assume g # O.

Now, 1 + g(x) = f(x) + g(x) (as f(x) =1, why?)

in

if +gql .
or O0< |ff+gf-1-g(x), thus we need only prove the upper inequality

if + gl -1 - g(x) <€ lgl.
- f + gl ndltﬁ-g
Choose y < S(X) such that (f + g)(yn) > gl a et §, = 3.

Then, there exists N such that, for n > N we have

v

(£+q)(y) = BE+gl - lgl = [I£h - Ngl| - dgl

1 -2 gl

v

1 - 26
and so, for n > N

fly) =z 1-26 -gly)

v

1-26 - |91 2 1-3§ =1-358.
So, by hypothesis nyn - x| < e, for n > N. Consequently we have

I£ + gl = Llimit (f + g)(y))

n>o

N

1 + sup gly)
n>N

1+ sup [gly, - x) + g(x)]
n>N
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1 + g(x) + Sup g(yn - x)
n>N

in

1+gx) + lglity, - =l

IA

1 +g(x) + elgll, as required.

COROLLARY 6: If the norm of X* ig Fréchet differentiable at

fe S(X*), then f e D(S(X)).

Proof. For x as in Theorem 5, f(x) =1, so f e D(x). 0

EXERCISE: 1) Assuming James' Theorem (see pp.l7-18), show that X is
reflexive if the norm of X* is Fréchet differentiable. - [We will

develop an alternative proof of this result shortly.]

2) Show that the norm is Fréchet differentiable at x € S(X)

if and only if the norm of X** is Fréchet differentiable at X.

Properties dual to Fréchet differentiability.

DEFINITION: x is a strongly exposed point of B[X] if there exists
f € S(X*) such that whenever the sequence (xn) < B[X] is such that

f(xn) > 1, then we have x — x.

Clearly such a point is an exposed point (exposed by f) and f ¢ D(x).

We say f strongly exposes x or x is strongly exposed by f.

If £ € S(X*) is strongly exposed by % € S(X) we say £ is a w*-strongly

exposed point (f is w*-strongly exposed by x).
Theorems 2 and 5 can now be restated as

Theorem 7: i) The norm is Fréchet differentiable at x e€ S(X) if and
only if x  w*-strongly exposes some element of S(X*),

which must necessarily be the unique element of D(x).
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ii) The norm ig Fréchet differentiable at f € S(X*) if A valuable geometric interpretation of strongly exposed
and only if £ strongly exposes some element x of S(X). points is provided by the fcllowing.

Further x must be the unique element of D(f) and
SLICES.

£fe Dix).

. . E DEFINITION: The slice of B[X] determined by f € S(X* d & 1
EXERCISE: Show that the norm of &, is not Fréchet differentiable at = Ix] b4 (x*) an e (0,1)

is

any point of S(2,).

. . . s(B(x],£,8) = X]: 1-6}.
PROPOSITION 8: i) The norm of X is Fréchet differentiable 1f and (B[X] ) fx e BIXI: £00) > }

only if every point of D(S(X)) 18 a w*-strongly Clearly, S(B[X),,f,&- is 2 non-empty

exposed point. relatively w-open subset of BI[X].

ii} The norm of X* is Fréchet differentiable at every

. . . . REMARK: T t "slice"
point of D(s(x)) if and only if every point of he concept of "slice” appears

R . in Day and has been ext ivel d b
S(X) s a strongly exposed point. >4 S been extensively used by

R.R. Phelps and others since about 1970.

Proof. i) (=) is immediate from i) of theorem 7.

(&) By theorem 7 i) it is sufficient to show that, given When X is replaced by a dual space X*, a slice of the form

any x € S(X) and -fx e D(x) we have fx is w*-strongly exposed by x, S(B[X*],i,&) = {f € BIX*): £(x) > 1-8} is referred to as a w*-slice

fiell
that is, if fn(x) -+ 1, then fn —_— fx' By assumption fx is w*-strongly

: R Il
exposed by some y € S(X), that is, if fn(y) + 1, then fn — fx . embedding element.

of B[X*], that is, the "slicing" functional is a w*-continuous

Further, fx is certainly w*-exposed by x. Otherwise there exists

. EXERCISE (optional) Dual picture of a slice (Th i i
geDix), g# fx , but then k4(g + fx) is an element of D(x) which is fop ) F f a slice (The following interpretation

. R R 1s due essentially to Anantharaman, Lewis and Whitefield, 1976).
not an extreme point, so not a w*-exposed point and so certainly not

Show that, for x € S(X) and & € (0,1), f € S(BI{X*],%,8) n S(X*) if and
a w*-strongly exposed point, contrary to the assumption that every ! .1 (BIX*T,x,6) (X*) if an

only if the ball B (x) is contained in the siti hal
point of D(S(X)) is w*-strongly exposed. By corollary 2 of 84, p.46 e 1-5% contained in Lo ve open half space

+
* H ={y €x:f > 0}.
we therefore have fn w—» fx whenever fn(x) -+ 1, but then fn(y) - fx (y) =1 Y )

-
and so fn —_— fx as required,

ii) The proof of ii) is left as an EXERCISE. It is similar to

that of i) using theorem 7 ii) and Exercise 3 on p.46, provided we
"note” that; x is strongly exposed by f implies x is w* {strongly}

exposed by f. O .
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Similarly show that, for f € S(x*) and 6 ¢ (0,1),

x € S(B[X],£,8) n S(X*) if and only if g(x) > O for all
g€ Bl—é(f)‘

Strongly exposed points may be viewed in terms of slices as follows.

PROPOSITION 9; i) x € S(X) 18 strongly exposed by f € S(x*) 1f
and only if £ determines slices of BIX] of
arbitrarily small diameter which eontain x.
(That is, given € > 0 there exists § > 0 such
that x ¢ S(B[X],f,8) and diam S(B[X],£,8) < E.
By the diameter of a set A we mean, as usual,
Qiam A = Sup{ix - yd: x, v € A} .)

ii) £ € s(x*) is w*-strongly exposed by x € S(X) i1f

and only if x determines w*-slices of B[X*] of

arbitrarily small diameter which contain £.

X, is not strongly exposed by £, %, is strongly ekposed by f,.

Proof. i) (& Let (xn) < B[X] be such that f(xn) -+ 1, then given
€ > 0 there exists 8§ > 0 such that x € S(B(X],f,8) and

diam S(B(X],£,6) < €. Further, there exists N such that f(xn) > 1-8

for n > N. Thus x € S(B[X],£,8) for n > N and so for n > N
I

ﬂxn - x| < diam s(B[X],£,8) < €. That is, X, o ox.

(&) For each n choose X, € S(B[X] ,f,%l) such that
ix - x| >suwp {ly - xl: y e s@BX,£,3) =% . fThen, £(x) > 1-%
n - r In n A I n n [

so f(xn) + 1 and hence ||xn - x{| - 0. Further,

diam S(B[X],f,%) < 2ix_ - xl + 2 + 0.

ii) The proof is similar to i) and is left as an EXERCISE. )

COROLLARY 10: i) If x is a strongly exposed point of BIX], then the
relative w and norm topologies on BIX) agree at x.
That is, if (x,) is a net in B[X] with x "> x, then

X, > X.)

ii) If £ ie a w*-strongly exposed point of BI¥*}, then
the relative w* and norm topologies on B[X*] agree

at £.

Proof. i) Let x be strongly exposed by f, then given any € > 0 there
exists, by Proposition 9 i), a § > 0 such that x ¢ S(B[X]},f,8) and
diam S(B[X],f,8) < €. Now S(B[X],f,8) is a w-open neighbourhood of
%X and so, since Xy ¥ x we have: there exists 0-0 such that for a > LY
x, € S(B[X},f,8), but then, for a > & _ we have

o 0
Il
lea - x| < diam s(B[X],£f,8) < €, so X, > X.

ii) The proof of ii) is similar to that of i) and is left as

an EXERCISE. o

EXERCISE. {(Optional) Gregory, 1977. Show that, f is a w*-strongly
exposed point of B[X*] if and only if f is a w*-exposed point at which

the relative w* and norm topologies on B[X*] agree.
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Using Proposition 9 and our earlier characterization of

Fréchet differentiability (Theorem 7) we have:

THEOREM 11: i) The norm is Fréchet differentiable at x ¢ S(X)
if and only if x determines w*-slices of B[X*]
of arbitrarily small diameter.

ii) The norm is Fréchet differentiable at £ e S(X*)
if and only if £ determines slices of BIX]

of arbitrarily small diameter.

pProof. i) (= If the norm is Frééhet differentiable at x, then
the unique element fx of D(x) is w*-strongly exposed by x (Theorem
7} and so, by Proposition 9, x determines w*-slices of B[X*] of

arbitrarily small diameter.

(<) Choose any £ € D(x) then £, € S(B[X],x,6) for any 6 > 0
(and so fx is necessarily unique). Thus fx is contained in w*-slices
of B{X*] which are determined by x and are of arbitrarily small
diameter. Hence fx~is w*~strongly exposed by x and the result
follows from Theorem 7 i).

ii) (=) The proof is similar to that of i) (=) and so is left

as an EXERCISE.

(<} Since f determines slices of B[X] of arbitrarily small

diameter, there exists a sequence.

§, 6

1+ 850 <-es 8, ... of strictly positive real numbers such that

n

as n + «, diam S(B[X],f,én) -+ 0 monotonically. We therefore have

that ETETQTTETE;T is a nested sequence of closed sets in the complete
metric space (B[X],d{x,y) = lx-yll}) whose diameters tend to 0. Thus
Cantor's intersection theorem (see footnote p.2l) applies to show

n S(B[x],f,ﬁn) contains exactly one point, x, necessarily a member
n

¢
~

of S{X). Thus, by Proposition 9 i) f strongly exposes x, and so

by Theorem 7 ii) the norm is Frechet differentiable at f. O

EXERCISE: If f € S(X*) is not a support functional, show that

there exists r > 0 such that
diam S(B[X),f,8) > r for all & > O.
[Hint: Examine the proof of ii) (<) in the above Theorem.]

PROBLEMS: A] Denting Points

DEFINITION: x € S{X) is a denting point of B[X] if x is contained
in slices of B[X*) of arbitrarily small diameter. That is, given
e > 0 there exists f € S(X*) and § ¢ (0,1) such that

x € S(B[X),f,6) and diam S(B[X],f,8) < €. The distinction between
a denting point and a strongly exposed point is that in the case
of a denting point different slicing functionals may be needed to
obtain smaller diameter slices.

x is a denting point,
however, x is not

strongly exposed.

Similarly, if f € S{(X*) is contained in w*-slices of B[X*] of

arbitrarily small diameter, then we say f is a w*-denting point.

REMARK: Denting points (introduced by Rieffel in 1967) and
w*-denting points have played an important role in the recent
geometric characterizations of Banach spaces with the "Radon-Nikodym
Property". (See, for example, Diestel, Diestel and Uhl's survey

paper: "The Radon-Nikodjm Theorem for Banach Space Valued Measures",
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Rocky Mountain J. of Maths. Vol.6 No.l, 1976; or their monograph

"Yector Measures" No. 15 in Math. Surveys, Amer. Math. Soc., 1977.)

1) Use the sgparation Theorems (see pp.4, 5 and 7) to show that
i) x i8 a denting point of BI[X) <if and only if the norm (equals
weak) closed comvex hull of BIX]\B_ (x) doesg not contain x
for any € > 0
and ii) f g a wr-denting point of BIX*] if and only if the w*-closed

convex hull of BX*1\B_(f) does not eontain £ for any € > 0.

2). Show that, if x tf) is a (w*-) dentimg point of .BIX] (BIX*]),
then

1) - x (f) 28 an exﬁ;’eme point.
and ii) the relative w (w*) and norm topologies on B(X] (B[X*])

agree at x (f).

(Remark: In the case of w*-denting points the converse is also

true - Sims, 1978.)

Deducé that £ ¢ S(X*) is a w*-strongly exposed point if and only
if it is a w*-exposed, w*-denting point. Hence conclude that every
point of D(s(X)) i8 a wr-strongly exposed point (and so the norm
of X is Fréchet differentiable) if every point of S(X*) is a
w*-denting point.

(Remark: No similar results are known to hold for denting points of
B[X] in a non-reflexive space. However it is known (Larman/Sims,
1977) that if every point of S(X) is a denting point then the

strongly exposed points of B[X] are dense in 5(X):. see 5 below.)

3) (Larman) 1If x is a denting point of B{X] and £ ¢ D(x) show
that it is possible to obtain slices of B[X] containing x and of
arbitrarily small diameter by using functionals which are
arbitrarily near to fx' That is, given €, €5 > O there exists

f € S(X*) with |f - fx" < € and § > 0 such that

x ¢ S(BI[X],£,8) and diam S(BIX],£,8) < €,.

[Hint: Consider f's in the line segment joining fx and f€2 where
f€2 is any functional in S(X*) known to determine a slice of
diameter less than €, which contains x.]
4) (Optional) Bishop 1967 {see Phelps "Dentability and extreme
points in Banach spaces”, Lemma 7; J. of Functional Anal. vol.l7,
1974 pp.78-90).

Show that, if for every £ € S(x*), § > C and € > 0 there
exists g e S(X¥) and 8, > 0 such that If - gl < e,
s(B[xl,g,do) < S(BI[X],£f,8) and diam 5(B[X],9,8,) < e (that is, for
each f and § S(B[X],f,8) contains slices of arbitrarily small

diameters determined by functionals arbitrarily near to f), then

S(BI[Xi,£f,8) contains a strongly exposed point of BIX].

{Hint: Use the assumptions to inductively construct sequences

(g ) < 8(x*) and (Gk) such that g, = f,

—x
Wosy = Gl <27 &+ &4

diam S(B[X] § ) < 2 § and

"1 %kn x

S(BIX)vgy, s8,00) = 5(BIXl.qp,8,) .

Deduce that (gk) is a Cauchy sequence and so converges to some g € S(X*).
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Also deduce that 0 S(B[x],gk,Gk) containg exactly one point x,
k
say.

Now show that g strongly exposes x.]

5) i) From 3) deduce that, if every point of S(X) is a denting

point, then for each € > 0

f S(X*): £ det i 11 f BIX f di t 1 th: € . . .
{f e 5(x%) etermines a siice o [X] of diameter less than €} 1) show that B(X] is lur at x € S(X) if and only if whenever the

. . Xn + X i-ll
is dense in S(X*). sequence (xn) < BIX] 18 such that "—2u + 1, then X, — x.

[Hint: Use the subreflexivity of X.] [Hint for («): If not lur at x observe that for some € > 0 and each

N there exist B[X] with “fn—:‘{>l—lbtﬂ - xll = e.}
ii) Assuming 4) deduce from 5 i) that every slice of B[X] n e ere exists x € Wi 2 o ru Xy — Xb = &

contains a strongly exposed point of B[X]. Hence conclude that

2) Sshow that, If BI[X] is lur at x € S(X), then x is a strongly
the result of Larman/Sims referred to in 2) is correct.

exposed point of B[X1.

[Hint: Show that x is strongly exposed by any f € D(x), note that

ot = ey v

2

Bl [ILocal Uniform Rotundity

The following idea was introduced and extensively studied by

Lovaglia "Locally uniformly convex Banach Spaces", Trans. Amer. Hence deduce that:

Maths. Soc. 78 (1955) pp.225-238. i) If BIX] 48 lur at x € S(X), then the norm of X* is

Fréchet differentiable at each point in D(x).
DEFINITION: B[X] is locally uniformly rotund (lur) at x e S(X)

ii) If X is lur, then the norm of X* is Fréchet differentiable
if, given € > 0 there exists 8§ > 0 such that y € S{X) and

+
HYTX“ > 1-8 implies flx - vl < €.

We say X is locally uniformly rotund if B[X] is lur at every

at every point of D(s(X)).

iii) If X is lur and reflexive, then the norm of X* is

Fréchet differentiable.

point x of S(X). (Note: For any given € the § in general

3) show that, if for x € s(X), B[X*] g lur at some £ € D(x), then
will depend on x.)

f 18 w*-strongly exposed by x.

Hence deduce that:
i) If for x € s(X), B[x*) is lur at some £ € D(x), then the

norm is Fréchet differentiable at x.
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ii) If x* is lur, then the norm of X i8 Fréchet differentiable.

4) Show that:
i)  If X* 28 lur, then the relative w* and norm topologies
on S(X*) agree (this is tne property (**) introduced by
Namioka in 1974).
ii) The converse of i) is not gene;ally valid. 21 (indeed
£, (1) has (**). [Hint. Let {fy) < S(g;) be such that

*
£, £ e8(8)). Let £ = (£, f5, ..., £, ...) and

nl
O o .
fu. = (£, ..., £, ...). Given any € > 0, show that there

N
&
exists N with ] |£ | > 1-e. since £ ', t and in finite
n=1

dimensional spaces the w* and norm topologies coincide
deduce that for some ay we have
a .
T 1£] > 1-2¢ for all a > a,.
n 7
n=1

Hence conclude that

Il t~1'2

@ -]
. |€ - £ | +nZN €] + § e | » o1

"fa'f" <
1 n=nN

n:

5) The converse of 3 w,\\) is not in general valid.

Consider %, with the equivalent rotund dual norm [f||' = %(llfl]1 + I£0,)
{(see Exercise 2 on p.55). Show that for this norm the relative w* and
norm topologies on the unit sphere agree. Hence deduce that every
support functional is a w*-strongly exposed point and so the
corresponding equivalent norm on €4 is Fréchet differentiable.

Now show that (ll,ll-ll‘) is not lur at (1,0,0,...).

[Hint. Consider (f) where f, = 9n/jg j+ and

2 2
g, = (0, nrnr cecr g 900, RS I

6) (sullivan) Let X be lur. Show that A ¢ S(X) Zs a dense subset
of S(X) if D(a) is dense in S(X*).

Il
[Hint: for x € S(X) choose (an) c A such that fan N fx' cbserve
that £ (a +x) > 2.1

(* Show that the assumption X lur may be weakened to: the denting

points of B[X] are dense in S(X).)

REMARK: Renorming to gain LUR.

Kadec (see Diestel) has shown that any separable space X is < LUR >.
The proof begins along similar lines to those used on pp.51 and 52 to

show < rotund >.

(outline): Let T: X » y be a continuous linear one-to-one mapping
(see proof of Corollary 12 and Theorem 11 on p.52) and take

|||x|]| = (IxI2 + It x“%)‘:- Then Il|-]l| is equivalent to [«| (show this) .
Further, if [||x|l} = [lix |ll = 1 and [lix + x [l > 2 then

1

2 _ 2 2 2 e 12
ety 12+ BTG )12 = D12 + ITGem ) 12+ 4T Gemx )12

Ixtx 2 + 2§T x§2 + 2T x 12, by the parallelogram
" 2 m2 law

IA

20xl2 + 2|Ixm[|2 + 20T xh2 + 20T xmllz, by the triangle
2 2 inequality

1

2l =l + 2[l|x Il = 4
Iel2

and so, since I”xm + x“|2->4 we have [T(x - xmﬂi >0, 0r Tx 5 Tx
For any f € 2,* (= 2,) we therefore have f(T x) > £(T x), or

® *
T (f){x)) > T (£)(x) for all f. Since -T is one-to-one, T = 'r'(zz)

. * *
is a weak ~-dense subspace of X and we therefore have

P I
i xm—& x,

vhere T is a norming éubspace of x'.

The proof is completed by establishing that, for any norming subspace

S )
T' of X, X could have first been renormed to have the Kadec property

Br:

i x> Uxdl and x T b x, then Ux -l +o.
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Appendix to §5

APPLICATIONS TO REFLEXIVITY

when establishing Reflexivity we will work through the following

ancillary concept and results.

DEFINITION: = A subspace M of X* is strictly norming for X (Dixmier's
"Of Characteristic 1", 1948) if for every x € X we have

sup {£f(x): £ e sM} = ix|.
EXBMPLE: X is strictly norming for X*.

LEMMA 1: X is reflexive if and only if X** contains no proper closed

strictly norming subspaces.

Proof. (¥) If X** contains no proper closed strictiy norming sub-
subspace, then, from the above example, i must equal X** and so X
is reflexive.

(=) Let M be any proper closed subspace of X**, then by 3)
on p.4, there exists F e S(X***) such that FIM = 0. However X is
reflexive, so X*** = X* and F = f for some f ¢ S(X*). We therefore
have, Sup {m(f): m € S(M)} = 0 while ffll = 1. Thus M is not strictly

norﬁ\ing . O

REMARK: The absence of closed proper strictly norming subspaces not
only unifies our approach to reflexivity problems but it also serves
as a useful intermediary for other Banach space properties. (Fol'\ example,

the Padon-Nikodym property - see p.69.)

EXERCISE: If X is separable and X* contains no proper closed strictly

norming subspaces, conclude that X* is separable.

[Hint: Consider the closed linear span of

77. .

{fxn: (xn) is a dense sequence in S(X)} ,
where x § fx is any support mapping.]

LEMMA 2: If M is a striectly norming subspace of X*, then B(M) is

w*-dense in B[X*].

Proof. The proof is identical to that for Goldstine's Theorem (p.7)

which is a special case and is therefore left as an EXERCISE. O
EXERCISE: Prove the converse of lemma 2.

COROLLARY 3: If B[X*] is the norm closed convex hull of points of
S(x*) at wnich the relative w* and norm topolugies on B[X*] agree,

then X* contains no proper closed strictly norming subspaces.

Proof. I1If M is a proper closed strictly norming subspace of X*, then
B[M] is a proper ﬂorm closed subset of B[X*], so there exists a point
f € S(X*) at which the relative w* and norm topologies on B[X*] agree
which is not in B[M]. By lemma 2, there exists (fa.) c B[M] with

* B
fa. i f, but then by assumption fa. -l> £, so £ € S[M], a contradiction. O

THEOREM 4: If the norm of X is Fréchet differentiable, them BI[X*] is
the norm closed convex hull of points of S(x*) at which the relative

w* and norm topologies on BIX*] agree.

Proof. By proposition 8 ot 8§V every point of D(S(X)) is a w*-strongly
exposed point and hence, by Corollary 10 ii) or the same section, a
point at which the relative w* and norm topologies on B[x*] agree.

The result now folliows from the subreflexivity of X (Theorem 11 p.25)

which states D(S(x)) = S(X*), so co D(s(x)) = BIX*]. O

COROLLARY 5: If the norm of X* is Fréchet differentiable, then X is
reflexive.

Proof. The proof is immediate from theorem 4, Corollary 3 and lemma 1. O
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REMARK: It is a corollary to a renorming theorem of Troyanski (i971)
that any reflexive space may be equivalently renormed to be Fréchet
differentiable. We therefore have: a Banach space is reflexive if

and only if iWadmits an equivalentYFréchet differentiable norm,
s dua [ (ctd-c.i)

EXERCISE: i) Show that X is reflexive if B[X**] is the norm closed
convex hull of its w*-denting points (see Problem A]
of §v).
ii) If X** is lur (see Probiem B] of §V), show that X is

reflexive.

PROBLEM A] "Weak" Results

The motivation for what follows is provided by:

1) Using Mazur's Theorem on p.6, show that the assumption in Corollary

3 above may be weakened to yield:

If BIX*] is the norm (equals w) closed convex null of points of S(x*)
at which the relative w* and w topologies on B[X*] agree, then X*

contains no proper clused strictly norming subspaces.

Motivated by earlier work of Leonard and Sundaresan, Diestel and
Faires ["On Vector Measures", trans. Amer. Maths. Soc. 198 (1974},

pp.253-271]1 introduced the following notion.

DEFINITION: X is very smooth if there exists a support mapping from

S(X) into S(X*) which is continuous norm to w. Clearly, X Fréchet
differentiable = X is very smooth = X is smooth (Gateaux differentiable]j,
so a very smooth space has a unique support mapping. Very smoothness
does not correspond to any known differentiability property of the

norm.

2) show that the following are equivalent:
i) X is very smooth
ii) For each x € S(X) whenever (fn) c B[X*] 18 such that fn(x) +1,
then £ 18 w-convergent (necessarily to the unique element
of D(x).)
iii) Every point of U(S(X)) Zs an extreme point at which the

relative w* and w topologies on B[X*] agree.

[Hints: i) =1i) If fn(x) + 1, use theorem 1l p.25 to show there
; ‘ . 1
exists sequences \xn) c S(X) and (fxn) with len x| < o

1 . A
- < = .
Ifxn fnl a and fy € D(xn) By i) we have fxn + £, as
Ixn - xl + 0 and so, since llfxn - fnl! + 0, we can conclude that

£ Y& .
n X

ii} = iii) Use ii) to show every point of P(S{X)}) is a
w*-exposed point and hence an extreme point. Now argue as follows:
Assume f, ? fx , then by passing to a subnet ir necessary, we may
assume there exists a w-neighbourhood N of fx with £, # N for any
, * )

G&. 1If however f, s fx , then fa{_x) > 1 and so ror each n, there
w
>

. ‘ 1 Siy s
exists o such that fan(x) >1 - o by ii) fa, fx as n + », and

so f“n is eventually in N, a contradiction.

iii} = i) By proposition 6 p.48, X is smooth and so by

Il * i
Theorem 2 p.36, if X, > xwe have fxn w+ fx but then by iii)

w
fxn - fx .1

3) using 1) above and 2 iiij, deduce that X 18 reflexive if X* is

very smooth.

4) show that, x € S{X) 18 a smooth puint of X** i{f and only if
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all support mappings from S(X) into S(X*) are norm to weak continuous

at x.

[Hints: (=) Let ¢: x - fx be a support mapping from S(X) into S(X*).
Let ¢: F - FE’ be any support mapping from S(X**) into S(X***) such
that F;‘ = %x' Deduce that the norm to w* continuity of ¢ at x

implies the norm to w continuity of ¢ at x.

(~< Let (fn) c S(X*) be such that f“(x) -+ 1 by theorem 3 p.38
to show x is a smooth point it suffices to show fn is w-convergent.
To show this use an argument similar to that suggested for i) = ii}

in 2) above.]
As a corollary of 4) we have

5) Giles, 1975. X is very smooth if and only if every point of 5(X)

is a smooth point of X**,

REMARK: The condition: all support mappings are continuous norm to
w at x ¢ S(X) seems an appropriate localized definition of very smooth
at x.

Uniike the cases of norm to w* or norm to norm continuity, it does
not seem to be known whether or not the existence of one support mapping
which is norm to w continuous at x ¢ S5(X) ensures that aii support

mappings are norm to w continuous at x.

6} Note that from 5) we have

X*** rotund = X** smooth = X smooth in X** & X very smooth.

Using 3) deduce the following "higher dual" conditions for reflexivity.
i) Dixmier (1948): X is reflexive if X**** ig rotund.
ii) Giles/Rainwater (1973): X is reflexive iy X*** ig smooth

Thus, for a non-reflexive space the properties of smoothness and
\

8l.

rotundity .must break down in sufficiently high duals.
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86 Uniform Conditions

One of the earliest studied geometric conditions for a Banach space
was that of "uniform convexity", introduced by J.A. Clarkson in 1936 to
determine a class of Banach spaces for which a Radon-Nikodjm type

thoerem held.

DEFINITION: X is uniformly rotund (or uniformly convex) if given

€ > 0 there exists § > 0 such that, if x, y € S(X) have Il%ll >1 -3,
then lIx - vyl < €.-

[This definition should be compared with that for local uniform
rotundity - see p..72-75. They are the same except that here 6 does
not depend on the particular point x and so may be chosen uniformly

on S(X).}

A sometimes useful concept is the modulus of rotundity of X, that

is the function 8: (0,2] + ®" defined by
s(e) = inf{l - I%XL X, v € S(X) and Ix - vl = €}.
Clearly X is uniformly rotund if and only if &(€) > 0 for all € ¢ (0,21.

EXERCISES: 1) From the parallelogram law, determine the modulus of
rotundity for a Hilbert space. Hence deduce that any Hilbert space

is uniformly rotund.

[Ans: 6(e) =1 - V1 - (e/2)2 ]

*2) Determine the modulus of cor?vexity GP(G) for each of the two
dimensional spaces 2.12) . Deduce that 2; is uniformly rotund for

1l <p <o,

[REMARK: The spaces .Cp(n,u) and in partieular lp are all wniformly

rotund for 1 < p < «., Clearly for p = 1 or @ they are not. The
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modulus of rotundity in lp was the subject of a thorough study by

Hanner (1956). Among other results he shows that

2
%{g] for 1 < p < 2

8(gy ~

v
N
—

1f¢|P
5[2] for P

3) 1If X is finite dimensional it follows from the Heine-Borel theorem

that S(X) is compact. Show that

sy = min  min (1 - 2 1x -yl 2 )
x€S(X) yeS(X)

Hence deduce that a finite dimensional space is uniformly rotund if

s X+
and only if there does not exist x, y € S{X) with x # y and “—zxﬂ =1.
That is, if and only if X is rotund.
REMARK: Many other moduli of rotundity (including local ones) may

be defined. These have been the subject of extensive studies - see

for example V.D. Mil'man "Geometric Theory of Bamach spaces II",

Russian Maths. Surveys 26 (1971) pp.72-163.
Uniform rotundity may be characterized "sequentially"” as follows.
PROPOSITION 1 (Clarkson): X is8 uniformly rotund if and only if whenever

Xp +
the sequences (xn), (yn) c BIX] are such that “n—zyﬂﬂ > 1 we have

that lel_1 - yn|| + 0.

: S o >
Proof. (=) Since Ix I, "yn“ <1 and 22 llxnll + ||yn|| > len + ynll 2
we have that ix |, ly § + 1. Let x' = xp/|jx,| and v, = Yo/ ynll -

then (x)), (y]) < S(X) and ||x‘_" - xnll .yl - ynll + 0. Thus

Xt ¥n ; Cies .
H—Z—! +1 and it follows immediately from the definition of uniform
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convexity that Ix' - lexu + 0, but then ||xn - ynll + 0. Inquadrate Spaces
(&) Assume X is not uniformly rotund, then for some € > 0 and DEFINITION: X is inquadrate if &(e) > O for some ¢ ¢ (0,2]. That is,
Xn +
every n there exists a pair Xy, € S(X) with IIH—Zﬁn >1 - 1-11 there exists € € (0,2] and § > 0 such that Ix - yll < € whenever

X +y : N
. . S(x nd H—" > 1-§. It will be convenient to refer to such
but I[xn - yn|| 2 €. The sequences (xn), (yn) violate the assumption. X, vy € 5(X) a 5 §

a space as being "e-inquadrate". Clearly, X is uniformly rotund if and
EXERCISES: 1) Show that X is uniformly rotund if and only i1f every only 1f X is e-inquadrate for every € e (0,2].

separable subspace of X is uniformly rotund.
The following is an adaptation of Ringrose's proof that uniformly
[Hint for (&): If X is not uniformly rotund choose (xn) and (yn) as
rotund Banach spaces are reflexive.
in the previous proof and consider M = spa.n({xn} u {yn}) .1

LEMMA 2: Let M be a closed proper subspace of X*. If M is e-inquadrate
2) If X 18 uniformly rotund, show that whenever (x_) < B[X] is such
n for some € € (0,1), then M is not strictly norming for X.
that ||w || +1as n, m > we have () 18 a Cauchy (and hence
Proof. By Reisz' lemma (p.4), there exists f ¢ S(X*) with
by the completeness of X, convergent) sequence.

. x +
dist(f,M) > €. Let 8 > O be such that, for x,y € S(M) with HTYH > 1-68

3) If X is uniformly rotund show that every element of S(X*) is a we have [x - yll < ¢ (8 exists since M is e-inquadrate). Choose x ¢ 5(X)
support functional. Assuming Jame's Theorem (pp.17-18) deduce the such that f(x) > 1-6 and let N be the relative w*-open neighbourhood
Mil'man-Pettis Theorem: Every uniformly rotund Banach space is ) of £ in B[X*] given by

reflexive. N = {g e B[X*]: g(x) > 1-§}.

[REMARK: We will develop an alternative proof shortly. The Mil'man-
Now, assume M is strictly norming for X, then by lemma 2 of §V,
Pettis Theorem is one of the "most proved" results in the Geometric
p.77, there exists m, € M n N. Moreover, if m, is any other element of

1
Theory of Banach spaces. It was first proved by D.P. Mil'man (1938}

m + m m + m
: . 2 2
and independently by B.J. Pettis (1939). Since, then a number of M n N we have Il 5 “ > [ ! 3 ](x) > 1-§ , so IIrn1 - mzll < €.
hort h b in particular alternative fs have
shorter proofs have been found, in par r Y ve proo Thus, NN M < Bs[m1]~
been given by Kakutani, Ruston (1949) and Ringrose.]
We therefore have
T . — [ *
4) show that every non-empty closed convex subset of a uniformly R FeNY" = Man”® , again by lemma 2 of §V.

rotund space is a Tchebycheff set. That is, every such set contains a

n

B [m1], since BE[mll is w*-compact and hence
€

R . . . w*-closed.
unique closest point to any point in the space.

: : - . . - < icti he fact that dist(f,M) > €.
5) (optional) Show that X is uniformly convex if and only if whenever so If m I €, contradicting the ' D

(xn), (yp} © S(X) are such that | fxn+ fYn" + 2 for some support map

x f= fx we have lxp - ypl +~ 0. (Sims/Yorke 1978).
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As a corollary we have:

THEOREM 3: If X 75 e-inquadrate for some € ¢ (0,1), then X is

reflexive.

Proof. If X is e-inquadrate, then X is an g-inquadrate closed subspace
of X** which strictly norms X*, so by lemma 2 X cannot be a proper

subspace. That is, X = X**, or X is reflexive. O

'

COROLLARY 4 (Mil'man-Pettis Theorem): If X is wniformly rotund, then X

is reflexive.

REMARK: The above definition of inquadrate is due to R.C. James {(1964)
who termed such spaces "uniformly non-square". The term inquadrate is
due to Day. The concept was motivated by earlier work of Anatole Beck
In 1963, Beck characterized separable Banach spaces X in which sequences
of “"identically distributed X-valued random variables satisfied a law

of large numbers". He introduced the notion of (k,e)-convexity.

DEFINITION: X is (k,f)-convex, where k ¢ N and € > 0 if for each set

of k elements, Xy Xgp ey K € B[X], there is at least one choice of

X, + %X, £ ... ¢
+ and - signs such that H 1 2 Ty

* i (l-g) .

EXERCISE. Show that X s (2,e)-convex for some € € (0,& if and only if
X 18 inquadrate. Hence conclude that X is reflexive if X is (2,€)-convex

for some € ¢ (0,1).

Geometric aspects of (k,€)-convexity were considered in detail by
Giesy in 1964 [Trans. Amer. Math. Soc., 125, pp.114-146]}. James [Israel
J. of Maths, 18 (1974) pp.145-155] gave an example of a non-reflexive
space which is (\,E)-convex, thus showing that the conclusion of the

above exercise is in general false for k > 2.
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The notion of inquadrate has played a part in the recently developed

theory of "super-reflexive" spaces.

DEFINITION (James 1972). For Banach spaces X and ¥, Y is finitely
represented in X (Day's X mimics Y) if given € > 0, for each finite
dimensional subspace M of Y there exists a one-to-one linear mapping

T: M+ X with |#Txl - Ux8] < € for all x € S(M). That is, every finite
dimensional subspace of Y'is arbitrarily nearly isometric with a subspace

of X.

EXERCISES: 1) sShow that the condition “For eacht € > 0 there exists
T: M > X with |||T x| - ||xll| < € for all x € S(X)" is equivalent to
"For each € > 0 there exists T : M » X with ITl-kT 10 < 1 + €, where
T_l denotes the inverse of T as a mapping from M to T(M).

2) Show that, if Y is finitely represented in X and X is

uniformly rotund (inquadrate) then Y is uniformly rotund (inquadrate).

2
3) Show that 2, is finitely represented in Coe (Indeed, it
may be seen that every Banach space is finitely represented in co) .
[Hint: approximate the unit circle by a polygon made up of lines of the

form f;l(l), with Ifil =1 i=1, 2, ..., n, and consider the mapping

T: x * '(fl(:f), (0, .0 fn(f)’ 0, 0, 0, ....]

If P is any Banach space property, we say X is super-P if whenever

Y is finitely represented in X, then Y has P.

EXERCISE: Show that i) Every finite dimensional Banach space is super-
reflexive.
ii) Every uniformly convex Banach space is super-

reflexive.
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James and Enflo have shown that the following are equivalent.
i) X is super-reflexive.
ii) X is < uniformly rotund > .

iii) X is <ingquadrate > .

Many other super-properties have been investigated (for example, super-
Radon-Nikodym property) and have proved to be equivalent to super-

reflexivity.

Properties in duality with wniform rotundity.

DEFINITION: X is uniformly Fréchet differentiable if

+ - : .
Limit Ix Xxll 1 exists, and is approached uniformly over
A+0

X, ¥ € S(X).

As in Proposition 1 of §V, X is uniformly Fréchet differentiable if
and only if given € > 0 there exists § > 0 such that, for each
x € S(X) and y € X with Qy] < § there exists some £ e S(X*) (necessarily

the unique element of D(x)) with |ix + zl - Ix} - £ (2)| < elzl .

DEFINITION: X is uniformly smooth if given e > O there exists § > 0
such that, for each x € S(X) and y ¢ X with |y[] < § we have

ix + vl + ix -yl <2+ €lyl .

+ + -
- supglxt vl * Ix = vl

REMARK: P (t) - 1: Ix§ =1 and |yl < t} is

known as the modulus of smoothness. X is uniformly smooth if and only

if p(t)/t = 0 as t + oF,

Not surprisingly, as shown in the next proposition, uniform smoothness

and uniform Fréchet differentiability are equivalent.

|
i
|
|
[
!
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THEOREM 5: The following are equivalent.
i) x* <{g uniformly rotund.
ii) there exists a support mapping x b £ Sfrom s(X) into S(X*)
which is umifomli} continuous norm to norm. In which case
x b fx is necessarily the unigue support mapping on X.
iii) X is uniformly Fréchet differentiable.

iv) X is uniformly smooth.

Proof. i) = ii). Given € > 0, let 6 > 0 be such that [If]

Igl =1

+
and If_29_| > 1-6 implies IIf - gl < e. Then, if JIxf = Qyl

1 and
Ix - y] < 28§ we have

>
ﬂfx + fyﬂ 2 (fx + fy) (x)

1+ £
y(x)
= 1+ £ + £ (x -
y(y) y( y)
= 2+ fy(x -y
> 2-x-y] . as ]fy(x—y)[ < 1x-y]

2 2-26.

f, + £
Thus, Ix—zll > 1-6 and so Ifx - fyl < €, establishing the

uniform continuity of x b fx.
ii) = iii). Given € > 0 let § € (0,%) be such that, for x, y € S(X)
with |x - y[| < 4§ we have |fx - fyl] < €. Then, for any x € S(X) and

z # 0 with Izl < § we have

X + z 1
-xl < —— + - +
le ¥zl 1x + z1 Uzl [1 - gx + z0]1x] )

< 28
- 1-86

< 4§ .
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So nfx+z - fxu < E. Since uniform rotundity implies reflexivity (Corollary 4) we
I x+zl
i see that wniform smoothness (or uniform Fréchet differentiability)

The result now follows from lemma 1 of §2 on p.28 which yields . . . .
. P Y i in complete duality with uniform rotundity, and that any of

Ix + zh - Ixll - £x(2) z these conditions on X ensures reflexivity.
o = R S A T P
izl I x+zl . .
EXERCISE: Show that X* is uniformly smooth if and only if given
£ - f < € . . .
< Il||x+Tz|| xH € > 0 there exists § > 0 such that for any x ¢ S(X) and f € Dix) if
x+2z

y € S(X) has fx(y) > 1-6 then ||x - yll < €. That is the support

iii) = iv). Given € > 0 there exists § > 0 such that whenever . ; . s .
ue functionals of S(X) uniformly determine slices of B[X] of arbitrarily

€S d <6 h
x (X) and |zl we have small diameter.

€ int: * i i .
Ix + z] - Ixl - fx(Z) < 5 1zl . [Hint: Replace X* uniformly smooth by X uniformly rotund. For (& :
i + x +
if x, y € 5(X) have ﬂ%>1-6/2, let z' = 2y and
Now, f-zll = izl < § so \
z =72 /)z'] - Choose f ¢ D(z) and note that f(x), £(y) > 1-6 .]
€
- - < =
Ix - z| Ixf + fx(z) 3 iz -
Adding these inegualities yields,
Ix + 2] + fx - 2] < 2 + =sfjzf for all z with [zfl < § .

iv) = i). Given € > 0 let § > O be such that for x € S(X) and

€

y with |yl < & we have fx + yll +lx - vyl < 2 + 7 Iyl .
Let f, g € S(X*) have [f - gl 2 €, then for some y € X with L
lyl < 6§ we have (f - g)(y) 2 eg . Then

If +gl = sup {(f +g(x): xe S(X}

sup{flx + y} + glx -y} - (f - g)(y): % € S(N}

< suplllx + yll + Ix -yl - (£ - g (y): x € S(X)}

A

2 + ¢efyl|/a - €6/2
< 2 -¢€b/4 ,

f
or H ; { <1 - ed/g. Thus X* is uniformly rotund.






