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Given any subspace N of a Banach space X | thereis a subspace M containing
N and of the same density character as N | for which there exists a linear Haln-
Banach extension operator from Af" to X~ . This result was first proved by Heinrich
and Mankiewicz [4, Proposition 3.4] using some of the deeper results of Model
Theory. More precisely, they used the Banach space version of the Léwenheim-
Slkolem theorem due to Stern !11], which in tum relies on the Lowenheim-Skolem
and Keisler-Shelah theorems from Model Theory. Previously Lindenstrauss [7],
using & finite dimensional lemma and a compaciness arguinent, ohtained a version
of this for reflexive spaces. We shall show that the same finite dimensional lemma
leads directly to the general result, without any appeal to Model Theory.

Using Model Theoretic methods, Heinrich and Mankiewicz [4] developed a
substantial theory for Lipschitz and uniform homeomorphisms of Banach spaces. A
careful reading of their work shows that their results on Lipschitz homeomorphisms,
and certain of their results on uniformm homeomorphisms [4, Proposition 4.1 and
Theorem 5.1], follow from the above resuli (on linear extension operators), without
any further need for Model Theory. Thus our proof provides a purely analytic
approach to these aspects of their theory.

Let X be a Banach space and let M be a closed subspace of X. For each
bounded linear functional f : Af — R ; that is, for f an element of the dual space

207, we define
Hu(f) :={f € X" |Ifj = If]| and Rpf = f}.

where Rjs : X° — A" is the natural resiriction operator f — flp. Thus Half)
is the sct of Hahn-Banach ertensions of f to X . It is nonempty, courtesy of the
Hahn-Banach Theorem, v’ — compact and convex.

A selector T : M~ — X~ with Tf € Ha(f) for all f € M~ is a Hahn-Banach
ericnsion operator for AI. Clearly such a 7 is norm preserving.

It is natural to consider the question of when T can be chosen to be linear.
Clearly this is always the case when X is a Hilbert space. That the converse is also
true is demonstrated in the proposition below.

We begin with the following easily verified observations.



Observation 1) If T — X" is a linear Hahn-Banach extension
operator, then P := TRp : X7 — X° is a norm-1 projection with range
T2/ and Ner P =24+

Observation 2) (i) If A7 is the range of a norm-1 projection P on X,
then 77 iz a linear Hahn-Banach extension operator from A{> to Y-,

Dually.

(1) If T : M* — X* is a linear Hahn-Banach extension operator,
then 77 is a norm-1 projection of X" onto M’°.

Proposition: Every ( 2-dimensional ) subspace of X admits a linear
tahn-Banach extension operator if ( and only if ) X is a Hilberl space.

Proof. Let N be a 3-dimensional subspace of X and let A Dbe a 2-

sional subspace of V. Then by 2) (i1) there exists a norm-1 projection from

cuto M7 = M, and so by restriction {rom N onto A . Hence by Kakutani
s a Hilbert space.

I\

Ar isomorphic version of this is given by Fakhoury |1, Théoreme 3.7].

The above proposition suggests that subspaces which admit a linear Hahn-
Zeznach exiension operator mzv not be very common. On the other hand, the main

rem shows that, in some sense, subspaces with this property are plentiful. As

sously noted, our proof needs the following lemma due to Lindenstrauss ‘7).

Lenuna: Let F be a finite dimensional subspace of X and let k€ N and
: =~ 0 be given. Then there exists a finite diinensional subspace Z > F
such that for all subspaces E > F with dimE/F < Lk there is a linear
mapping T': E — Z with .7 <1+¢ and T|p = Id.

Theorem: Let N be a subspace of a Banach space X. Then there exists
= subspace A > N with domns M = dens N and a linear Hahn-Banach

4]

extension operator T : Af° — X,

Proof. We first prove the result for N separable. Let (z,)32, be 2 dense

~cuence in N, Starting with 34, = {0} we inductively define subspaces if, by:
I, is the subspace Z given bx the above lemma with F :=< M, _;.z2, >, }:=n
anc :=1/n. Put 3 = | J3, . Clearly Af is separable and contaizs N

n

Now for each n define

I,:={E <X :FE>AM, and dime E/M, <n},



and let

I:= UI

Since E,, € I, and B, € I,, implies E,+ E,,, + MaimE, +dimE,, € ldimE,+dimE.,
we have that I, ordered by inclusion, is a directed set. Hence the family of sets of
the form {E € I: E D Ey}, with E; € I, is a subbase for a filter. Let &/ be any
extension of this filter to an ultra-filter on I. Further we note that for z € ' we
have that I, :={F€l:x2 ¢ E}={Eec]:E D <m,z>}EU.

Foreach £ € Ilet n(E):= max{n: E ¢ I,,}, which exists since the dimension
of E is finite. Then by the lenuna there exists Tp : E — M, g3y < M with
TE]-V.,(E) = Id and ||Tg|| £ 1+ 1/n(E).

Extend Tr (non linearly) to X Dby setting

Tepiz) := . .
£(e) 0, otherwise.

- {TE(.T), if x € Ey

Regarding Te(x) as an element of A" we define T on M* by
T(f)r) = lim(Te)(f).

For the definition and existence of limits over ultra-filters in compact Hausdorfl

spaces see, for example, 10,

It 1s now routine to verify that 7' is the required linear Halin-Banecl: extension
operator for A7 . For example to establish that T(f) € X", we need oxnly note that

given z,y € X we have
Te(r +y) = Telx + y) = Tex + Tpy = Ter + Teu,

foral Fel, nl, €U.

The general result we now establish by {ransfinite induction on dens A

Suppose dens N > R,. Let 5 be the first ordinal of cardinelity dens N,
and let {z, : @ < 7} be dense in N. The argument above yields z separable
subspace My, containing {7, : a < Ny} and a linear Hahn-Banach extension.
operator Ty, : My — A°. By the induction hyvpothesis. if Ry < a < 7 we can
find a subspace M, with |J Mzu{z,} C M, , dens Af, < card a and = linear

B<a

Hzhn-Banach extension operator T, t M7 —

]

Put M := |J M,. Clearly N < M and dens M = dens N . Now define
a<n”n
T:M — X" by
T(f) = w0~ im To R, (1),
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where I/ is any non-trivial ultra-filter on {e: 0 < n}. ltisreadily verified that T is
a linear Hahn-Banach extension operator for Af, thereby establishing the theoren.

Combining this result with Observation 1) we have the following.

Corollary [4,p227]: If X is the dual of a non-separable Banach space
then X contains uncountably many proper norm-one complemented sub-
spaces.

Similarly {from observation 2 ii) we have

Corollary [7]: If X is reflexive then, every subspace of X is contained in
a norm-one complemented subspace with the same density character.

Various other results on Hahn-Banach extension operators are scattered through-

out the literature. Quesiions concerning uniqueness of extensions, existence of lineer

selections and continuity properties of the mapping f — Hpr(f) arise naturally. We
shall conclude with a few observations and a brief survey of known results.

Let us note that the mapping f — Hp(f) is norm to - upper semi
continuous. Tosee thislet |[f,— f|| — 0in M* andlet N be a w” - neighbourheod
of Hpyr(f). If Hur(fn) is not eventually in N we may , by passing to & subsequezce
if necessary, assume that Hps(f,) € N for any n. But, then for each n there exists
gn € Hy(fa)\ N. Let (g,,) be a subnet converging w” to g, then ¢ € N.Now

lglf < liminf lign, || = liminf |{fn || = [[£]

and for m € M , g(m) is a cluster point of the sequence (g,(m)) = ( f,(m)) which
converges to f(m). Thus g € Hpy(f), contradicting g ¢ N.

v

The question of when T is unique (that is, when Hps(f) is 2 singleton se1
for all f € M") has been considered by Taylor [13] and Foguel [2,. Their resuits
show that there is a unique Halin-Banach extension operator for every A <
if and only if X* is stricily convex. Phelps {9) proved that a given subspace f

has a unique Hahn-Banach extension operator if and only if A7~ contains « uninue
closest point to each element of 1~

When T is unique it is by the above result norm to w” continuous. We ask. s
the converse also true? That is, if there is a norm to w” continuous Hahn-Banech
e

extension operator for 17, is Har(f) necessarily a singleton set for each f € Af
The analogy with the Duality map |see for example, 3] should be nnted.

We finally sumimnarize sufficient conditions for a fixed subspace te: admit a linser
Hzhn-Banach extension operator.

Fakhoury |1, Corollaire 2,16} shows that a subspace A/ admits & linear Helr-
Banach extension operator to < A,z > for each z in X if and onlx if for every =



the following condition Py, is satisfed: If my.m,,...,m, € M and ry,79,....,7,, > 0
" n

are such that {} B, (m,) = 0, then M N (" B, (m;) # #. Lima [6, Proposition 3.2]
1 !

pave a different proof of this resnlf, via a consideration of the following question:

-

When, given n > 2, and any fy, f2,....,fn € M* with 3 f; = 0, can we find
3

i€ Hp () with zf, = 0?7 He characterized such M as those for which P,
3

Lolds for the preseribed n |6, Theorem 3.1]. He also showed {6,Theorem 4.8] that
if 7., holds for all n and in addition M is weakly Hahin-Banach smootl in X {12],
tlien M admits a linear Hahn-Banach extension operator to all of X . In particular
tlus last condition is salisfied when the extension operator is unique.

An alternative condition sufficient for a linear Hahn-Banach extension operator
for M follows directly from Pelezynski |8, pp161-162). Namely: M admits a linear
Hahn-Banach extension operator if there exists a retraci B : X — Af such that for
some r > 0 and all x,y € X we have || Rr — Ry]l <7 whenever |lz — yii £ r. This
is also proved in (1, Corollaire 2.12.

We remark that if A < X and M is a Lindenstrzuss space {that is, an
L;—predual ) then there is a linear Hahn-Banach extension operator from A’ to
X' . This follows directly from the injectivity of Af™". See Faklioury {i. Corollaire

g ol
Dadje

Fakhoury [1, Théoreme 3.11 shows that a subspace A/ of X admiis a linear
Hahn-Banach extension operator if and only if every finite rank (compact / weakly
compact) linear operator from A into another Banach space has z finite rank
scompact / weakly compact) norm preserving extension to all of X
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