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Abstract. Let C be a bounded closed convex subset of a uniformly convex Banach

space X and let = = {T (t) : t ∈ G} be a commutative semigroup of asymptotically
nonexpansive in the intermediate mapping from C into itself. In this paper, we

provide the strong mean ergodic convergence theorem for the almost-orbit of =.

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space X. Then a
mapping T : C 7→ C is called nonexpansive on C , if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ C . We denote F (T ) the set of fixed points of a mapping T on C. Baillon [2]
proved the first strong ergodic theorem for nonexpansive mapping in a Hilbert space:
{Tnx} is strongly almost convergent as n → ∞ to a point of F(T) if X is Hilbert
space and T is odd. and Bruck [6] obtained the same conclusion under the more
general assumption that {Tn} is ”asymptotically isometric”. The analogous results
for nonexpansive and asymptotically nonexpansive (type) semigroups in Hilbert
spaces were given by Bruck [6], Tan and Xu[27], Li[19], Li and Ma[20], and others.

On the other hand, Bruck’s result has been extended by Kobayasi and Miyadera
[17] to the case of uniformly convex Banach space. So far, much effort has devoted
to studying nonlinear ergodic theory for (asymptotically) nonexpansive mappings
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and semigroups. See also [ 8, 9, 16, 24, 25 , 30]. for example, Kido and Taka-
hashi[16] proved the strong ergodic theorem for commutative semigroup of nonex-
pansive mappings and Oka[25] proved the strong ergodic theorem for totally ordered
commutative semigroups of asymptotically non-expansive mappings.

As we know, Bruck’s Lemmas are essential tools in the proof of almost all mean
ergodic theorem for asymptotically nonexpansive semigroup in a uniformly convex
Banach spaces. However, Bruck’s Lemmas do not extend beyond non-Lipschitzian
mappings. It remains open whether the strong ergodic theorem is valid for non-
Lipschitzian mappings in Banach space.

The purpose of this paper is to prove the strong ergodic theorems for commutative
semigroup of asymptotically nonexpansive in the intermediate sense mappings in
a uniformly convex Banach space. Our results enable us to handle simultaneously
ergodic theorems for asymptotically non-expansive type mappings and semigroups
in the intermediate sense, i. e., we can establish the strong almost convergence of
{Tnx : n ≥ 1}(x ∈ C) and {T (t)x : t ≥ 0}(x ∈ C) in a unified way; See Section 5.
Our results extend and unify many previously known results.

2. Preliminaries and Notations

Throughout this paper X denotes a uniformly convex Banach space, C a non-
empty bounded closed convex subset of X, and G a commutative semigroup with
the identity. The value of x∗ ∈ X∗ (the dual space of X) at x ∈ X will be denoted
by (x, x∗). We denote by coM and by coM the convex hull and the closed convex
hull of M ⊂ X, respectively. The closed ball centered at 0 ∈ X and of radius r > 0
is denoted by Br. We also put

Mn= {λ = (λ1, λ2, · · · , λn) : 0 ≤ λi ≤ 1, 1 ≤ i ≤ n,
n∑
i=1

λi = 1}

The duality mapping J(multivalued) from X into X∗ will be defined by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},

for x ∈ X.
Let m(G) be the Banach space of all bounded real valued functions on G with

the supremum norm. Then, for each s ∈ G and f ∈ m(G), we can define rsf in
m(G) by (rsf)(t) = f(t+ s). Let D be a subspace of m(G) and let µ be an element
of D∗, where D∗ is the dual space of D. Then, we denote by µ(f) the value of µ at
the element f of D. According to the time and circumstance, we write by µt(f(t))
or

∫
f(t)dµ(t) the value µ(f). When D contains constants, a linear functional µ on
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D is called a mean on D if ‖µ‖ = µ(1) = 1. Further, let D be invariant under every
rs, s ∈ G. Then a mean µ on D is called invariant if µ(rsf) = µ(f) for all s ∈ G
and f ∈ D. For s ∈ G, we can define a point evaluation δs by δs = f(s) for every
f ∈ m(G). A convex combination of point evaluations is called a finite mean on G.

Let = = {T (t) : t ∈ G} be a family of mappings from C into itself. = is said
to be a commutative semigroup of asymptotically nonexpansive in the intermediate
mappings on C if the following conditions are satisfied:

(a) T (t+ s)x = T (t)T (s)x for all t, s ∈ G and x ∈ C:
(b) for each t ∈ G, there exists α(t) ≥ 0 such that

‖T (t)x− T (t)y‖ ≤ ‖x− y‖+ α(t) for all x, y ∈ C

with
lim
t∈G

α(t) = 0, (2.1)

where limt∈G α(t) denotes the limit of a net α(·) on the directed system (G,≤) and
the binary relation ≤ on G is defined by a ≤ b if and only if there is c ∈ G with
a+ c = b. We denote by F (=) the set {x ∈ C : T (t)x = x for all t ∈ G} of common
fixed points of T (t) in C.

As in [ 24 ], a function u(·) : G 7→ C is said to be an almost-orbit of = = {T (t) :
t ∈ G} if

lim
t∈G

[sup
h∈G
‖u(h+ t)− T (h)u(t)‖] = 0. (2.2)

An almost-orbit u(·) is called asymptotically isometric, if it satisfies

lim
t∈G
‖u(t+ h)− u(t+ k)‖ = ρ(h, k) (2.3)

exists uniformly in h, k ∈ G. It is easily seen that if G is totally ordered, then (2.3)
is equivalent to limt∈G ‖u(t+ h)− u(t)‖ exists uniformly in h ∈ G.

Throughout the rest of this paper, = = {T (t) : t ∈ G} is a commutative semi-
group of asymptotically nonexpansive in the intermediate mappings on C such that
each T (t) is continuous, u(·) is an almost-orbit of = and it is asymptotically iso-
metric, and D is a subspace of m(G) containing constant functions and invariant
under rs for every s ∈ G. Furthermore suppose for each x∗ ∈ X∗, a function
hx∗ : t 7→ 〈u(t), x∗〉 is in D. Since X is reflexive, for any µ ∈ D∗ there exists a
unique element uµ in X such that

〈uµ, x∗〉 =
∫
〈u(t), x∗〉dµ(t)
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for all x∗ ∈ X∗. We write uµ by µ(t)〈u(t)〉 or
∫
u(t)dµ(t). If µ is a mean on D, then∫

u(t)dµ(t) is contained in co{u(t) : t ∈ G}. Also, if µ is a finite mean on G, say

µ =
n∑
i=1

aiδti(ti ∈ G, ai ≥ 0, i = 1, 2, · · · , n,
n∑
i=1

ai = 1),

then

µ(t)〈u(t)〉 =
n∑
i=1

aiu(ti).

Denote by ωw(u) the set of all weakly cluster points of the net {u(t) : t ∈ G}.

3. Lemmas and Proposition

In this section, we prove several lemmas which play a crucial role in the proof of
our main theorems in the next section.

To simplify, in the following, for each ε ∈ (0, 1], we define

a(ε) =
ε2

10R
δ(
ε

R
) (3.1)

and
Gε = {hε ∈ G : α(h+ hε) < a(ε) for each h ∈ G}, (3.2)

where δ is the modulus of convexity of the norm, d = 2 sup{‖x‖ : x ∈ C}, and R =
4d+ 1. Noting that from (2.1), Gε is nonempty for each ε > 0, and if hε ∈ Gε, then
h+hε ∈ Gε for each h ∈ G. In the following, we write a(0)(ε) = ε, a(2)(ε) = a(a(ε)),
and a(n)(ε) = a(n−1)(a(ε)) for each n ≥ 1.

Lemma 3.1. Let ε ∈ (0, 1), and h ∈ Ga(ε). Suppose x1, x2 are in C such that
‖x1 − x2‖ − ‖T (h)x1 − T (h)x2‖ ≤ 2a(ε), then for each α ∈ (0, 1),

‖T (h)(αx1 + (1− α)x2)− αT (h)x1 − (1− α)T (h)x2‖ <
ε

4
(3.3)

Proof. Put x = (1 − λ)(T (h)(λx1 + (1 − λ)x2) − T (h)x2) and y = λ(T (h)x1 −
T (h)(λx1 + (1 − λ)x2)), then ‖x‖ ≤ (1 − λ)α(h) + λ(1 − λ)‖x1 − x2‖, and ‖y‖ ≤
λα(h) + λ(1− λ)‖x1 − x2‖, it then follows from the lemma in [27] that

‖λx+ (1− λ)y‖ ≤ (α(h) + λ(1− λ)‖x− y‖)(1− 2λ(1− λ)δ(
‖x− y‖

d
))
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This implies that

2λ2(1− λ)2‖x1 − x2‖δ(
‖T (h)(λx1 + (1− λ)x2)− λT (h)x1 − (1− λ)T (h)x2‖

d
)

≤ α(h) + λ(1− λ)(‖x1 − x2‖ − ‖T (h)x1 − T (h)x2‖) (3.4)

Suppose that ‖x − y‖ ≥ ε/4. Then we shall give a contradiction in the following
two cases:

Case 1: If 4λ(1− λ)‖x1 − x2‖ ≤ ε, then

‖x− y‖ ≤ ‖x‖+ ‖y‖ < α(h) + λ(1− λ)‖x1 − x2‖ < ε/4

This is a contradiction.
Case 2: If 4λ(1− λ)‖x1 − x2‖ > ε, then we have Rλ(1− λ) > ε. It then follows

frow (3.4) that
ε2

2R
δ(
ε

4d
) ≤ 2a(ε)

and hence, 5a(ε) ≤ 2a(ε). This is a contradiction. The proof is completed. �

For each ε > 0 and h ∈ G, we set

Fε(T (h)) = {x ∈ C : ‖T (h)x− x‖ ≤ ε}.

Lemma 3.2. For each 0 < ε < 1, there exist ε0 > 0 and h0 ∈ G such that

coFε0(T (h)) ⊂ Fε(T (h))

for each h ≥ h0.

Proof. Since X is uniformly convex, by [5, Theorem 1.1], for given ε > 0 we can
choose a positive integer p such that for each M ⊂ C,

coM ⊂ copM +Bε/4, (3.5)

where copM denotes the set of sums λ1x1 + · · ·+λpxp with 0 ≤ λi ≤ 1, xi ∈M, 1 ≤
i ≤ p, and

∑p
i=1 λi = 1. We first claim that

co2Fa( ε4 )(T (h)) ⊂ F ε
4
(T (h)), (3.6)

for each h ∈ Ga( ε4 ), where a( ε4 ) and Ga( ε4 ) are defined in (3.1) and (3.2). In fact, let
x0, x1 ∈ Fa( ε4 )(T (h)) and xt = tx0 + (1− t)x1 for some 0 < t < 1. Since

‖x0 − x1‖ − ‖T (h)x0 − T (h)x1‖ ≤ 2a(
ε

4
)
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we have from Lemma 3.1 that

‖T (h)xt − tT (h)x0 − (1− t)T (h)x1‖ ≤
ε

16

This implies that
‖T (h)xt − xt‖ ≤

ε

4
This shows (3.6) holds. By induction, we also have

copFε0(T (h)) ⊂ F ε
4
(T (h)) (3.7)

for ε0 = a(p−1)(ε/4) and h ∈ Ga(p−1)(ε/4). From (3.5) and (3.7), we get

coFε0(T (h)) ⊂ F ε
4
(T (h)) +B ε

4
.

But
C ∩ (F ε

4
(T (h)) +B ε

4
) ⊂ Fε(T (h)),

because

‖T (h)x− x‖ ≤ ‖x− y‖+ ‖y − T (h)y‖+ ‖T (h)y − T (h)x‖
≤ 2‖x− y‖+ ‖y − T (h)y‖+ α(h).

Finally, noting that Fε(T (h)) is closed we get the desire result. �

Lemma 3.3. Given ε ∈ (0, 1) and a positive integer p, there exists tε ∈ G such
that

‖T (h)
p∑
i=1

aiu(t+ si)−
p∑
i=1

aiu(t+ si + h)‖ < ε (3.8)

for each t ≥ tε, h ∈ Ga(ε) and (a1, a2 · · · , ap) ∈ 4p, si ∈ G, 1 ≤ i ≤ p.

Proof. Put
ϕ(t) = sup

h∈G
‖u(h+ t)− T (h)u(t)‖.

We shall prove the Lemma by mathematical induction.
If p = 1, then the assertion follows from the definition of almost-orbit. Now

suppose that the assertion holds for p = n− 1,
By the inductive assumption, there exists tn−1 ∈ Ga(ε/4) such that

ϕ(t) <
1
4
a(p)(

ε

4
) (3.9)
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|‖u(s+ t)− u(k + t)‖ − ρ(s, k)| ≤ 1
4
a(
ε

4
) (3.10)

for each t ≥ tn−1 and s, k in G, and

‖T (h)
n−1∑
i=1

aiu(t+ si)−
n∑
i=1

aiu(t+ si + h)‖ < 1
4
a(
ε

4
) (3.11)

for each t ≥ tn−1, h ≥ tn−1, and (a1, a2 · · · , an−1) ∈ 4n−1, si ∈ G, 1 ≤ i ≤ n − 1.
Letλ =

∑n
i=1 aiδsi , where, (a1, a2, · · · , a − n) ∈ 4n, si ∈ G, 1 ≤ i ≤ n. Put

µ1 =
∑n−2
i=1 aiδsi + (an−1 + an)δsn−1 , and µ2 =

∑n−2
i=1 aiδsi + (an−1 + an)δsn , then

λ =
an−1

an−1 + an
µ1 +

an
an−1 + an

µ2.

Put tn = 2tn−1 = tn−1 + tn−1, it then follows frow (3.11) that

‖T (k)µ1(s)〈u(s+ tn−1)〉 − µ1(s)〈u(s+ tn−1 + k)〉‖ ≤ 1
4
a(
ε

4
)

and
‖T (k)µ2(s)〈u(s+ tn−1)〉 − µ2(s)〈u(s+ tn−1 + k)〉‖ ≤ 1

4
a(
ε

4
)

for all k ≥ tn−1. Since for each k ≥ tn−1,

‖µ1(s)〈u(s+tn−1)〉−µ2(s)〈u(s+tn−1)〉‖ = (an−1+an)‖u(sn−1+tn−1)−u(sn+tn−1)‖

and

‖T (k)µ1(s)〈u(s+ tn−1)〉 − T (k)µ2(s)〈u(s+ tn−1)〉‖

≥ (an−1 + an)‖u(sn−1 + tn−1 + k)− u(sn + tn−1 + k)‖ − 1
2
a(ε/4)

By (3.10) and Lemma 3.1, we have

‖T (k)λ(s)〈u(s+ tn−1)〉 − λ(s)〈u(s+ tn−1 + k)〉‖ ≤ ε

4
(3.12)

This implies that

‖T (h)λ(s)〈u(s+ tn)〉 − T (h+ tn−1)λ(s)〈u(s+ tn−1)〉‖ ≤ α(h) +
ε

4
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and

‖T (h+ tn−1)λ(s)〈u(s+ tn−1)〉 − λ(s)〈u(s+ tn + h)〉‖ ≤ ε

4
It follows that

‖T (h)λ(s)〈u(s+ tn)〉 − λ(s)〈u(s+ tn + h)〉‖ ≤ α(h) +
ε

2
≤ ε

This completed the proof �

Since G is commutative semigroup, there exists a net {λα : α ∈ A} of finite
means on G such that

lim
α∈I
‖λα − r∗sλα‖ = 0 (3.13)

for every s ∈ G, where I is a directed set and r∗s is the conjugate operator of rs (see
[7]).

Lemma 3.4. Let µ be an invariant mean on D, then

uµ ∈ ∩s∈Gco{u(t) : t ≥ s} ∩ F (S).

Proof. We only need to prove that uµ ∈ F (=). Let ε > 0, by Lemma 3.2, there
exist 0 < δ < ε and hε ∈ G such that for each h ≥ hε, clcoFδ(T (h)) ⊂ Fε(T (h)).
Now for fixed h ≥ hε, we have frow (3.13) that there exists α ∈ I such that

‖λα − r∗hλα‖ ≤
δ

R
(3.14)

By Lemma 3.3, there exists tα ∈ G such that

‖T (h)λα(s)〈u(s+ tα + t)〉 − λα(s)〈u(s+ tα + t+ h)〉‖ ≤ δ

2

for each t ∈ G. This together with (3.14) imply that

λα(s)〈u(s+ tα + t) ⊂ Fδ(T (h))

for all t ∈ G. It follows that

µ(t)〈u(t)〉 = µ(t)λα(s)〈u(s+ tα + t) ∈ coFδ(T (h)) ⊂ Fε(T (h))

and hence T (t)uµ → uµ as t ∈ G. Therefore, uµ ∈ F (=) by the continuity of T (t).
This completes the proof. �
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4. Strong Ergodic theorem

In this section, using the lemmas in section 3 we concern with the strong ergodic
theorems for almost-orbits of commutative semigroups of asymptotically nonexpan-
sive in the intermediate mappings.

As in [11], a net {µα : α ∈ A} of continuous linear functionals on D is called
strongly regular if it satisfies the following conditions:

(a) supα∈A ‖µα‖ < +∞;
(b) limα∈A µα(1) = 1;
(c) limα∈A ‖µα − r∗sµα‖ = 0 for each s ∈ G, where A is a directed set.

THEOREM 4.1. Let C be a nonempty bounded closed convex subset of a uni-
formly convex Banach space, = = {T (t) : t ∈ G} a commutative semigroup of
asymptotically nonexpansive in the intermediate mappings on C such that each
T (t) is continuous, Let D be a subspace of m(G) containing constant function
and invariant under rs for every s ∈ G . Let u(·) be an asymptotically iso-
metric almost-orbit of = such that the function t 7→ 〈u(t), x∗〉 is in D for each
x∗ ∈ X∗. Let {µα : α ∈ A} be a strongly regular net of continuous linear function-
als on D. Then

∫
u(t+ h)dµα(t) converges strongly to p, a unique point of the set

F (=)
⋂ ⋂
s∈G

co{u(t) : t ≥ s}, uniformly in h ∈ G.

Proof. By Lemma 3.4, there exists an element p in the set F (=)
⋂ ⋂
s∈G

co{u(t) : t ≥

s}. We shall show that
∫
u(h+ t)dµα(t) converges strongly to p uniformly in h ∈ G.

To this end, let ε > 0 and r = R + 12 sup{‖µα‖ : α ∈ A}. By [5, Theorem 1.1], we
can choose a positive integer p such that for each M ⊂ C, coM ⊂ copM + Bε/r.
Now one may choose tε ∈ G from Lemma 3.3 such that

‖T (h)
p∑
i=1

aiu(t+ si)−
p∑
i=1

aiu(t+ si + h)‖ < ε

r
(4.1)

for each t ≥ tε, h ∈ Ga(ε/r) and (a1, a2 · · · , ap) ∈ 4p, si ∈ G, 1 ≤ i ≤ p. Since
p ∈ co{u(t) : t ≥ tε} ⊂ cop{u(t) : t ≥ tε} + Bε/r, there is b = (b1, b2, · · · , cp) ∈
∆p, si ≥ tε, 1 ≤ i ≤ p such that

‖
p∑
i=1

biu(si)− p‖ <
2ε
r

(4.2)

Then, noting that p ∈ F (=) , it follows from (4.1) and (4.2) that
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‖
p∑
i=1

biu(t+ h+ si)− p‖ ≤ ‖
p∑
i=1

biu(t+ h+ si)− T (t+ h)
p∑
i=1

biu(si)‖

+ ‖T (t+ h)
p∑
i=1

biu(si)− p‖

≤ 4ε
r

(4.3)

for all t ∈ G, and h ∈ Ga( εr ). Now put h0 ∈ Ga( εr ), since {µα : α ∈ A} is strongly
regular , there is α0 ∈ A such that

‖µα − r∗h0+siµα‖ <
ε

r
(4.4)

for all 1 ≤ i ≤ p, and
‖1− µα(1)‖ < ε

r
(4.5)

for all α ≥ α0. It then follows from (4.3)–(4.5) that

‖
∫
u(h+ t)dµα(t)− p‖ ≤ ‖

∫
u(h+ t)dµα(t)−

∫ p∑
i=1

biu(h+ t+ h0 + si)dµα(t)‖

+ ‖
∫

(
p∑
i=1

biu(h+ t+ h0 + si)− p)dµα(t)‖+ |1− µα(1)| · ‖p‖

≤ d
p∑
i=1

bi‖µα − r∗h0+siµα‖

+ sup
α∈A
‖µα‖. sup

t∈G
‖

p∑
i=1

biu(h+ t+ h0 + si)− p‖+
ε

3

≤ ε

for all α ≥ α0 and h ∈ G. The proof is completed . �

5. Applications.

In this section, using results in section 4, we provide nonlinear ergodic theorems
for asymptotically nonexpansive in the intermediate mappings and semigroups in a
uniformly convex Banach space.
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Let T be an asymptotically nonexpansive in the intermediate mapping from C
into itself and let it be continuous. Let {xn} be an almost-orbit of T, i.e.,

lim
n→∞

[ sup
m≥0
‖xn+m − Tmxn‖] = 0.

{xn} is said to be asymptotically isometric, if

lim
n→∞

‖xn − xn+k‖ exists

uniformly in k ≥ 1.
Let = = {T (t) : t ≥ 0} be an asymptotically nonexpansive in the intermediate

semigroup on C such that each T (t) is continuous and let u(·) : R+ → C be an
almost-orbit of =, i.e.,

lim
s→∞

[sup
t≥0
‖u(t+ s)− T (t)u(s)‖] = 0.

{u(t)} is said to be asymptotically isometric, if

lim
t→∞

‖u(t+ h)− u(t)‖ exists

uniformly in h ≥ 0.
Put G = N,= = {T i : i ∈ G}, and D = m(G) in theorem 4.1, We get the

following theorem 5.1, and 5.2.

Theorem 5.1. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space X , T an asymptotically nonexpansive in the intermediate
mappings on C such that each T is continuous, and {xn} be an asymptotically
isometric almost-orbit of T . Then n−1

∑n−1
i=1 xi+k converges strongly to some point

p, a unique point of the set F (T )
⋂ ⋂
m≥1

co{xn : n ≥ m}, as n → ∞, uniformly in

k = 0, 1, 2, · · · .

Proof. Put µn(f) = n−1
∑n−1
i=1 f(i) for each n ≥ 1 and f ∈ D. Then, {µn : n ≥ 1}

is a strongly regular net on D. �

Let N = {0, 1, 2, · · · } and let Q = {qn,m}n,m∈N be a matrix satisfying the fol-
lowing conditions :

(a) supn≥0

∑∞
m=1 |qn,m| < +∞,

(b) limn→∞
∑∞
m=1 qn,m = 1, and

(c) limn→∞
∑∞
m=1 |qn,m+1 − qn,m| = 0.

Then, Q is called a strongly regular matrix.
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Theorem 5.2. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space X, T an asymptotically nonexpansive in the intermediate
mappings on C such that each T is continuous, and {xn} be an asymptotically
isometric almost-orbit of T . If Q = {qn,m}n,m∈N is strongly regular, then∑∞

m=0 qn,m xm+k converges strongly to some point p, a unique point of the set
F (T )

⋂ ⋂
m≥1

co{xn : n ≥ m}, as n→∞ uniformly in k = 0, 1, 2, · · · .

Proof. µn(f) =
∑∞
m=0 qn,mf(m) for each n ≥ 1 and f ∈ D. Then {µn : n ≥ 1} is a

strongly regular net on D. �

Put G = R+, = = {T (t) : t ∈ G}, and D = {f ∈ m(G) : f(·) is a strongly
measurable function on G} in Theorem 4.1. We get the following results.

Theorem 5.3. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space X , = = {T (t) : t ≥ 0} an asymptotically nonexpansive
in the intermediate semigroup on C such that each T (t) is continuous, and u(·)
be an asymptotically isometric almost-orbit of = and strongly measurable, then
s−1

∫ s
0
u(t + h)dt converges strongly to some point p, a unique point of the set

F (=)
⋂ ⋂
s∈G

co{u(t) : t ≥ s}, as s→∞ uniformly in h ≥ 0.

Proof. Put µs(f) = 1
s

∫ s
0
f(t)dt for each s > 0 and f ∈ D. Then, {µs : s > 0} is a

strongly regular net on D. �

Let Q : R+ ×R+ 7→ R be a function satisfying the following conditions:

(a) sups≥0

∫∞
0
|Q(s, t)|dt < +∞,

(b) lims→0

∫∞
0
Q(s, t)dt = 1,

(c) lims→0

∫∞
0
|Q(s, t+ h)−Q(s, t)|dt = 0 for all h ≥ 0.

Then Q(·, ·) is called a strongly regular kernel.

Theorem 5.4. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space X , = = {T (t) : t ≥ 0} an asymptotically nonexpansive in
the intermediate semigroup on C such that each T (t) is continuous, and u(·) be
asymptotically isometric an almost-orbit of = . Suppose that u(·) is strongly mea-
surable and Q(·, ·) is a strongly regular kernel, then

∫∞
0
Q(s, t)u(t+ h)dt converges

strongly to some point p, a unique point of the set F (=)
⋂ ⋂
s∈G

co{u(t) : t ≥ s}, as

s→∞ uniformly in h ≥ 0.

Proof. Put µs(f) =
∫∞
0
Q(s, t)f(t)dt for each s > 0 and f ∈ D. Then {µs : s > 0}

is a strongly regular net on D. �
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1. J. B. Baillon, Un théorème de type ergodique les contraction non linéaires dans Un.espace
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