## **Spaces of convex sets**

#### Brailey Sims

Computer Assisted Research Mathematics & Applications University of Newcastle http://carma.newcastle.edu.au/

INTERNATIONAL CONFERENCE ON FIXED POINT THEORY AND APPLICATIONS 20 – 24 July MMXV Galatasaray University, Istanbul, Turkey



Brailev Sims

Abstract: Let C(X) denote the set of all non-empty closed bounded convex subsets of a normed linear space X. In 1952 Hans Rådström described how C(X) equipped with the Hausdorff metric could be isometrically embedded in a normed lattice with the order an extension of set inclusion. We call this lattice the *Rådström* of X and denote it by R(X).

We will:

- (a) outline Rådström's construction,
- (b) survey the Banach space structure and properties of R(X), including; completeness, density character, induced mappings, inherited subspace structure, reflexivity, and its dual space,

Abstract: Let C(X) denote the set of all non-empty closed bounded convex subsets of a normed linear space X. In 1952 Hans Rådström described how C(X) equipped with the Hausdorff metric could be isometrically embedded in a normed lattice with the order an extension of set inclusion. We call this lattice the *Rådström* of X and denote it by R(X).

We will:

- (a) outline Rådström's construction,
- (b) survey the Banach space structure and properties of R(X), including; completeness, density character, induced mappings, inherited subspace structure, reflexivity, and its dual space,

Abstract: Let C(X) denote the set of all non-empty closed bounded convex subsets of a normed linear space X. In 1952 Hans Rådström described how C(X) equipped with the Hausdorff metric could be isometrically embedded in a normed lattice with the order an extension of set inclusion. We call this lattice the *Rådström* of X and denote it by R(X).

We will:

## (a) outline Rådström's construction,

(b) survey the Banach space structure and properties of R(X), including; completeness, density character, induced mappings, inherited subspace structure, reflexivity, and its dual space,

Abstract: Let C(X) denote the set of all non-empty closed bounded convex subsets of a normed linear space X. In 1952 Hans Rådström described how C(X) equipped with the Hausdorff metric could be isometrically embedded in a normed lattice with the order an extension of set inclusion. We call this lattice the *Rådström* of X and denote it by R(X).

We will:

- (a) outline Rådström's construction,
- (b) survey the Banach space structure and properties of R(X), including; completeness, density character, induced mappings, inherited subspace structure, reflexivity, and its dual space,

Abstract: Let C(X) denote the set of all non-empty closed bounded convex subsets of a normed linear space X. In 1952 Hans Rådström described how C(X) equipped with the Hausdorff metric could be isometrically embedded in a normed lattice with the order an extension of set inclusion. We call this lattice the *Rådström* of X and denote it by R(X).

We will:

- (a) outline Rådström's construction,
- (b) survey the Banach space structure and properties of R(X), including; completeness, density character, induced mappings, inherited subspace structure, reflexivity, and its dual space,
- $(\ensuremath{\mathsf{c}})$  explore possible synergies with metric fixed point theory.





#### Theo Bendit

### **Brailey Sims**

・ロト ・回ト ・モト ・モト

 $\exists$ 

 $X \equiv (X, \|\cdot\|)$  denotes a real normed linear space.

 $B_X$  and  $B_X^{\circ}$  the closed and open balls of X respectively, and

 $X^*$  the dual space of continuous linear functionals on X.

 $\mathcal{C}(X)$  denotes the set of non-empty, closed, bounded, convex subsets of X. For any  $A, B \in \mathcal{C}(X)$ , we define  $\lambda A := \{\lambda a : a \in A\} \in \mathcal{C}(X)$  and their **Minkowski sum** A + B to be  $A + B := \{a + b : a \in A, b \in B\}.$ 

While A + B is non-empty, bounded, and convex. it may not be closed unless one of the sets is weakly compact.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $X \equiv (X, \|\cdot\|)$  denotes a real normed linear space.

 $B_X$  and  $B_X^\circ$  the closed and open balls of X respectively, and

 $X^*$  the dual space of continuous linear functionals on X.

 $\mathcal{C}(X)$  denotes the set of non-empty, closed, bounded, convex subsets of X.

For any  $A, B \in \mathcal{C}(X)$ , we define  $\lambda A := \{\lambda a : a \in A\} \in \mathcal{C}(X)$  and their **Minkowski sum** A + B to be  $A + B := \{a + b : a \in A, b \in B\}.$ 

While A + B is non-empty, bounded, and convex. it may not be closed unless one of the sets is weakly compact.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $X \equiv (X, \|\cdot\|)$  denotes a real normed linear space.

 $B_X$  and  $B_X^{\circ}$  the closed and open balls of X respectively, and

 $X^*$  the dual space of continuous linear functionals on X.

 $\mathcal{C}(X)$  denotes the set of non-empty, closed, bounded, convex subsets of X. For any  $A, B \in \mathcal{C}(X)$ , we define  $\lambda A := \{\lambda a : a \in A\} \in \mathcal{C}(X)$  and their **Minkowski sum** A + B to be

 $A + B := \{a + b : a \in A, b \in B\}.$ 

While A + B is non-empty, bounded, and convex. it may not be closed unless one of the sets is weakly compact.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

## Basics

#### Example

Let  $X = l^1$ ,  $A := \phi^{-1}\{1\} \cap 2B_X$ , where  $\phi \in X^*$  is such that  $(a_n) \mapsto \sum_{n=1}^{\infty} (1-2^{-n})a_n$ , and let  $B = B_X$ . Then  $a_k := (1-2^{-k})^{-1}e_k \in A$  and  $b_k := -e_k$  are sequences of elements of A and B respectively, with  $a_k + b_k \to 0$ , so  $0 \in \overline{A + B}$ , but calculation shows  $0 \notin A + B$ .

To overcome this, we introduce a new "addition" in  $\mathcal{C}(X)$ :

 $A \oplus B := \overline{A + B} \in \mathcal{C}(X).$ 

Observe that:  $A \oplus B = \overline{A} \oplus B$ , and so  $\oplus$  is associative. In addition  $\{0\}$  is an identity for  $\oplus$ .

So,  $(\mathcal{C}(X), \oplus)$  is a commutative monoid.

・ロト ・日下 ・日下・

## Basics

#### Example

Let  $X = l^1$ ,  $A := \phi^{-1}\{1\} \cap 2B_X$ , where  $\phi \in X^*$  is such that  $(a_n) \mapsto \sum_{n=1}^{\infty} (1-2^{-n})a_n$ , and let  $B = B_X$ . Then  $a_k := (1-2^{-k})^{-1}e_k \in A$  and  $b_k := -e_k$  are sequences of elements of A and B respectively, with  $a_k + b_k \to 0$ , so  $0 \in \overline{A + B}$ , but calculation shows  $0 \notin A + B$ .

To overcome this, we introduce a new "addition" in  $\mathcal{C}(X)$ :

$$A \oplus B := \overline{A + B} \in \mathcal{C}(X).$$

Observe that:  $A \oplus B = \overline{A} \oplus B$ , and so  $\oplus$  is associative. In addition  $\{0\}$  is an identity for  $\oplus$ .

So,  $(\mathcal{C}(X), \oplus)$  is a commutative monoid.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

## Basics

#### Example

Let  $X = l^1$ ,  $A := \phi^{-1}\{1\} \cap 2B_X$ , where  $\phi \in X^*$  is such that  $(a_n) \mapsto \sum_{n=1}^{\infty} (1-2^{-n})a_n$ , and let  $B = B_X$ . Then  $a_k := (1-2^{-k})^{-1}e_k \in A$  and  $b_k := -e_k$  are sequences of elements of A and B respectively, with  $a_k + b_k \to 0$ , so  $0 \in \overline{A + B}$ , but calculation shows  $0 \notin A + B$ .

To overcome this, we introduce a new "addition" in  $\mathcal{C}(X)$ :

$$A \oplus B := \overline{A + B} \in \mathcal{C}(X).$$

Observe that:  $A \oplus B = \overline{A} \oplus B$ , and so  $\oplus$  is associative. In addition  $\{0\}$  is an identity for  $\oplus$ .

So,  $(\mathcal{C}(X),\oplus)$  is a commutative monoid.

イロト イヨト イヨト イヨト

The following perhaps surprising result is a key feature in our constructions.

Proposition (Order Cancellation Law - Brunn, 1889)

If  $A, B, C \in \mathcal{C}(X)$ , and  $A \oplus C \subseteq B \oplus C$ , then  $A \subseteq B$ .

In particular we have: If  $A \oplus C = B \oplus C$ , then A = B.

Thus,  $H := (\mathcal{C}(X), \oplus)$  is a commutative monoid with cancellation law, and so it can be embed into an abelian group G (its Grothendieck group) as follows,

マロト イヨト イヨト

The following perhaps surprising result is a key feature in our constructions.

Proposition (Order Cancellation Law - Brunn, 1889)

If  $A, B, C \in \mathcal{C}(X)$ , and  $A \oplus C \subseteq B \oplus C$ , then  $A \subseteq B$ .

In particular we have: If  $A \oplus C = B \oplus C$ , then A = B.

Thus,  $H := (\mathcal{C}(X), \oplus)$  is a commutative monoid with cancellation law, and so it can be embed into an abelian group G (its Grothendieck group) as follows,

▲帰▶ ▲臣▶ ★臣♪

The following perhaps surprising result is a key feature in our constructions.

Proposition (Order Cancellation Law - Brunn, 1889)

If  $A, B, C \in \mathcal{C}(X)$ , and  $A \oplus C \subseteq B \oplus C$ , then  $A \subseteq B$ .

In particular we have: If  $A \oplus C = B \oplus C$ , then A = B.

Thus,  $H := (\mathcal{C}(X), \oplus)$  is a commutative monoid with cancellation law, and so it can be embed into an abelian group G (its Grothendieck group) as follows,

▲ 同 ▶ | ▲ 臣 ▶ | ▲ 臣 ▶

## Rådström's construction - the Grothendieck group

Define an equivalence relation  $\sim$  on  $H \times H$  by

$$(A,B) \sim (C,D) \iff A \oplus D = C \oplus B.$$

Let G be the set of all equivalence classes, and  $\left[A,B\right]$  be the equivalence class of the pair (A,B).

Then

$$[A, B] + [C, D] := [A + C, B + D]$$

is a well-defined binary operation on G, with respect to which G is an abelian group; with identity  $\mathbf{0} := [\{0\}, \{0\}] (= [A, A])$  and inverses given by -[A, B] = [B, A].

Further,

$$\phi: H \to G: A \mapsto [A, \{0\}]$$

is an injective homomorphism, that is, G contains a copy of H, and  $x \mapsto \phi(\{x\})$  provides an embedding of  $(X_{\Box} +) \inf_{x \to \infty} Q$ 

## Rådström's construction - the Grothendieck group

Define an equivalence relation  $\sim$  on  $H \times H$  by

$$(A,B)\sim (C,D)\iff A\oplus D=C\oplus B.$$

Let G be the set of all equivalence classes, and  $\left[A,B\right]$  be the equivalence class of the pair (A,B).

Then

$$[A,B]+[C,D]:=[A+C,B+D]$$

is a well-defined binary operation on G, with respect to which G is an abelian group; with identity  $\mathbf{0} := [\{0\}, \{0\}] (= [A, A])$  and inverses given by -[A, B] = [B, A].

Further,

$$\phi: H \to G: A \mapsto [A, \{0\}]$$

is an injective homomorphism, that is, G contains a copy of H, and  $x\mapsto \phi(\{x\})$  provides an embedding of (X,+) into  $G_{\cdot}$ .

**Remark:** The construction of *G* from *H* mirrors the construction of  $(\mathbb{Z}, +)$  from  $(\mathbb{N} \cup \{0\}, +)$ , and the construction of  $(\mathbb{Q} \setminus \{0\}, \times)$  from  $\mathbb{Z} \setminus \{0\}, \times)$ .

As in these cases, we will avoid the cumbersome notation of pairs by using C to denote both a non-empty, closed, bounded, convex subset of X and its image  $[C, \{0\}]$  under the embedding homomorphism  $\phi$ .

向下 イヨト イヨト

## Rådström's construction - extension to a linear space

Moreover, if we define scalar multiplication by,

$$\lambda[A, B] = \begin{cases} [\lambda A, \lambda B] &: \lambda \ge 0\\ [-\lambda B, -\lambda A] &: \lambda < 0 \end{cases}$$

then, after some tedious verification, we have:

Proposition

G is a real linear space.

This suggest defining,

$$A \ominus B := A \oplus (-1B)$$
$$= [A, \{0\}] \oplus [\{0\}, B]$$
$$= [A, B]$$

ヨト イヨト イヨト

## Rådström's construction - extension to a linear space

Moreover, if we define scalar multiplication by,

$$\lambda[A, B] = \begin{cases} [\lambda A, \lambda B] &: \lambda \ge 0\\ [-\lambda B, -\lambda A] &: \lambda < 0 \end{cases}$$

then, after some tedious verification, we have:

Proposition

G is a real linear space.

This suggest defining,

$$A \ominus B := A \oplus (-1B)$$
$$= [A, \{0\}] \oplus [\{0\}, B]$$
$$= [A, B]$$

白 ト イヨト イヨト

Henceforth, we will mostly use the suggestive notation  $A \ominus_X B$  for the equivalence class [A, B].

**Comment:** The subscript X is necessary to identify the space in which the elements of the equivalence class reside. For example, if we have Y, a closed, strict subspace of X, then for any  $A, B \in \mathcal{C}(Y) \subset \mathcal{C}(X)$ , the class  $A \ominus_Y B$  is a strict subset of  $A \ominus_X B$ .

However, when the space is clear from the context, we will simply write  $A \ominus B.$ 

向下 イヨト イヨト

Due to the order cancellation law, the subset partial order on  $\mathcal{C}(X)$  can be extended to G by defining,

$$A \ominus B \leq C \ominus D \iff A \oplus D \subseteq C \oplus B,$$

#### Proposition

The relation  $\leq$  on G is well-defined, and makes G a vector lattice.

The positive cone is  $G^+ = \{A \ominus B : A \supseteq B\}.$ 

**Note:** Despite the fact that  $G = \mathcal{C}(X) \oplus \mathcal{C}(X)$ , the positive cone and  $\mathcal{C}(X)$  do not coincide.

向下 イヨト イヨト

Due to the order cancellation law, the subset partial order on  $\mathcal{C}(X)$  can be extended to G by defining,

$$A \ominus B \leq C \ominus D \iff A \oplus D \subseteq C \oplus B,$$

#### Proposition

The relation  $\leq$  on G is well-defined, and makes G a vector lattice.

The positive cone is  $G^+ = \{A \ominus B : A \supseteq B\}.$ 

**Note:** Despite the fact that  $G = \mathcal{C}(X) \ominus \mathcal{C}(X)$ , the positive cone and  $\mathcal{C}(X)$  do not coincide.

## Rådström's construction - special properties of the order

(1)  $\mathbf{u} := B_X$  is an order unit for G, as  $|A \ominus B| \le n\mathbf{u}$ , when n is any integer larger than  $\max_{a \in A} ||a|| + \max_{b \in B} ||b||$ .

(2) If 
$$A \ominus B \leq \frac{1}{n}\mathbf{u}$$
 for all  $n \in \mathbb{N}$ , then  $A \ominus B \leq \mathbf{0}$ .

From these it follows that

$$||A \ominus B|| := \inf \{\lambda \ge 0 : |A \ominus B| \le \lambda \mathbf{u}\}$$

defines a lattice norm on G.

Further, calculation shows that,

$$\|A \ominus B\| = \mathcal{H}(A, B) := \max\left\{\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b)\right\},\$$

here  $\mathcal{H}$  is the **Hausdorff distance** on  $\mathcal{C}(X)$ .

## Rådström's construction - special properties of the order

u := B<sub>X</sub> is an order unit for G, as |A ⊖ B| ≤ nu, when n is any integer larger than max<sub>a∈A</sub> ||a|| + max<sub>b∈B</sub> ||b||.
 (2) If A ⊖ B ≤ <sup>1</sup>/<sub>4</sub> for all m ∈ N then A ⊖ B ≤ 0.

(2) If 
$$A \ominus B \leq \frac{1}{n}\mathbf{u}$$
 for all  $n \in \mathbb{N}$ , then  $A \ominus B \leq \mathbf{0}$ .

From these it follows that

$$\|A \ominus B\| := \inf \left\{ \lambda \ge 0 : |A \ominus B| \le \lambda \mathbf{u} \right\}$$

defines a lattice norm on G.

Further, calculation shows that,

$$\|A \ominus B\| = \mathcal{H}(A, B) := \max\left\{\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b)\right\},\$$

here  $\mathcal{H}$  is the **Hausdorff distance** on  $\mathcal{C}(X)$ .

[also known as a Minkowski-Rådström-Hörmander (MRH) space, or a Pinsker-Minkowski-Rådström-Hörmander (PMRH) lattice].

 $\phi$  provides a monotone isometric embedding of  $(\mathcal{C}(X), \mathcal{H})$  into  $\mathcal{R}(X)$  and  $x \mapsto \phi(\{x\})$  is a linear isometry from X into  $\mathcal{R}(X)$ .

By the Krein-Kakutani theorem, there is a monotone linear isometry  $\psi : \mathcal{R}(X) \to C(K)$  with  $\psi(\mathcal{R}(X))$  a dense subspace of C(K) and  $\psi(\mathbf{u})$  the constant function 1, where K is a compact, Hausdorff topological space,

specifically, K consists of the extreme points of the set of positive linear functionals in  $B_{\mathcal{R}(X)^*}$  equipped with the the weak\* topology, and for all  $\mathbf{x} \in \mathcal{R}(X)$ ,  $\psi(\mathbf{x}) = \hat{\mathbf{x}}|_K$ ,

(1日) (日) (日)

[also known as a Minkowski-Rådström-Hörmander (MRH) space, or a Pinsker-Minkowski-Rådström-Hörmander (PMRH) lattice].

 $\phi$  provides a monotone isometric embedding of  $(\mathcal{C}(X), \mathcal{H})$  into  $\mathcal{R}(X)$  and  $x \mapsto \phi(\{x\})$  is a linear isometry from X into  $\mathcal{R}(X)$ .

By the Krein-Kakutani theorem, there is a monotone linear isometry  $\psi : \mathcal{R}(X) \to C(K)$  with  $\psi(\mathcal{R}(X))$  a dense subspace of C(K) and  $\psi(\mathbf{u})$  the constant function 1, where K is a compact, Hausdorff topological space,

specifically, K consists of the extreme points of the set of positive linear functionals in  $B_{\mathcal{R}(X)^*}$  equipped with the the weak\* topology, and for all  $\mathbf{x} \in \mathcal{R}(X)$ ,  $\psi(\mathbf{x}) = \hat{\mathbf{x}}|_K$ ,

(1日) (1日) (日)

[also known as a Minkowski-Rådström-Hörmander (MRH) space, or a Pinsker-Minkowski-Rådström-Hörmander (PMRH) lattice].

 $\phi$  provides a monotone isometric embedding of  $(\mathcal{C}(X), \mathcal{H})$  into  $\mathcal{R}(X)$  and  $x \mapsto \phi(\{x\})$  is a linear isometry from X into  $\mathcal{R}(X)$ .

By the Krein-Kakutani theorem, there is a monotone linear isometry  $\psi : \mathcal{R}(X) \to C(K)$  with  $\psi(\mathcal{R}(X)))$  a dense subspace of C(K) and  $\psi(\mathbf{u})$  the constant function 1, where K is a compact, Hausdorff topological space,

specifically, K consists of the extreme points of the set of positive linear functionals in  $B_{\mathcal{R}(X)^*}$  equipped with the the weak\* topology, and for all  $\mathbf{x} \in \mathcal{R}(X)$ ,  $\psi(\mathbf{x}) = \hat{\mathbf{x}}|_{K}$ ,

・ロト ・回ト ・ヨト ・ヨト

[also known as a Minkowski-Rådström-Hörmander (MRH) space, or a Pinsker-Minkowski-Rådström-Hörmander (PMRH) lattice].

 $\phi$  provides a monotone isometric embedding of  $(\mathcal{C}(X), \mathcal{H})$  into  $\mathcal{R}(X)$  and  $x \mapsto \phi(\{x\})$  is a linear isometry from X into  $\mathcal{R}(X)$ .

By the Krein-Kakutani theorem, there is a monotone linear isometry  $\psi : \mathcal{R}(X) \to C(K)$  with  $\psi(\mathcal{R}(X)))$  a dense subspace of C(K) and  $\psi(\mathbf{u})$  the constant function 1, where K is a compact, Hausdorff topological space,

specifically, K consists of the extreme points of the set of positive linear functionals in  $B_{\mathcal{R}(X)^*}$  equipped with the the weak\* topology, and for all  $\mathbf{x} \in \mathcal{R}(X)$ ,  $\psi(\mathbf{x}) = \hat{\mathbf{x}}|_K$ ,

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

There are (precisely) two elementary examples of Rådström spaces, arising from the two simplest real normed linear spaces.

# Example $\mathcal{R}(\{0\}) = \{\mathbf{0}\}.$

#### Example

Due to the simplistic nature of convex sets in  $\ensuremath{\mathbb{R}}$  ,

 $\mathcal{R}((\mathbb{R}, |\cdot|))$  is isometric to  $\ell_{\infty}^2 = (\mathbb{R}^2, \|\cdot\|_{\infty})$ , under the surjective, linear isometry:

$$\iota: \mathcal{R}(\mathbb{R}) \to \mathbb{R}^2: [a, b] \ominus [c, d]) \mapsto (a - c, b - d).$$

||| 同 ト イヨト イヨト

#### Proposition

## If dim $X \ge 2$ , then $\mathcal{R}(X)$ is infinite-dimensional.

Further,

Proposition

 $\mathcal{R}(X)$  is separable if and only if X is finite-dimensional.

Ξ

#### Proposition

If dim  $X \ge 2$ , then  $\mathcal{R}(X)$  is infinite-dimensional.

### Further,

Proposition

 $\mathcal{R}(X)$  is separable if and only if X is finite-dimensional.

<回>< E> < E> < E>

Ξ

And, from the Blaschke Selection Principle, we have:

#### Theorem

If dim  $X \ge 2$ , then  $\mathcal{R}(X)$  is incomplete.

As a consequence, if dim  $X \ge 2$ , then  $\mathcal{R}(X)$  is not reflexive and, from the Krein-Kakutani represention, neither is its completion.

## Rådströms as normed linear spaces - Subspaces

We have already seen that  $\mathcal{R}(X)$  contains a subspace isometric to X, and this is indeed the only subspace wholly contained in  $\mathcal{C}(X)$ .

Other subspace include,

 $\mathcal{R}_{FD}(X) := \{A \ominus B \in \mathcal{R}(X) : \operatorname{span}(A), \operatorname{span}(B) \text{ are finite-dimensiona} \\ \mathcal{R}_{K}(X) := \{A \ominus B \in \mathcal{R}(X) : A, B \text{ are compact}\}, \\ \mathcal{R}_{wK}(X) := \{A \ominus B \in \mathcal{R}(X) : A, B \text{ are weakly compact}\}, \\ \mathcal{R}_{w^{*}K}(X^{*}) := \{A \ominus B \in \mathcal{R}(X^{*}) : A, B \text{ are weak}^{*} \text{ compact}\}.$ 

The last 3 are closed subspaces and,

 $\overline{\mathcal{R}_{FD}(X)} = \mathcal{R}_K(X) \subseteq \mathcal{R}_{wK}(X), \text{ and } \mathcal{R}_{wK}(X^*) \subseteq \mathcal{R}_{w^*K}(X^*).$ 

(1日) (1日) (日)

We have already seen that  $\mathcal{R}(X)$  contains a subspace isometric to X, and this is indeed the only subspace wholly contained in  $\mathcal{C}(X)$ .

Other subspace include,

$$\mathcal{R}_{FD}(X) := \{A \ominus B \in \mathcal{R}(X) : \operatorname{span}(A), \operatorname{span}(B) \text{ are finite-dimensional} \\ \mathcal{R}_K(X) := \{A \ominus B \in \mathcal{R}(X) : A, B \text{ are compact}\}, \\ \mathcal{R}_{wK}(X) := \{A \ominus B \in \mathcal{R}(X) : A, B \text{ are weakly compact}\}, \\ \mathcal{R}_{w^*K}(X^*) := \{A \ominus B \in \mathcal{R}(X^*) : A, B \text{ are weak* compact}\}.$$

The last 3 are closed subspaces and,

$$\overline{\mathcal{R}_{FD}(X)} = \mathcal{R}_K(X) \subseteq \mathcal{R}_{wK}(X), \text{ and } \mathcal{R}_{wK}(X^*) \subseteq \mathcal{R}_{w^*K}(X^*).$$

Further, as might be expected the subspace structure of X is mirrored in  $\mathcal{R}(X),$  indeed,

#### Theorem

Suppose Y is a subspace of X, not necessarily closed, then  $\mathcal{R}(Y)$  is isometrically isomorphic to a closed subspace of  $\mathcal{R}(X)$ .

This is easily verified when Y is closed and complemented, but for the general case it is non-trivial.

As a corollary we have: For a normed linear space X,  $\mathcal{R}(X) = \mathcal{R}(\widetilde{X})$ , where  $\widetilde{X}$  is the completion of X.

Further, as might be expected the subspace structure of X is mirrored in  $\mathcal{R}(X),$  indeed,

#### Theorem

Suppose Y is a subspace of X, not necessarily closed, then  $\mathcal{R}(Y)$  is isometrically isomorphic to a closed subspace of  $\mathcal{R}(X)$ .

This is easily verified when Y is closed and complemented, but for the general case it is non-trivial.

As a corollary we have: For a normed linear space X,  $\mathcal{R}(X) = \mathcal{R}(\widetilde{X})$ , where  $\widetilde{X}$  is the completion of X.

伺下 イヨト イヨト

Further, as might be expected the subspace structure of X is mirrored in  $\mathcal{R}(X)$ , indeed,

#### Theorem

Suppose Y is a subspace of X, not necessarily closed, then  $\mathcal{R}(Y)$  is isometrically isomorphic to a closed subspace of  $\mathcal{R}(X)$ .

This is easily verified when Y is closed and complemented, but for the general case it is non-trivial.

As a corollary we have: For a normed linear space X,  $\mathcal{R}(X) = \mathcal{R}(\widetilde{X})$ , where  $\widetilde{X}$  is the completion of X.

向下 イヨト イヨト

For  $T:X\to Y$  a Lipschitz continuous map between normed linear spaces X and Y define,

$$\rho_T: \mathcal{C}(X) \to \mathcal{C}(Y): C \mapsto \overline{\operatorname{co}}T(C),$$

then  $C_L(\rho_T) = C_L(T)$ 

Further, if T is linear then, taking the convex hull is superfluous,  $\rho_T$  is additive and positive scalar-homogeneous, and we can extend it to a map from  $\mathcal{R}(X)$  to  $\mathcal{R}(Y)$  by defining

$$\rho_T(A \ominus B) := \rho_T(A) \ominus \rho_T(B).$$

同下 イヨト イヨト

For  $T:X\to Y$  a Lipschitz continuous map between normed linear spaces X and Y define,

$$\rho_T : \mathcal{C}(X) \to \mathcal{C}(Y) : C \mapsto \overline{\operatorname{co}}T(C),$$

then  $C_L(\rho_T) = C_L(T)$ 

Further, if T is linear then, taking the convex hull is superfluous,  $\rho_T$  is additive and positive scalar-homogeneous, and we can extend it to a map from  $\mathcal{R}(X)$  to  $\mathcal{R}(Y)$  by defining

$$\rho_T(A \ominus B) := \rho_T(A) \ominus \rho_T(B).$$

向下 イヨト イヨト

### Proposition

Suppose X, Y and Z are normed spaces and  $T : X \to Y$  and  $S : Y \to Z$  are bounded linear operators, then:

- (1)  $\rho_T$  is a well defined linear operator,
- (2)  $\rho_T$  is bounded with  $\|\rho_T\| = \|T\|$ .
- (3)  $\rho_T$  is monotone.

(4) For any 
$$k \in [0, \infty)$$
,  $\rho_{kT} = k \rho_T$ .

$$(5) \ \rho_{I_X} = I_{\mathcal{R}(X)}$$

- (6) If T is an isomorphism, then  $\rho_T^{-1} = \rho_{T^{-1}}$ .
- (7) If T is an isometry, then  $\rho_T$  is an isometry.

(8) 
$$\rho_{ST} = \rho_S \rho_T$$
.

Each  $f\in X^*$  induces a linear transformation  $\rho_f:\mathcal{R}(X)\to\mathcal{R}(\mathbb{R})=\ell_\infty^2$ , so

$$\phi = \mathbf{v} \circ \rho_f \in \mathcal{R}(X)^*,$$

where  $\mathbf{v} \in \ell_1^2 = (\ell_\infty^2)^*$ . We refer to  $\phi$  as a functional (on  $\mathcal{R}(X)$ ) induced by f.

In particular we have,

$$\begin{aligned} \alpha_f(A \ominus B) &:= \max f(A) - \max f(B), \quad \text{here } \mathbf{v} = (1,0), \\ \omega_f(A \ominus B) &:= \min f(A) - \min f(B), \quad \text{here } \mathbf{v} = (0,1), \\ &= -\alpha_{-f}(A \ominus B). \end{aligned}$$

 $\alpha_f \in \mathcal{R}(X)_+^*$ , and every functional induced by f is a linear combination of  $\alpha_f$  and  $\omega_f$ .

▲同 ▶ ▲ 臣 ▶ → 臣 ▶ …

Each  $f\in X^*$  induces a linear transformation  $\rho_f:\mathcal{R}(X)\to\mathcal{R}(\mathbb{R})=\ell_\infty^2$ , so

$$\phi = \mathbf{v} \circ \rho_f \in \mathcal{R}(X)^*,$$

where  $\mathbf{v} \in \ell_1^2 = (\ell_\infty^2)^*$ . We refer to  $\phi$  as a functional (on  $\mathcal{R}(X)$ ) induced by  $\mathbf{f}$ .

In particular we have,

$$\begin{split} \alpha_f(A \ominus B) &:= \max f(A) - \max f(B), \quad \text{here } \mathbf{v} = (1,0), \\ \omega_f(A \ominus B) &:= \min f(A) - \min f(B), \quad \text{here } \mathbf{v} = (0,1), \\ &= -\alpha_{-f}(A \ominus B). \end{split}$$

 $\alpha_f \in \mathcal{R}(X)^*_+$ , and every functional induced by f is a linear combination of  $\alpha_f$  and  $\omega_f$ .

向下 イヨト イヨト

#### Theorem

### $\phi \in \mathcal{R}(X)^*_+$ is induced by $f \in X^*$ if $\phi(B_{\ker(f)}) = 0$ .

#### Corollary

The set  $\{\sigma_f : f \in S_{X^*}\}$  is a (lattice) orthogonal set.

This yields an orthogonal, and hence linearly independent, subset of  $\mathcal{R}(X)^*$  that is infinite when  $\dim(X) > 1$ , giving an alternative proof that  $\mathcal{R}(X)$  is infinite dimensional whenever  $\dim(X) > 1$ .

・ 同 ト ・ ヨ ト ・ ヨ

#### Theorem

$$\phi \in \mathcal{R}(X)_+^*$$
 is induced by  $f \in X^*$  if  $\phi(B_{\ker(f)}) = 0$ .

#### Corollary

### The set $\{\sigma_f : f \in S_{X^*}\}$ is a (lattice) orthogonal set.

This yields an orthogonal, and hence linearly independent, subset of  $\mathcal{R}(X)^*$  that is infinite when  $\dim(X) > 1$ , giving an alternative proof that  $\mathcal{R}(X)$  is infinite dimensional whenever  $\dim(X) > 1$ .

▲帰▶ ▲臣▶ ★臣♪

#### Theorem

$$\phi \in \mathcal{R}(X)_+^*$$
 is induced by  $f \in X^*$  if  $\phi(B_{\ker(f)}) = 0$ .

#### Corollary

The set  $\{\sigma_f : f \in S_{X^*}\}$  is a (lattice) orthogonal set.

This yields an orthogonal, and hence linearly independent, subset of  $\mathcal{R}(X)^*$  that is infinite when  $\dim(X) > 1$ , giving an alternative proof that  $\mathcal{R}(X)$  is infinite dimensional whenever  $\dim(X) > 1$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Structure of  $\{\sigma_f : f \in S_{X^*}\}$ 

### Theorem

$$\{\sigma_f : f \in S_{X^*}\} \subseteq Ext\left(\mathcal{R}(X)^*_+ \cap S_{\mathcal{R}(X)^*}\right),\$$

with equality if and only if X is finite-dimensional.

We introduce two subspaces of  $\mathcal{R}(X)^*$ 

$$\Sigma := \left\{ \sigma \in \mathcal{R}(X)^* : \sigma = \sum_{f \in S_{X^*}} c_f \sigma_f \right\},\,$$

where only countably many of the scalars,  $c_f$ , are non-zero, and

 $\Sigma^{\perp} := \{ \psi \in \mathcal{R}(X)^* : \psi \text{ is orthogonal to } \sigma_f \text{ for all } f \in S_{X^*} \}$ 

(1日) (1日) (日)

Structure of 
$$\{\sigma_f : f \in S_{X^*}\}$$

### Theorem

$$\{\sigma_f : f \in S_{X^*}\} \subseteq Ext\left(\mathcal{R}(X)^*_+ \cap S_{\mathcal{R}(X)^*}\right),\$$

with equality if and only if X is finite-dimensional.

We introduce two subspaces of  $\mathcal{R}(X)^*$ 

$$\Sigma := \left\{ \sigma \in \mathcal{R}(X)^* : \sigma = \sum_{f \in S_{X^*}} c_f \sigma_f \right\},\,$$

where only countably many of the scalars,  $\boldsymbol{c}_{f},$  are non-zero, and

$$\Sigma^{\perp} := \{ \psi \in \mathcal{R}(X)^* : \psi \text{ is orthogonal to } \sigma_f \text{ for all } f \in S_{X^*} \}$$

→ 同 ▶ → 臣 ▶ → 臣 ▶

#### Theorem

$$\mathcal{R}(X)^* = \Sigma \oplus \Sigma^{\perp},$$

where  $\oplus$  denotes direct sum. Moreover,  $\phi = \psi + \sum_{f \in S_{X^*}} c_f \sigma_f \ge 0$  if and only if  $\psi \ge 0$  and  $c_f \ge 0$ for all  $f \in S_{X^*}$ .

▲□→ ▲ 国 → ▲ 国 →

3

### Proposition

For  $\phi \in \mathcal{R}(X)^*_+$ ,

$$\phi(\mathcal{R}_{FD}(X)) = \{0\} \implies \phi \in \Sigma^{\perp}.$$

However, the converse is demonstrably false; indeed, for  $X = \mathbb{R}^n$ , with  $n \ge 2$ , and  $\mu$  Lebesuge measure,

$$\phi: \mathcal{R}(X) \to \mathbb{R}: A \ominus B \mapsto \int_{B_{X^*}} \sigma_f(A \ominus B) \, \mathrm{d}\mu(f),$$

is in  $\Sigma_{\pm}^{\perp}$ 

★週→ ★注→ ★注→

Ξ

### Proposition

For  $\phi \in \mathcal{R}(X)^*_+$ ,

$$\phi(\mathcal{R}_{FD}(X)) = \{0\} \implies \phi \in \Sigma^{\perp}.$$

However, the converse is demonstrably false; indeed, for  $X = \mathbb{R}^n$ , with  $n \ge 2$ , and  $\mu$  Lebesuge measure,

$$\phi: \mathcal{R}(X) \to \mathbb{R}: A \ominus B \mapsto \int_{B_{X^*}} \sigma_f(A \ominus B) \, \mathrm{d}\mu(f),$$

is in  $\Sigma_{+}^{\perp}$ .

→ 御 → → 注 → → 注 →

Ξ

For  $C \in \mathcal{C}(X)$ , we have seen how a nonexpansive map  $T: C \to X$  induces a nonexpansive map

$$\rho_T : \mathcal{C}(C) \subset \mathcal{R}(X) \to \mathcal{R}(X),$$

where  $\mathcal{C}(C) := \{A \in \mathcal{C}(X) : A \subseteq C\}.$ 

The fixed points of  $\rho_T$  are the invariant sets for T and the lattice minimal elements of  $Fix(\rho_T)$  are the minimal invariant sets of T.

Thereby, opening the possibility of transferring:

the structure of fixed point sets to the family of (minimal) invariant sets of T,

algorithms for approximating fixed points to ways of approximating invariant set,

For  $C \in \mathcal{C}(X)$ , we have seen how a nonexpansive map  $T: C \to X$  induces a nonexpansive map

$$\rho_T : \mathcal{C}(C) \subset \mathcal{R}(X) \to \mathcal{R}(X),$$

where  $\mathcal{C}(C) := \{A \in \mathcal{C}(X) : A \subseteq C\}.$ 

The fixed points of  $\rho_T$  are the invariant sets for T and the lattice minimal elements of  $Fix(\rho_T)$  are the minimal invariant sets of T.

Thereby, opening the possibility of transferring:

the structure of fixed point sets to the family of (minimal) invariant sets of T,

algorithms for approximating fixed points to ways of approximating invariant set,

For  $C \in \mathcal{C}(X)$ , we have seen how a nonexpansive map  $T: C \to X$  induces a nonexpansive map

$$\rho_T : \mathcal{C}(C) \subset \mathcal{R}(X) \to \mathcal{R}(X),$$

where  $\mathcal{C}(C) := \{A \in \mathcal{C}(X) : A \subseteq C\}.$ 

The fixed points of  $\rho_T$  are the invariant sets for T and the lattice minimal elements of  $Fix(\rho_T)$  are the minimal invariant sets of T.

Thereby, opening the possibility of transferring:

the structure of fixed point sets to the family of (minimal) invariant sets of T,

algorithms for approximating fixed points to ways of approximating invariant set,

For  $C \in \mathcal{C}(X)$ , we have seen how a nonexpansive map  $T: C \to X$  induces a nonexpansive map

$$\rho_T : \mathcal{C}(C) \subset \mathcal{R}(X) \to \mathcal{R}(X),$$

where  $\mathcal{C}(C) := \{A \in \mathcal{C}(X) : A \subseteq C\}.$ 

The fixed points of  $\rho_T$  are the invariant sets for T and the lattice minimal elements of  $Fix(\rho_T)$  are the minimal invariant sets of T.

Thereby, opening the possibility of transferring:

the structure of fixed point sets to the family of (minimal) invariant sets of T,

algorithms for approximating fixed points to ways of approximating invariant set,

For  $C \in \mathcal{C}(X)$ , we have seen how a nonexpansive map  $T: C \to X$  induces a nonexpansive map

$$\rho_T : \mathcal{C}(C) \subset \mathcal{R}(X) \to \mathcal{R}(X),$$

where  $\mathcal{C}(C) := \{A \in \mathcal{C}(X) : A \subseteq C\}.$ 

The fixed points of  $\rho_T$  are the invariant sets for T and the lattice minimal elements of  $Fix(\rho_T)$  are the minimal invariant sets of T.

Thereby, opening the possibility of transferring:

the structure of fixed point sets to the family of (minimal) invariant sets of T,

algorithms for approximating fixed points to ways of approximating invariant set,

A multifunction  $\tau:C\in \mathcal{C}(X)\to 2^X$  taking nonempty closed bounded convex values can be regarded as a mapping

$$T: \mathbf{C} := \{ \{x\} : x \in C\} \subset \mathcal{R}(X) \to \mathcal{R}(X) : \{x\} \mapsto \tau(x).$$

Further, if  $H(\tau(x), \tau(y)) \leq ||x - y||$  then T is nonexpansive,

suggesting a possibility for Leray-Schauder type results.

伺下 イヨト イヨト

A multifunction  $\tau:C\in \mathcal{C}(X)\to 2^X$  taking nonempty closed bounded convex values can be regarded as a mapping

$$T: \mathbf{C} := \{ \{x\} : x \in C\} \subset \mathcal{R}(X) \to \mathcal{R}(X) : \{x\} \mapsto \tau(x).$$

Further, if  $H(\tau(x),\tau(y)) \leq \|x-y\|$  then T is nonexpansive,

suggesting a possibility for Leray-Schauder type results.

向下 イヨト イヨト

W. A. Coppel, *Foundations of Convex Geometry*, Cambridge University Press, 1998, xiv + 222.

Hans Rådström, An Embedding Theorem for Spaces of Convex Sets, *Proc. Amer. Math. Soc.*, **3** (1952), 165–169.

H. H. Schaefer, *Aspects of Banach Lattices*, in Studies in Functionl Analysis, R. G. Bartle (editor), Maths Association of America, Studies in Mathematics; Vol. 21, 1980, pp. 227