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Abstract

What we present here is based on recent joint work with one of our
Honours students; Theo Bendit

Abstract: Let C(X) denote the set of all non-empty closed
bounded convex subsets of a normed linear space X. In 1952 Hans
Rådström described how C(X) equipped with the Hausdorff metric
could be isometrically embedded in a normed lattice with the order
an extension of set inclusion. We call this lattice the R̊adström of
X and denote it by R(X).

We will:

(a) outline Rådström’s construction,

(b) survey the Banach space structure and properties of R(X),
including; completeness, density character, induced mappings,
inherited subspace structure, reflexivity, and its dual space,

(c) explore possible synergies with metric fixed point theory.
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Those involved

Theo Bendit Brailey Sims
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Basics

X ≡ (X, ‖ · ‖) denotes a real normed linear space.

BX and B◦X the closed and open balls of X respectively, and

X∗ the dual space of continuous linear functionals on X.

C(X) denotes the set of non-empty, closed, bounded, convex
subsets of X.
For any A,B ∈ C(X), we define λA := {λa : a ∈ A} ∈ C(X) and
their Minkowski sum A+B to be
A+B := {a+ b : a ∈ A, b ∈ B}.

While A+B is non-empty, bounded, and convex. it may not be
closed unless one of the sets is weakly compact.
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Basics

Example

Let X = l1, A := φ−1{1} ∩ 2BX , where φ ∈ X∗ is such that

(an) 7→
∞∑
n=1

(1− 2−n)an, and let

B = BX . Then ak := (1− 2−k)−1ek ∈ A and bk := −ek are
sequences of elements of A and B respectively, with ak + bk → 0,
so 0 ∈ A+B, but calculation shows 0 /∈ A+B.

To overcome this, we introduce a new “addition” in C(X):

A⊕B := A+B ∈ C(X).

Observe that: A⊕B = A⊕B, and so ⊕ is associative. In
addition {0} is an identity for ⊕.

So, (C(X),⊕) is a commutative monoid.
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Basics

The following perhaps surprising result is a key feature in our
constructions.

Proposition (Order Cancellation Law - Brunn, 1889)

If A,B,C ∈ C(X), and A⊕ C ⊆ B ⊕ C, then A ⊆ B.

In particular we have:
If A⊕ C = B ⊕ C, then A = B.

Thus, H := (C(X),⊕) is a commutative monoid with cancellation
law, and so it can be embed into an abelian group G (its
Grothendieck group) as follows,

Brailey Sims Spaces of convex sets



Basics

The following perhaps surprising result is a key feature in our
constructions.

Proposition (Order Cancellation Law - Brunn, 1889)

If A,B,C ∈ C(X), and A⊕ C ⊆ B ⊕ C, then A ⊆ B.

In particular we have:
If A⊕ C = B ⊕ C, then A = B.

Thus, H := (C(X),⊕) is a commutative monoid with cancellation
law, and so it can be embed into an abelian group G (its
Grothendieck group) as follows,

Brailey Sims Spaces of convex sets



Basics

The following perhaps surprising result is a key feature in our
constructions.

Proposition (Order Cancellation Law - Brunn, 1889)

If A,B,C ∈ C(X), and A⊕ C ⊆ B ⊕ C, then A ⊆ B.

In particular we have:
If A⊕ C = B ⊕ C, then A = B.

Thus, H := (C(X),⊕) is a commutative monoid with cancellation
law, and so it can be embed into an abelian group G (its
Grothendieck group) as follows,

Brailey Sims Spaces of convex sets



Rådström’s construction - the Grothendieck group

Define an equivalence relation ∼ on H ×H by

(A,B) ∼ (C,D) ⇐⇒ A⊕D = C ⊕B.

Let G be the set of all equivalence classes, and [A,B] be the
equivalence class of the pair (A,B).

Then
[A,B] + [C,D] := [A+ C,B +D]

is a well-defined binary operation on G, with respect to which G is
an abelian group; with identity 0 := [{0}, {0}] (= [A,A]) and
inverses given by −[A,B] = [B,A].

Further,
φ : H → G : A 7→ [A, {0}]

is an injective homomorphism, that is, G contains a copy of H,
and x 7→ φ({x}) provides an embedding of (X,+) into G.
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Rådström’s construction - some parallels

Remark: The construction of G from H mirrors the construction
of (Z,+) from (N ∪ {0},+), and the construction of (Q \ {0},×)
from Z \ {0},×).

As in these cases, we will avoid the cumbersome notation of pairs
by using C to denote both a non-empty, closed, bounded, convex
subset of X and its image [C, {0}] under the embedding
homomorphism φ.
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Rådström’s construction - extension to a linear space

Moreover, if we define scalar multiplication by,

λ[A,B] =

{
[λA, λB] : λ ≥ 0
[−λB,−λA] : λ < 0

then, after some tedious verification, we have:

Proposition

G is a real linear space.

This suggest defining,

A	B : = A⊕ (−1B)

= [A, {0}]⊕ [{0}, B]

= [A,B]
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Rådström’s construction - a new notation

Henceforth, we will mostly use the suggestive notation A	X B for
the equivalence class [A,B].

Comment: The subscript X is necessary to identify the space in
which the elements of the equivalence class reside.
For example, if we have Y , a closed, strict subspace of X, then for
any A,B ∈ C(Y ) ⊂ C(X), the class A	Y B is a strict subset of
A	X B.

However, when the space is clear from the context, we will simply
write A	B.
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Rådström’s construction - adding order

Due to the order cancellation law, the subset partial order on C(X)
can be extended to G by defining,

A	B ≤ C 	D ⇐⇒ A⊕D ⊆ C ⊕B,

Proposition

The relation ≤ on G is well-defined, and makes G a vector lattice.

The positive cone is G+ = {A	B : A ⊇ B}.

Note: Despite the fact that G = C(X)	 C(X), the positive cone
and C(X) do not coincide.
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Rådström’s construction - special properties of the order

(1) u := BX is an order unit for G, as |A	B| ≤ nu, when n
is any integer larger than maxa∈A ‖a‖+ maxb∈B ‖b‖.

(2) If A	B ≤ 1
nu for all n ∈ N, then A	B ≤ 0.

From these it follows that

‖A	B‖ := inf {λ ≥ 0 : |A	B| ≤ λu}

defines a lattice norm on G.

Further, calculation shows that,

‖A	B‖ = H(A,B) := max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
,

here H is the Hausdorff distance on C(X).
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The Rådström of X

G with this norm is a normed linear lattice which we call the
Rådström of X and denote by R(X)

[also known as a Minkowski-Rådström-Hörmander (MRH) space,
or a Pinsker-Minkowski-Rådström-Hörmander (PMRH) lattice].

φ provides a monotone isometric embedding of (C(X),H) into
R(X) and x 7→ φ({x}) is a linear isometry from X into R(X).

By the Krein-Kakutani theorem, there is a monotone linear
isometry ψ : R(X)→ C(K) with ψ(R(X))) a dense subspace of
C(K) and ψ(u) the constant function 1, where K is a compact,
Hausdorff topological space,
specifically, K consists of the extreme points of the set of positive
linear functionals in BR(X)∗ equipped with the the weak∗ topology,
and for all x ∈ R(X), ψ(x) = x̂|K ,
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Two examples of a Rådström

There are (precisely) two elementary examples of Rådström spaces,
arising from the two simplest real normed linear spaces.

Example

R({0}) = {0}.

Example

Due to the simplistic nature of convex sets in R,

R((R, | · |)) is isometric to `2∞ = (R2, ‖ · ‖∞),
under the surjective, linear isometry:

ι : R(R)→ R2 : [a, b]	 [c, d]) 7→ (a− c, b− d).
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On the other hand:

Proposition

If dim X ≥ 2, then R(X) is infinite-dimensional.

Further,

Proposition

R(X) is separable if and only if X is finite-dimensional.
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Rådströms as normed linear spaces

And, from the Blaschke Selection Principle, we have:

Theorem

If dim X ≥ 2, then R(X) is incomplete.

As a consequence, if dim X ≥ 2, then R(X) is not reflexive and,
from the Krein-Kakutani represention, neither is its completion.
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Rådströms as normed linear spaces - Subspaces

We have already seen that R(X) contains a subspace isometric to
X, and this is indeed the only subspace wholly contained in C(X).

Other subspace include,

RFD(X) := {A	B ∈ R(X) : span(A), span(B) are finite-dimensional},
RK(X) := {A	B ∈ R(X) : A,B are compact},
RwK(X) := {A	B ∈ R(X) : A,B are weakly compact},
Rw∗K(X∗) := {A	B ∈ R(X∗) : A,B are weak* compact}.

The last 3 are closed subspaces and,

RFD(X) = RK(X) ⊆ RwK(X), and RwK(X∗) ⊆ Rw∗K(X∗).
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Rådströms as normed linear spaces - Subspaces

Further, as might be expected the subspace structure of X is
mirrored in R(X), indeed,

Theorem

Suppose Y is a subspace of X, not necessarily closed, then R(Y )
is isometrically isomorphic to a closed subspace of R(X).

This is easily verified when Y is closed and complemented, but for
the general case it is non-trivial.

As a corollary we have:
For a normed linear space X, R(X) = R(X̃), where X̃ is the
completion of X.
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Induced operators

For T : X → Y a Lipschitz continuous map between normed linear
spaces X and Y define,

ρT : C(X)→ C(Y ) : C 7→ coT (C),

then CL(ρT ) = CL(T )

Further, if T is linear then, taking the convex hull is superfluous,
ρT is additive and positive scalar-homogeneous, and we can extend
it to a map from R(X) to R(Y ) by defining

ρT (A	B) := ρT (A)	 ρT (B).
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Induced linear operators

Proposition

Suppose X, Y and Z are normed spaces and T : X → Y and
S : Y → Z are bounded linear operators, then:

(1) ρT is a well defined linear operator,

(2) ρT is bounded with ‖ρT ‖ = ‖T‖.
(3) ρT is monotone.

(4) For any k ∈ [0,∞), ρkT = kρT .

(5) ρIX = IR(X)

(6) If T is an isomorphism, then ρ−1T = ρT−1 .

(7) If T is an isometry, then ρT is an isometry.

(8) ρST = ρSρT .
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Dual space of a Rådström - induced functionals

Each f ∈ X∗ induces a linear transformation
ρf : R(X)→ R(R) = `2∞, so

φ = v ◦ ρf ∈ R(X)∗,

where v ∈ `21 =
(
`2∞
)∗
.

We refer to φ as a functional (on R(X)) induced by f .

In particular we have,

αf (A	B) := max f(A)−max f(B), here v = (1, 0),

ωf (A	B) := min f(A)−min f(B), here v = (0, 1),

= −α−f (A	B).

αf ∈ R(X)∗+, and every functional induced by f is a linear
combination of αf and ωf .
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combination of αf and ωf .
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Dual space of a Rådström - induced functionals

Theorem

φ ∈ R(X)∗+ is induced by f ∈ X∗ if φ(Bker(f)) = 0.

Corollary

The set {σf : f ∈ SX∗} is a (lattice) orthogonal set.

This yields an orthogonal, and hence linearly independent, subset
of R(X)∗ that is infinite when dim(X) > 1,
giving an alternative proof that R(X) is infinite dimensional
whenever dim(X) > 1.
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Dual space of a Rådström - induced functionals

Theorem

φ ∈ R(X)∗+ is induced by f ∈ X∗ if φ(Bker(f)) = 0.

Corollary

The set {σf : f ∈ SX∗} is a (lattice) orthogonal set.

This yields an orthogonal, and hence linearly independent, subset
of R(X)∗ that is infinite when dim(X) > 1,
giving an alternative proof that R(X) is infinite dimensional
whenever dim(X) > 1.

Brailey Sims Spaces of convex sets



Structure of {σf : f ∈ SX∗}

Theorem

{σf : f ∈ SX∗} ⊆ Ext
(
R(X)∗+ ∩ SR(X)∗

)
,

with equality if and only if X is finite-dimensional.

We introduce two subspaces of R(X)∗

Σ :=

σ ∈ R(X)∗ : σ =
∑

f∈SX∗

cfσf

 ,

where only countably many of the scalars, cf , are non-zero,
and

Σ⊥ := {ψ ∈ R(X)∗ : ψ is orthogonal to σf for all f ∈ SX∗} .

Brailey Sims Spaces of convex sets



Structure of {σf : f ∈ SX∗}

Theorem

{σf : f ∈ SX∗} ⊆ Ext
(
R(X)∗+ ∩ SR(X)∗

)
,

with equality if and only if X is finite-dimensional.

We introduce two subspaces of R(X)∗

Σ :=

σ ∈ R(X)∗ : σ =
∑

f∈SX∗

cfσf

 ,

where only countably many of the scalars, cf , are non-zero,
and

Σ⊥ := {ψ ∈ R(X)∗ : ψ is orthogonal to σf for all f ∈ SX∗} .

Brailey Sims Spaces of convex sets



Structure theorem for functionals

Theorem

R(X)∗ = Σ ⊕ Σ⊥,

where ⊕ denotes direct sum.
Moreover, φ = ψ+

∑
f∈SX∗

cfσf ≥ 0 if and only if ψ ≥ 0 and cf ≥ 0

for all f ∈ SX∗ .
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Elements of Σ⊥+

Proposition

For φ ∈ R(X)∗+,

φ (RFD(X)) = {0} =⇒ φ ∈ Σ⊥.

However, the converse is demonstrably false; indeed, for X = Rn,
with n ≥ 2, and µ Lebesuge measure,

φ : R(X)→ R : A	B 7→
∫
BX∗

σf (A	B) dµ(f),

is in Σ⊥+.
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Synergies with metric fixed point theory

For C ∈ C(X), we have seen how a nonexpansive map T : C → X
induces a nonexpansive map

ρT : C(C) ⊂ R(X)→ R(X),

where C(C) := {A ∈ C(X) : A ⊆ C}.

The fixed points of ρT are the invariant sets for T and the lattice
minimal elements of Fix(ρT ) are the minimal invariant sets of T .

Thereby, opening the possibility of transferring:

the structure of fixed point sets to the family of (minimal)
invariant sets of T ,

algorithms for approximating fixed points to ways of
approximating invariant set,

results concerning approximate (ε-) fixed point sets [Bruck et
al ] to matching results for invariant sets.
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Set valued mappings

A multifunction τ : C ∈ C(X)→ 2X taking nonempty closed
bounded convex values can be regarded as a mapping

T : C := { {x} : x ∈ C} ⊂ R(X)→ R(X) : {x} 7→ τ(x).

Further, if H(τ(x), τ(y)) ≤ ‖x− y‖ then T is nonexpansive,

suggesting a possibility for Leray-Schauder type results.
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