Renorming to gain the fixed point property

Brailey Sims

Computer Assisted Research Mathematics & Applications University of Newcastle http://carma.newcastle.edu.au/

King Mongkut's University of Technology Thonburi 16 July MMXIII

▲ 同 ▶ ▲ 三 ▶

$X \equiv (X, \|\cdot\|)$ is Banach space with norm $\|\cdot\|: X \to \mathbb{R}^+$.

 X^* is the dual space of continuous linear functionals $f: X \to \mathbb{R}$, with dual norm $\|f\|^* = \sup \{|f(x)| : \|x\| = 1\}.$

 X^{**} is the second dual of X, the set of all continuous linear functionals $F: X^* \to \mathbb{R}$.

 $J: X \to X^{**}$ is the natural embedding given by J(x)(f) = f(x) for each $x \in X$.

X is *reflexive* if J is a bijection, that is, if X is isometric to X^{**} under the natural embedding.

▲ 同 ▶ ▲ 三 ▶

 $X \equiv (X, \|\cdot\|)$ is Banach space with norm $\|\cdot\| : X \to \mathbb{R}^+$.

 X^* is the dual space of continuous linear functionals $f:X\to\mathbb{R},$ with dual norm $\|f\|^*=\sup{\{|f(x)|:\|x\|=1\}}.$

 X^{**} is the second dual of X, the set of all continuous linear functionals $F: X^* \to \mathbb{R}$.

 $J: X \to X^{**}$ is the natural embedding given by J(x)(f) = f(x) for each $x \in X$.

X is *reflexive* if J is a bijection, that is, if X is isometric to X^{**} under the natural embedding.

(4月) (4日) (4日)

 $X \equiv (X, \|\cdot\|)$ is Banach space with norm $\|\cdot\| : X \to \mathbb{R}^+$.

 X^* is the dual space of continuous linear functionals $f: X \to \mathbb{R}$, with dual norm $\|f\|^* = \sup \{|f(x)| : \|x\| = 1\}.$

 X^{**} is the second dual of X, the set of all continuous linear functionals $F:X^*\to \mathbb{R}.$

 $J: X \to X^{**}$ is the natural embedding given by J(x)(f) = f(x) for each $x \in X$.

X is *reflexive* if J is a bijection, that is, if X is isometric to X^{**} under the natural embedding.

- 4 回 ト 4 ヨ ト 4 ヨ ト

 $X \equiv (X, \|\cdot\|)$ is Banach space with norm $\|\cdot\| : X \to \mathbb{R}^+$.

 X^* is the dual space of continuous linear functionals $f: X \to \mathbb{R}$, with dual norm $\|f\|^* = \sup \{|f(x)| : \|x\| = 1\}.$

 X^{**} is the second dual of X, the set of all continuous linear functionals $F: X^* \to \mathbb{R}$.

 $J: X \to X^{**}$ is the natural embedding given by J(x)(f) = f(x) for each $x \in X$.

X is *reflexive* if J is a bijection, that is, if X is isometric to X^{**} under the natural embedding.

- 4 回 ト 4 日 ト - 日 日

Two norms, $\|\cdot\|$ and $|||\cdot|||$ on X are *equivalent* if there exists $m, M \in \mathbb{R}$ such that $0 < m \le M$ and $m\|x\| \le |||x||| \le M\|x\|$ for all $x \in X$.

 $\mathcal{P}(X)$ is the set of all equivalent norms on X.

 $\mathcal{P}(X)$ forms a Banach space equipped with the norm $\|p\| = \sup\{p(x) : \|x\| = 1\}.$

(4 回 ト 4 ヨ ト 4 ヨ ト

Two norms, $\|\cdot\|$ and $|||\cdot|||$ on X are *equivalent* if there exists $m, M \in \mathbb{R}$ such that $0 < m \le M$ and $m\|x\| \le |||x||| \le M\|x\|$ for all $x \in X$.

 $\mathcal{P}(X)$ is the set of all equivalent norms on X.

 $\mathcal{P}(X)$ forms a Banach space equipped with the norm $\|p\| = \sup\{p(x) : \|x\| = 1\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Two norms, $\|\cdot\|$ and $|||\cdot|||$ on X are *equivalent* if there exists $m, M \in \mathbb{R}$ such that $0 < m \le M$ and $m\|x\| \le |||x||| \le M\|x\|$ for all $x \in X$.

 $\mathcal{P}(X)$ is the set of all equivalent norms on X.

 $\mathcal{P}(X)$ forms a Banach space equipped with the norm $\|p\| = \sup\{p(x): \|x\| = 1\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

 (e_n) is a *(Schauder) basis* for X if for each $x \in X$ there exists a unique sequence of real numbers (x(n)) such that

$$x = \sum_{n=1}^{\infty} x(n)e_n.$$

 (e_n) is a *basic sequence* if it forms a basis for its closed linear span. The sequence (e_n) is *normalised* if $||e_n|| = 1$ for every $n \in \mathbb{N}$.

 (u_n) is a block basic sequence if

$$u_n = \sum_{n=p_j+1}^{p_{j+1}} a_n e_n$$

for $\{e_n\}$ a basic sequence, $\{a_n\}$ a sequence of real numbers and $p_1 < p_2 < \dots$ a sequence of integers.

4月 4日 4日 4日 4

 (e_n) is a *(Schauder) basis* for X if for each $x \in X$ there exists a unique sequence of real numbers (x(n)) such that

$$x = \sum_{n=1}^{\infty} x(n)e_n.$$

 (e_n) is a *basic sequence* if it forms a basis for its closed linear span. The sequence (e_n) is *normalised* if $||e_n|| = 1$ for every $n \in \mathbb{N}$.

 (u_n) is a block basic sequence if

$$u_n = \sum_{n=p_j+1}^{p_{j+1}} a_n e_n$$

for $\{e_n\}$ a basic sequence, $\{a_n\}$ a sequence of real numbers and $p_1 < p_2 < \dots$ a sequence of integers.

4月 4日 4日 4日 4

 (e_n) is a *(Schauder) basis* for X if for each $x \in X$ there exists a unique sequence of real numbers (x(n)) such that

$$x = \sum_{n=1}^{\infty} x(n)e_n.$$

 (e_n) is a *basic sequence* if it forms a basis for its closed linear span. The sequence (e_n) is *normalised* if $||e_n|| = 1$ for every $n \in \mathbb{N}$.

 (u_n) is a block basic sequence if

$$u_n = \sum_{n=p_j+1}^{p_{j+1}} a_n e_n$$

for $\{e_n\}$ a basic sequence, $\{a_n\}$ a sequence of real numbers and $p_1 < p_2 < \dots$ a sequence of integers.

For (e_n) a basis and $k\in\mathbb{N},$ we define the k-th natural projection by, $P_k(\Sigma_{i=1}^\infty x(i)e_i)=\Sigma_{i=1}^k x(i)e_i.$

The basis is monotone if $||P_k|| = 1$ for all k.

(日) (日) (日)

Ξ

For (e_n) a basis and $k \in \mathbb{N}$, we define the *k*-th natural projection by, $P_k(\sum_{i=1}^{\infty} x(i)e_i) = \sum_{i=1}^k x(i)e_i.$

The basis is *monotone* if $||P_k|| = 1$ for all k.

▲冊♪ ★注♪ ★注♪

Ξ

A space X is said to be *asymptotically isometric* to ℓ_1 if there is a real sequence (ρ_n) decreasing to 0 and a basis $\{e_n\}$ such that,

$$\sum_{n=1}^{\infty} |a_n| (1-\rho_n) \le \|\sum_{n=1}^{\infty} a_n e_n\| \le \sum_{n=1}^{\infty} |a_n|,$$

for all $a = (a_n) \in \ell_1$.

Ξ

For C and D two nonempty bounded subsets of X, the Hausdorff distance between them is,

$$H(C,D) := \max \left\{ \sup_{x \in C} \inf_{y \in D} \|x - y\|, \sup_{y \in D} \inf_{x \in C} \|y - x\| \right\}.$$

For X and Y two Banach spaces, their *Banach-Mazur distance* is given by,

 $d(X,Y) = \inf \left\{ \|S\| \|S^{-1}\| : S \text{ is an isomorphism from } X \text{ onto } Y \right\}.$

向下 イヨト イヨト

For C and D two nonempty bounded subsets of X, the Hausdorff distance between them is,

$$H(C,D) := \max \left\{ \sup_{x \in C} \inf_{y \in D} \|x - y\|, \sup_{y \in D} \inf_{x \in C} \|y - x\| \right\}.$$

For X and Y two Banach spaces, their ${\it Banach-Mazur\ distance}$ is given by,

 $d(X,Y) = \inf \left\{ \|S\| \|S^{-1}\| : S \text{ is an isomorphism from } X \text{ onto } Y \right\}.$

同下 イヨト イヨト

A nonempty subset C of a Banach space X has the fixed point property (**FPP**) if every nonexpansive self mapping T of C has a fixed point, that is, an $x \in C$ such that T(x) = x.

C has the *hereditary fixed point property* if every closed convex nonempty subset of C has the FPP.

A Banach space X has the *fixed point property (FPP)* if every **closed bounded convex nonempty** subset has the FPP.

(日本) (日本)

A nonempty subset C of a Banach space X has the *fixed point* property (**FPP**) if every nonexpansive self mapping T of C has a fixed point, that is, an $x \in C$ such that T(x) = x.

C has the *hereditary fixed point property* if every closed convex nonempty subset of C has the FPP.

A Banach space X has the *fixed point property (FPP)* if every **closed bounded convex nonempty** subset has the FPP.

・ 同下 ・ ヨト ・ ヨト

A nonempty subset C of a Banach space X has the *fixed point* property (**FPP**) if every nonexpansive self mapping T of C has a fixed point, that is, an $x \in C$ such that T(x) = x.

C has the *hereditary fixed point property* if every closed convex nonempty subset of C has the FPP.

A Banach space X has the *fixed point property (FPP)* if every **closed bounded convex nonempty** subset has the FPP.

・ 同 ト ・ ヨ ト ・ ヨ ト

A nonempty subset C of a Banach space X has the *fixed point* property (**FPP**) if every nonexpansive self mapping T of C has a fixed point, that is, an $x \in C$ such that T(x) = x.

C has the *hereditary fixed point property* if every closed convex nonempty subset of C has the FPP.

A Banach space X has the *fixed point property (FPP)* if every **closed bounded convex nonempty** subset has the FPP.

(4 回 ト イヨト イヨト

X has the weak fixed point property (w-FPP) if every weak - compact convex nonempty subset of X has the FPP. Note in reflexive spaces, the w-FPP and the FPP are equivalent.

Similarly, the dual of X, X^* , has the *weak* fixed point property* (**w*-FPP** if every **weak* (that is** $\sigma(X^*, X)$) - **compact convex nonempty** subset of X^* has the FPP.

A sequence (x_n) is an *approximate fixed point sequence* (**afps**) for T if $\lim_n ||x_n - Tx_n|| = 0$.

It follows from the Banach contraction mapping principle that every nonexpansive self mapping of a closed bounded convex subset of a Banach space has an afps. X has the weak fixed point property (w-FPP) if every weak - compact convex nonempty subset of X has the FPP. Note in reflexive spaces, the w-FPP and the FPP are equivalent.

Similarly, the dual of X, X^* , has the weak* fixed point property (w*-FPP if every weak* (that is $\sigma(X^*, X)$) - compact convex nonempty subset of X^* has the FPP.

A sequence (x_n) is an *approximate fixed point sequence* (**afps**) for T if $\lim_n ||x_n - Tx_n|| = 0$.

It follows from the Banach contraction mapping principle that every nonexpansive self mapping of a closed bounded convex subset of a Banach space has an afps.

・ 同 ト ・ ヨ ト ・ ヨ ト

X has the weak fixed point property (w-FPP) if every weak compact convex nonempty subset of X has the FPP. Note in reflexive spaces, the w-FPP and the FPP are equivalent.

Similarly, the dual of X, X^* , has the *weak* fixed point property* (**w*-FPP** if every **weak* (that is** $\sigma(X^*, X)$) - compact convex nonempty subset of X^* has the FPP.

A sequence (x_n) is an *approximate fixed point sequence* (afps) for T if $\lim_n ||x_n - Tx_n|| = 0$.

It follows from the Banach contraction mapping principle that every nonexpansive self mapping of a closed bounded convex subset of a Banach space has an afps.

(日本) (日本) (日本)

 c_0 (and hence c and ℓ_∞) fails to have the FPP: the mapping $T(x) = (1, x(1), x(2), \ldots)$ is a fixed point free nonexpansive self-mapping of the unit ball of c_0 [Kakutani, 1943].

However, Maurey [1981] showed that both c_0 (and c) have the w-FPP.

Indeed Dowling, Lennard, and Turret [2004] proved a nonempty closed convex subset of c_0 has the FPP if and only if it is weak compact.

As a Schur space ℓ_1 enjoys the w-FPP.

 c_0 (and hence c and ℓ_∞) fails to have the FPP: the mapping $T(x) = (1, x(1), x(2), \ldots)$ is a fixed point free nonexpansive self-mapping of the unit ball of c_0 [Kakutani, 1943].

However, Maurey [1981] showed that both $c_0 \ ({\rm and} \ c)$ have the w-FPP.

Indeed Dowling, Lennard, and Turret [2004] proved a nonempty closed convex subset of c_0 has the FPP if and only if it is weak compact.

As a Schur space ℓ_1 enjoys the w-FPP.

 c_0 (and hence c and ℓ_{∞}) fails to have the FPP: the mapping T(x) = (1, x(1), x(2), ...) is a fixed point free nonexpansive self-mapping of the unit ball of c_0 [Kakutani, 1943].

However, Maurey [1981] showed that both c_0 (and c) have the w-FPP.

Indeed Dowling, Lennard, and Turret [2004] proved a nonempty closed convex subset of c_0 has the FPP if and only if it is weak compact.

As a Schur space ℓ_1 enjoys the w-FPP.

 c_0 (and hence c and ℓ_∞) fails to have the FPP: the mapping $T(x) = (1, x(1), x(2), \ldots)$ is a fixed point free nonexpansive self-mapping of the unit ball of c_0 [Kakutani, 1943].

However, Maurey [1981] showed that both $c_0 \ ({\rm and} \ c)$ have the w-FPP.

Indeed Dowling, Lennard, and Turret [2004] proved a nonempty closed convex subset of c_0 has the FPP if and only if it is weak compact.

As a Schur space ℓ_1 enjoys the w-FPP.

向下 イヨト イヨト

Whether a dual space has the w*-FPP depends on the choice of pre-dual and hence of w* topology.

For instance:

 ℓ_1 as c_0^* has the w*-FPP [It has the w*-Opial property and hence w*-normal structure],

On the other hand,

 ℓ_1 as c^* fails to have the w*-FPP (and hence the FPP).

・ 同 ト ・ ラ ト ・

Whether a dual space has the w*-FPP depends on the choice of pre-dual and hence of w* topology. For instance:

 ℓ_1 as c_0^* has the w*-FPP [It has the w*-Opial property and hence w*-normal structure],

On the other hand,

 ℓ_1 as c^* fails to have the w*-FPP (and hence the FPP).

・ 同 ト ・ 三 ト ・

Whether a dual space has the w*-FPP depends on the choice of pre-dual and hence of w* topology. For instance:

 ℓ_1 as c_0^* has the w*-FPP [It has the w*-Opial property and hence w*-normal structure],

On the other hand,

 ℓ_1 as c^* fails to have the w*-FPP (and hence the FPP).

Lennard's example

Take the dual action of $(f(n)) \in l_1$ on $(x(n)) \in c$ to be

$$(f(n))(x(n)) = f(1)x(1) + f(2)\lim_{n} x(n) + f(3)x(2) + \cdots).$$

For $\delta \in (0,1]$ and $(\epsilon_k) \subset [0,1)$ a sequence such that $\sum_{k=1}^{\infty} \epsilon_k < \infty$ and $\prod_{k=1}^{\infty} (1 - \epsilon_k) > 0$, the mapping

$$T(x) := (\delta(1-x(1)) + \sum_{k=1}^{\infty} (1-\epsilon_k)x(k+1), \delta(1-x(1)), (1-\epsilon_1)x(2), (1-\epsilon_2)x(k+1)) = 0$$

is a fixed point free affine contractive self mapping of the w*-closed convex set

$$C = \left\{ f : f(1) \ge 0, f(1) = \sum_{i=2}^{\infty} f(i) \le 1, \right\}.$$

・日・ ・ヨ・ ・ヨ・

Lennard's example

Take the dual action of $(f(n)) \in l_1$ on $(x(n)) \in c$ to be

$$(f(n))(x(n)) = f(1)x(1) + f(2)\lim_{n} x(n) + f(3)x(2) + \cdots).$$

For $\delta \in (0,1]$ and $(\epsilon_k) \subset [0,1)$ a sequence such that $\sum_{k=1}^{\infty} \epsilon_k < \infty$ and $\prod_{k=1}^{\infty} (1-\epsilon_k) > 0$, the mapping

$$T(x) := (\delta(1-x(1)) + \sum_{k=1}^{\infty} (1-\epsilon_k)x(k+1), \delta(1-x(1)), (1-\epsilon_1)x(2), (1-\epsilon_2)x(k+1)) + \sum_{k=1}^{\infty} (1-\epsilon_k)x(k+1), \delta(1-x(1)), (1-\epsilon_1)x(2), (1-\epsilon_2)x(k+1) + \sum_{k=1}^{\infty} (1-\epsilon_k)x(k+1), \delta(1-x(1)), (1-\epsilon_1)x(2), (1-\epsilon_2)x(k+1) + \sum_{k=1}^{\infty} (1-\epsilon_k)x(k+1), \delta(1-x(1)), (1-\epsilon_1)x(2), (1-\epsilon_2)x(k+1) + \sum_{k=1}^{\infty} (1-\epsilon_k)x(k+1) + \sum_{k=1}^{\infty} (1-\epsilon_k$$

is a fixed point free affine contractive self mapping of the w*-closed convex set

$$C = \left\{ f : f(1) \ge 0, f(1) = \sum_{i=2}^{\infty} f(i) \le 1, \right\}.$$

(日本) (日本) (日本)

Since W.A. Kirk [1965] effectively proved Banach spaces with normal structure have the w-FPP, an important aspect of metric fixed point theory has been to find easily verified widely applicable sufficient conditions for a space to have the w-FPP.

In 1981, Alspach gave the first and essentially only known example of a space failing the w-FPP. He showed that in $L_1[0,1]$ a modification of the baker transform is a fixed point free isometry on the order interval [0,1].

Since W.A. Kirk [1965] effectively proved Banach spaces with normal structure have the w-FPP, an important aspect of metric fixed point theory has been to find easily verified widely applicable sufficient conditions for a space to have the w-FPP.

In 1981, Alspach gave the first and essentially only known example of a space failing the w-FPP. He showed that in $L_1[0,1]$ a modification of the baker transform is a fixed point free isometry on the order interval [0,1].

向下 イヨト イヨト

Note that the closure of the span of the order interval [0, 1], the smallest Banach space into which Alspach's example embeds, is a non-reflexive separable subspace of $L_1[0, 1]$.

Since every separable space embeds isometrically into ℓ_{∞} and C[0,1], this shows that both these spaces fail the w-FPP. However, there is no known intrinsic example showing this in either space ?.

Complementary to Lin's result, Maurey [1980] used ultrapower techniques to prove that every reflexive subspace of $L_1[0,1]$ has the FPP.

Note that the closure of the span of the order interval [0, 1], the smallest Banach space into which Alspach's example embeds, is a non-reflexive separable subspace of $L_1[0, 1]$.

Since every separable space embeds isometrically into ℓ_{∞} and C[0,1], this shows that both these spaces fail the w-FPP. However, there is no known intrinsic example showing this in either space ?.

Complementary to Lin's result, Maurey [1980] used ultrapower techniques to prove that every reflexive subspace of $L_1[0,1]$ has the FPP.

向下 イヨト イヨト

Note that the closure of the span of the order interval [0, 1], the smallest Banach space into which Alspach's example embeds, is a non-reflexive separable subspace of $L_1[0, 1]$.

Since every separable space embeds isometrically into ℓ_∞ and C[0,1], this shows that both these spaces fail the w-FPP. However, there is no known intrinsic example showing this in either space ?.

Complementary to Lin's result, Maurey [1980] used ultrapower techniques to prove that every reflexive subspace of $L_1[0,1]$ has the FPP.

Many sufficient conditions for a Banach spaces to have the w-FPP have been discovered. Leaving as the major unresolved question in this direction: **Do all reflexive spaces have the FPP**?

The less ambitious question of whether all super-reflexive spaces have the FPP also remains open.

In 1997, Dowling and Lennard exploited the earlier example of $\ell_1 = c^*$ failing the FPP to show that every Banach space containing an asymptotically isometric copy of ℓ_1 (or c_0) fails the FPP.

And, gave several examples of such spaces including all non-reflexive subspaces of $L_1[0, 1]$.

This combined with Maurey's 1980 result shows that a subspace of $L_1[0,1]$ has the FPP if and only if it is reflexive.

In 1997, Dowling and Lennard exploited the earlier example of $\ell_1 = c^*$ failing the FPP to show that every Banach space containing an asymptotically isometric copy of ℓ_1 (or c_0) fails the FPP.

And, gave several examples of such spaces including all non-reflexive subspaces of $L_1[0, 1]$.

This combined with Maurey's 1980 result shows that a subspace of $L_1[0,1]$ has the FPP if and only if it is reflexive.

Dowling Lennard and Turett [1996] also showed that not all non-reflexive Banach spaces can be equivalently renormed to have the FPP;

They showed that under any equivalent norm, ℓ_{∞} or $\ell_1(\Gamma)$, where Γ is uncountable, admits an asymptotically isometric copy of ℓ_1 and any equivalent norm on $c_0(\Gamma)$ admits an asymptotically isometric copy of c_0 . Hence, ℓ_{∞} , $\ell_1(\Gamma)$ and $c_0(\Gamma)$ all fail to have the FPP in any equivalent norm.

All of these results led to the **conjecture**: A Banach space with the FPP is necessarily reflexive.

Dowling Lennard and Turett [1996] also showed that not all non-reflexive Banach spaces can be equivalently renormed to have the FPP;

They showed that under any equivalent norm, ℓ_{∞} or $\ell_1(\Gamma)$, where Γ is uncountable, admits an asymptotically isometric copy of ℓ_1 and any equivalent norm on $c_0(\Gamma)$ admits an asymptotically isometric copy of c_0 . Hence, ℓ_{∞} , $\ell_1(\Gamma)$ and $c_0(\Gamma)$ all fail to have the FPP in any equivalent norm.

All of these results led to the **conjecture**: A Banach space with the FPP is necessarily reflexive.

向下 イヨト イヨト

Dowling Lennard and Turett [1996] also showed that not all non-reflexive Banach spaces can be equivalently renormed to have the FPP;

They showed that under any equivalent norm, ℓ_{∞} or $\ell_1(\Gamma)$, where Γ is uncountable, admits an asymptotically isometric copy of ℓ_1 and any equivalent norm on $c_0(\Gamma)$ admits an asymptotically isometric copy of c_0 . Hence, ℓ_{∞} , $\ell_1(\Gamma)$ and $c_0(\Gamma)$ all fail to have the FPP in any equivalent norm.

All of these results led to the **conjecture**: A Banach space with the FPP is necessarily reflexive.

向下 イヨト イヨト

In the other direction, there are non-reflexive spaces that fail to contain an asymptotically isometric copy of ℓ_1 or c_0 .

Indeed, Dowling, Johnson, Lennard and Turett [1967] showed that for $(\gamma_k) \subset (0,1)$ a non-decreasing sequence converging to 1,

$$|||x||| = \sup_{k} \gamma_k \sum_{n=k}^{\infty} |x(n)|$$

is an equivalent norm on ℓ_1 and $(ell_1, ||| \cdot |||)$ does not contain an asymptotically isometric copy of ℓ_1 .

Similarly, the pre-dual, $(c_0, ||| \cdot |||)$ does not contain an asymptotically isometric copy of c_0 , where $|||x||| = \sup_k \gamma_k \sup_{n=k}^{\infty} |x(n)|.$

・ 同 ト ・ ヨ ト ・ ヨ ト

In the other direction, there are non-reflexive spaces that fail to contain an asymptotically isometric copy of ℓ_1 or c_0 .

Indeed, Dowling, Johnson, Lennard and Turett [1967] showed that for $(\gamma_k) \subset (0,1)$ a non-decreasing sequence converging to 1,

$$|||x||| = \sup_{k} \gamma_k \sum_{n=k}^{\infty} |x(n)|$$

is an equivalent norm on ℓ_1 and $(ell_1, ||| \cdot |||)$ does not contain an asymptotically isometric copy of ℓ_1 .

Similarly, the pre-dual, $(c_0, ||| \cdot |||)$ does not contain an asymptotically isometric copy of c_0 , where $|||x||| = \sup_k \gamma_k \sup_{n=k}^{\infty} |x(n)|.$

マロト イヨト イヨト 二日

Then surprisingly, Pei-Kee Lin [2008] showed that when $\gamma_k = \frac{8^k}{1+8^k}$, $(\ell_1, ||| \cdot |||)$ has the FPP.

This was the first example of a non-reflexive space with the FPP, showing the previous conjecture to be false, and so initiating a new line of research to determine which (non-reflexive) Banach spaces can be equivalently renormed to have the FPP.

Then surprisingly, Pei-Kee Lin [2008] showed that when $\gamma_k = \frac{8^k}{1+8^k}$, $(\ell_1, ||| \cdot |||)$ has the FPP.

This was the first example of a non-reflexive space with the FPP, showing the previous conjecture to be false, and so initiating a new line of research to determine which (non-reflexive) Banach spaces can be equivalently renormed to have the FPP.

Then surprisingly, Pei-Kee Lin [2008] showed that when $\gamma_k = \frac{8^k}{1+8^k}$, $(\ell_1, ||| \cdot |||)$ has the FPP.

This was the first example of a non-reflexive space with the FPP, showing the previous conjecture to be false, and so initiating a new line of research to determine which (non-reflexive) Banach spaces can be equivalently renormed to have the FPP.

Almost all proofs that a space has the w-FPP rely on w-compactness ensuring nonexpansive maps have minimal invariant sets and the existence and properties of diameterizing sequences for such sets.

This technique is not available for the FPP in non-reflexive spaces. In its place Lin used the following **lemma**, which should should have wider applications.

Lemma

Let $(X, \|\cdot\|)$ be a Banach space with a linear topology τ such that every bounded sequence has a τ -convergent subsequence. Let Cbe a closed convex bounded subset of X and $T : C \to C$ a nonexpansive mapping. If T is fixed point free, then there exists a closed convex T-invariant subset D of C such that

$$\inf\left\{\limsup_{n} \|x_n - x\| : (x_n) \subset D, (x_n) \text{ an afpt, } \& x_n \xrightarrow{\tau} x\right\} > 0.$$

The proof relies on Cantor's intersection theorem.

Since Lin's initial example, a number of extensions and generalizations have been made. We list some of them.

In what follows $|||\cdot|||$ denotes the equivalent norm on ℓ_1 defined by,

$$|||x||| := \sup_{k} \gamma_k \sum_{n=k}^{\infty} |x(n)|,$$

where (γ_k) is a given non-decreasing sequence in (0,1) which converges to 1.

One of the most general results on renorming ℓ_1 to have the FPP is due to Linares, Japn and Llorens-Fuster [2012].

Theorem

Let $p(\cdot)$ be an equivalent norm on ℓ_1 such that $\limsup_n p(x_n + x) = \limsup_n p(x_n) + p(x)$ for every w*-null sequence (x_n) and for all $x \in \ell_1$. Then for every $\lambda > 0$ the norm $|x| \to -n(x) + \lambda|||x|||$

has the FPP.

(日本) (日本)

One of the most general results on renorming ℓ_1 to have the FPP is due to Linares, Japn and Llorens-Fuster [2012].

Theorem

Let $p(\cdot)$ be an equivalent norm on ℓ_1 such that

$$\limsup_{n} p(x_n + x) = \limsup_{n} p(x_n) + p(x),$$

for every w*-null sequence (x_n) and for all $x \in \ell_1$. Then for every $\lambda > 0$ the norm

$$|x|_{p,\lambda} = p(x) + \lambda |||x|||$$

has the FPP.

In 2010, Dowling Lin and Turret proved:

イロト イヨト イヨト

 \exists

A basis $\{e_n\}$ is *premonotone* if for every $n \leq k \leq m$ and $(a_i) \subset \mathbb{R}$

$$\left\|\sum_{i=k}^{m} a_i e_i\right\| \le \left\|\sum_{i=n}^{m} a_i e_i\right\|$$

A space Y is said to be asymptotically isometric to ℓ_1 if it has a basis $\{e_n\}$ such for some sequence (ρ_n) decreasing to 0 and every $x = (x(n)) \in \ell_1$,

$$\sum_{n=1}^{\infty} |x(n)|(1-\rho_n) \le \|\sum_{n=1}^{\infty} x(n)e_n\| \le \sum_{n=1}^{\infty} |x(n)|,$$

In 2009, Fetter and Buen proved:

Theorem

Suppose $(X, \|\cdot\|)$ is a Banach space with a premonotone basis $\{e_n\}$, and every infinite dimensional subspace of X has a subspace that is asymptotically isometric to ℓ_1 . Then provided $\gamma_1 > \frac{4}{5}$, every subspace of $(X, |||\cdot|||)$ contains an infinite dimensional subspace that has the FPP.

We mention that extensions of Lin's result to the *non-commutative* L_1 -spaces associated with infinite dimensional finite von Neumann algebras have been made by Linares and Japon [2011].

Thus far we have considered the existence of renormings that have have the FPP. We now consider whether such renormings are common amongst the set of equivalent renormings, $\mathcal{P}(X)$.

- An equivalent norm $||| \cdot |||$ on a Space $(X, || \cdot ||)$ is said to be *distorted* if $(X, ||| \cdot |||)$ does not contain an almost isometric copy of $(X, || \cdot ||)$.
- X is emphnon-distortable if no equivalent norm is distorted.

James' Distortion Theorem [1964] states that ℓ_1 and c_0 are non-distortable. In 1981, Partington proved that ℓ_{∞} is also non-distortable.

Thus far we have considered the existence of renormings that have have the FPP. We now consider whether such renormings are common amongst the set of equivalent renormings, $\mathcal{P}(X)$.

An equivalent norm $||| \cdot |||$ on a Space $(X, \|\cdot\|)$ is said to be *distorted* if $(X, ||| \cdot |||)$ does not contain an almost isometric copy of $(X, \|\cdot\|)$.

 \boldsymbol{X} is emphnon-distortable if no equivalent norm is distorted.

James' Distortion Theorem [1964] states that ℓ_1 and c_0 are non-distortable. In 1981, Partington proved that ℓ_{∞} is also non-distortable.

・日・ ・ヨ・ ・ヨ・

Thus far we have considered the existence of renormings that have have the FPP. We now consider whether such renormings are common amongst the set of equivalent renormings, $\mathcal{P}(X)$.

An equivalent norm $||| \cdot |||$ on a Space $(X, || \cdot ||)$ is said to be *distorted* if $(X, ||| \cdot |||)$ does not contain an almost isometric copy of $(X, || \cdot ||)$.

 \boldsymbol{X} is emphnon-distortable if no equivalent norm is distorted.

James' Distortion Theorem [1964] states that ℓ_1 and c_0 are non-distortable. In 1981, Partington proved that ℓ_∞ is also non-distortable.

(日本) (日本) (日本)

In 2012, Benavides used these results to prove

Theorem

Let X be a Banach space which contains an isomorphic copy of a non-distortable space Y which fails the (w-)FPP. Then, the subset of $\mathcal{P}(X)$ failing the (w-)FPP is dense in $\mathcal{P}(X)$.

In particular, the set of norms on c_0 or ℓ_1 failing the FPP are dense in the set of all equivalent norms.

What about norms with the (w-) FPP?

In 2009 Benavides also proved the following result.

Theorem

Let X be a Banach space such that for some set Γ there is a one-to-one linear continuous mapping $J: X \to c_0(\Gamma)$. Define the equivalent norm $|||x|||^2 = ||x||^2 + ||Jx||_0^2$, the space $(X, ||| \cdot |||)$ has the w-FPP.

Since J can be replaced with λJ for any $\lambda \in (0, 1)$, we see that the equivalent norm |||x||| can be made arbitrarily close to the original norm.

Since every reflexive space admits such a mapping, we deduce the following, which solves a long standing question in metric fixed point theory.

Corollary

For every reflexive space X the set of norms with the w-FPP is dense in P(X)

What about norms with the (w-) FPP?

In 2009 Benavides also proved the following result.

Theorem

Let X be a Banach space such that for some set Γ there is a one-to-one linear continuous mapping $J: X \to c_0(\Gamma)$. Define the equivalent norm $|||x|||^2 = ||x||^2 + ||Jx||_0^2$, the space $(X, ||| \cdot |||)$ has the w-FPP.

Since J can be replaced with λJ for any $\lambda \in (0, 1)$, we see that the equivalent norm |||x||| can be made arbitrarily close to the original norm.

Since every reflexive space admits such a mapping, we deduce the following, which solves a long standing question in metric fixed point theory.

Corollary

For every reflexive space X the set of norms with the w-FPP is dense in P(X)

What about norms with the (w-) FPP?

In 2009 Benavides also proved the following result.

Theorem

Let X be a Banach space such that for some set Γ there is a one-to-one linear continuous mapping $J: X \to c_0(\Gamma)$. Define the equivalent norm $|||x|||^2 = ||x||^2 + ||Jx||_0^2$, the space $(X, ||| \cdot |||)$ has the w-FPP.

Since J can be replaced with λJ for any $\lambda \in (0, 1)$, we see that the equivalent norm |||x||| can be made arbitrarily close to the original norm.

Since every reflexive space admits such a mapping, we deduce the following, which solves a long standing question in metric fixed point theory.

Corollary

For every reflexive space X the set of norms with the w-FPP is dense in P(X)

A space X has the stable (w-) fixed point property (stable (w-) FPP) if every Banach space isomorphic to X with a Banach-Mazur distance to X less than some constant M has the (w-) FPP.

For example, the Hilbert space ℓ_2 has the stable w-FPP, with the best known stability constant $M = \sqrt{\frac{5+\sqrt{13}}{2}}$ being obtained by Lin [1999].

In 2012, Benavides proved the following result.

Theorem

Let X be a Banach space with a monotone basis , $\{e_n\}$. For $a \in (-1,0)$ such that $1 - a^8 < 1/28$, consider the equivalent norm $||x||_a = \sup \{ || \sum_{n=1}^{\infty} a^{p(n)} t_n e_n : (p_n) \text{ is a nondecreasing bounded sequence } \subset \mathbb{Z} \}$ where $x = \sum_{n=1}^{\infty} t_n e_n$. If Y is a Banach space isomporphic to X with Banach Mazur distance to $(X, || \cdot ||_a)$ less than $2/\sqrt{3 + 28(1 - a^8)}$ then Y has the w-FPP.

This theorem resolves a major question in metric fixed point theory:

Corollary

Every separable Banach space X can be renormed to have the stable w-FPP.

Proof.

Since X is separable, it can be embedded isometrically in C[0,1].

In 2012, Benavides proved the following result.

Theorem

Let X be a Banach space with a monotone basis , $\{e_n\}$. For $a \in (-1,0)$ such that $1 - a^8 < 1/28$, consider the equivalent norm $||x||_a = \sup \{ || \sum_{n=1}^{\infty} a^{p(n)} t_n e_n : (p_n) \text{ is a nondecreasing bounded sequence } \subset \mathbb{Z} \}$ where $x = \sum_{n=1}^{\infty} t_n e_n$. If Y is a Banach space isomporphic to X with Banach Mazur distance to $(X, || \cdot ||_a)$ less than $2/\sqrt{3 + 28(1 - a^8)}$ then Y has the w-FPP.

This theorem resolves a major question in metric fixed point theory:

Corollary

Every separable Banach space X can be renormed to have the stable w-FPP.

Proof.

Since X is separable, it can be embedded isometrically in C[0, 1]. C[0, 1] has a monotone basis so there is a renorming $[1] \cdot [1]$ on Brailey Sims prenorming for fpp Some important open questions:

Is the set of renormings of ℓ_1 with the FPP dense in $\mathcal{P}(\ell_1)$? There is currently no known non-reflexive space X such that equivalent renormings with the FPP are dense in $\mathcal{P}(X)$.

It is unknown whether there are any equivalent renormings of ℓ_1 which do not contain an asymptotically isometric copy of ℓ_1 but fail to have the FPP. (Discovering that there are no such renormings would lead to a characterisation of the renormings of ℓ_1 with the FPP.)

Can c_0 be renormed to have the FPP?

Benavides proved that every reflexive space has an arbitrarily close renorming with the w-FPP, but it remains unclear whether every reflexive space or even every super-reflexive space has the FPP.

What is the upper bound for the stability constant of a Hilbert space? (If all superreflexive spaces had the FPP the upper bound would be infinite.)