Complex Numbers: Problems

1. (a) Evaluate i^{1998} .

(b) Let
$$z = \frac{18 + 4i}{3 - i}$$

- i. Simplify $(18+4i)\overline{(3-i)}$.
- ii. Express z in the form a + ib, where a and b are real numbers.
- iii. Hence, or otherwise, find |z| and arg(z).
- (c) Sketch the region in the complex plane where the inequalities $|z-2+i| \le 2$ and $\Im(z) \ge 0$ both hold.
- (d) The points P and Q in the complex plane correspond to the complex numbers z and w respectively. The triangle OPQ is isosceles and $\angle POQ$ is a right angle.

Show that $z^2 + w^2 = 0$.

- (e) i. By solving the equation $z^3 + 1 = 0$, find the three cube roots of -1.
 - ii. Let λ be a cube root of -1, where λ is not real. Show that $\lambda^2 = \lambda 1$.
 - iii. Hence simplify $(1 \lambda)^6$.
- 2. (a) i. Express $\sqrt{3} 1$ in modulus argument form.
 - ii. Hence Evaluate $(\sqrt{3}-1)^6$.
 - (b) i. Simplify $(-2i)^3$.
 - ii. Hence find all complex numbers z such that $z^3 = 8i$. Express your answers in the form x + iy.
 - (c) Sketch the region where the inequalities $|z-3+i| \le 5$ and $|z+1| \le |z-1|$ both hold
 - (d) Let $w = \frac{3+4i}{5}$ and $z = \frac{5+12i}{13}$, so that |w| = |z| = 1.
 - i. Find wz and $w\overline{z}$ in the form x = iy.

- ii. Hence find two distinct ways of writing 65^2 as the sum of $a^2 + b^2$ where a and b are integers and 0 < a < b.
- (e) The diagram shows points O, R, S, T and U in the complex plane. These points correspond to complex numbers 0, r, s, t and u, respectively. The

triangles ORS and OTU are equilateral.

Let $w = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$.

- i. Explain why u = wt.
- ii. Find the complex number r in terms of s.
- iii. Using complex numbers show that the length of RT and SU are equal.
- 3. (a) Suppose that c is a real number, and that z = c i. Express the following in the form x = iy, where x and y are real numbers:
 - i. \overline{iz} ;
 - ii. $\frac{1}{z}$
 - (b) On the Argand diagram shade the region specified by the conditions

$$\Re(z) \le 4 \text{ and } |z-4+5i| \le 3.$$

(c) i. Prove by induction that

$$(\cos \theta = i \sin \theta)^n = \cos(n\theta) = i \sin(n\theta)$$

for all integers $n \geq 1$.

- ii. Express $w = \sqrt{3} i$ in modulus argument form.
- iii. Hence express w^5 in the form x = iy, where x and y are real numbers.

(d) The diagram shows the locus of points z in the complex plane such that

$$\arg(z-3) - \arg(z+1) = \frac{\pi}{3}.$$

This locus is part of a circle. The angle between the lines from -1 to z and

from 3 to z is θ , as shown.

- i. Explain why $\theta = \frac{\pi}{3}$.
- ii. Find the center of the circle.
- (e) Let $w = \cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}$.
 - i. Show that w^k is a solution of $z^9 1 = 0$, where k is an integer.
 - ii. Prove that

$$w + w^2 + w^3 + w^4 + w^5 + w^6 + w^7 + w^8 = -1$$

iii. Hence show that

$$\cos\left(\frac{\pi}{9}\right)\cos\left(\frac{2\pi}{9}\right)\cos\left(\frac{4\pi}{9}\right) = \frac{1}{8}.$$

- 4. (a) Let $w_1 = 8 2i$ and $w_2 = -5 + 3i$. Find $w_1 + \overline{w_2}$.
 - (b) i. Show that $(1-2i)^2 = -3-4i$.
 - ii. Hence solve the equation

$$z^2 - 5z + (7+i) = 0$$

3

(c) Sketch the locus of z satisfying:

i.
$$\arg(z-4) = \frac{3\pi}{4}$$

ii.
$$Im(z) = |z|$$
.

(d) The diagram shows a complex plane with origin O. The points P and Q represent arbitrary complex numbers z and w respectively. Thus the length of PQ is |z-w|.

i. Show that

$$|z - w| \le |z| + |w|$$

- ii. Construct the point R representing z + w. What can be said about the quadrilateral OPRQ?
- iii. If |z w| = |z + w|, what can be said about the complex number $\frac{w}{z}$?
- 5. (a) Let z = a + ib where a and b are real. Find:
 - i. $\Im(4i-z)$.
 - ii. $\overline{3iz}$ in the form x + iy, where x and y are real.
 - iii. $\tan \theta$, where $\theta = \arg(z^2)$.
 - (b) Express in modulus-argument form:
 - i. -1 + i,
 - ii. $(-1+i)^n$, where n is a positive integer.
 - (c) i. On the same diagram draw a neat sketch of the locus specified by each of the following:
 - A. |z (3 + 2i)| = 2
 - B. |z+3| = |z-5|.
 - ii. Hence write down all values of z which satisfy simultaneously

$$|z - (3+2i)| = 2$$
 and $|z + 3| = |z - 5|$

iii. Use your diagrams in (i) to determine the values of k for which the simultaneous equations

$$|z - (3+2i)| = 2$$
 and $z - 2i| = k$

have exactly one solution for z.

6. (a) i. On an Argand diagram shade in the region determined by the inequalities

$$2 \le Im(z) \le 4$$
 and $\frac{\pi}{6} \le \arg(z) \le \frac{\pi}{4}$.

- ii. Let z_0 be the complex number of maximum modulus satisfying the inequalities of (i). Express z_0 in the form a + ib.
- (b) Let θ be a real number and consider

$$(\cos\theta + i\sin\theta)^3.$$

- i. Prove that $\cos 3\theta = \cos^3 \theta 3\cos\theta\sin^2\theta$
- ii. Find a similar expression for $\sin 3\theta$.
- (c) Find the equation in cartesian form of the locus of the point z if

$$\Re\left(\frac{z-4}{z}\right) = 0$$

- (d) By substituting appropriate values of z_1 and z_2 into the equation $\arg \frac{z_1}{z_2} = \arg z_1 \arg z_2$. Show that $\frac{\pi}{4} = \tan^{-1} 2 \tan^{-1} \frac{1}{3}$.
- (e) Let P, Q and R represent the complex numbers w_1 , w_2 and w_3 respectively. What geometric properties characterize triangle PQR if $w_2 w_1 = i(w_2 w_1)$?