Biorthogonal System in Approximation Theory

Bishnu P. Lamichhane, b.p.lamichhane@maths.anu.edu

Centre for Mathematics and its Applications, Mathematical Sciences Institute, Australian National University, Canberra

Workshop on CARMA Opening, University of Newcastle, Australia October 30th-November 1st, 2009

This is partly a joint work with Prof. B. Wohlmuth.

Introduction Finite Element Method Biorthogonality in Finite Elements

Table of Contents

Introduction

2 Finite Element Method

Orthogonal System

Let $\mathbb{M} \subset \mathbb{N}$ be an index set, $\{p_n\}_{n \in \mathbb{M}}$ be a subset of an inner product space H equipped with the inner product \langle, \cdot, \rangle . This subset is called an orthogonal system if

$$\langle p_n, p_m \rangle = c_n \delta_{mn},$$

where c_n is a non-zero constant and δ_{mn} is a Kronecker symbol

$$\delta_{mn} = \begin{cases} 1 & \text{if } m = n, \\ 0 & \text{else.} \end{cases}$$

Examples: trigonometric functions, orthogonal wavelets and polynomials, etc.

Biorthogonal System

Let $\{p_n\}_{n\in\mathbb{M}}$ and $\{q_n\}_{n\in\mathbb{M}}$ be two subsets of an inner product space H, where H is equipped with the inner product $<, \cdot, >$. These two subsets are said to form a biorthogonal system if

$$\langle p_n, q_m \rangle = c_n \delta_{mn},$$

where c_n is a non-zero constant and δ_{mn} is a Kronecker symbol. Examples: biorthogonal polynomials, biorthogonal wavelets, etc.

Biorthogonal System

Let $\{p_n\}_{n\in\mathbb{M}}$ and $\{q_n\}_{n\in\mathbb{M}}$ be two subsets of an inner product space H, which is equipped with the inner product $<, \cdot, >$. Let $\{p_n\}_{n\in\mathbb{M}}$ and $\{q_n\}_{n\in\mathbb{M}}$ form a biorthogonal system. Then if

$$f = \sum_{n \in \mathbb{M}} a_n p_n,$$
$$a_n = \frac{1}{c_n} < f, q_n > .$$

Solving a linear system can be reduced to finding a biorthogonal system [Brezinski, 93].

Finite Element Method

The finite element method is the most popular method for solving partial differential equations. Finite elements are special kinds of splines.

• Consider a variational problem: find $u \in V$ such that

a(u,v) = f(v) for all $v \in V$,

where V is a subspace of a Hilbert space, and $a(\cdot,\cdot)$ is a bilinear form and f is a linear form.

- The finite element method for this problem is obtained by replacing the infinite dimensional space V by a finite dimensional one.
- The finite dimensional space V_h is constructed by using a triangulation of the given domain, where we want to solve our problem.

Finite Element Method

Let $\Omega \subset \mathbb{R}^d$ be a domain (closed and bounded region). Let \mathcal{T}_h be a partition of Ω into smaller subdomains (intervals, triangles, quadrilaterals, tetrahedra, hexahedra, etc.). The finite element method is characterized by defining a set of basis functions on \mathcal{T}_h :

- Each basis function is associated with a point in the domain.
- The size of support of each basis function is of order of the size of a typical subdomain.
- Thus the finite support size is a distinguishing feature of the finite element approach.

Finite Element Method

Let $\{\phi_1, \cdots, \phi_n\}$ be the set of finite element basis functions on the mesh \mathcal{T}_h and \mathcal{G} be the set of points in Ω where these basis functions are associated. A finite element basis function is called **nodal** if its value is one at its associated point and zero at other points in \mathcal{G} .

Finite Element Space

The global finite element space is formed by the following process:

- A set of local basis functions are defined on a reference element
- A mapping is computed which maps the reference element to the subdomain
- The basis functions on the reference element are mapped by this mapping to compute the basis functions on the subdomain
- Then global basis functions are computed by glueing these mapped basis function together

Weak Constraint and its Algebraic From

In many problems, we have to project a quantity of interest onto a continuous finite element space. Examples are gradient reconstruction, mortar finite elements, mixed formulation of biharmonic, Darcy and elasticity equations. The projection of σ_h onto S_h can be expressed as the weak constraint:

$$\int_{\Omega} u_h \mu_h \, dx = \int_{\Omega} \sigma_h \mu_h \, dx, \quad u_h \in S_h, \ \mu_h \in M_h$$

Algebraic constraint (abusing the notation): $u_h = M^{-1}\sigma_h$, M is a Gram matrix Orthogonal projection is obtained by sing the same discrete space for u_h and μ_h

Weak Constraint and its Algebraic From

- The space for u_h is H¹-conforming, but it suffices to have L²-conforming space for μ_h.
- If S_h contains the piecewise polynomial space of degree p, it is enough that M_h spans the piecewise polynomial space of degree p 1.
- We want to utilize these two properties to construct a space M_h so that basis functions for S_h and M_h form a biorthogonal system.
- We get an oblique projection.

Biorthogonality in Finite Elements

 S_h is a finite element space, and we call M_h the biorthogonal (or dual) space Biorthogonal space $M_h \iff M$ is diagonal If M is diagonal:

- The projection is easy
- Static condensation \implies positive definite system
- Modification of nodal basis and nested spaces $\Longrightarrow \mathcal{V}$ or \mathcal{W} -cycle multigrid
- Nonlinear contact problems (variational inequality) \implies Non-penetration can be realized pointwise

Some Notations

- V_h^p : H^1 -conforming finite element space of degree p on a line
- $\Phi_p := \{\varphi_1^p, \dots, \varphi_{p+1}^p\}$: Set of local finite element basis functions of degree p on the reference edge I = [-1, 1] using lexicographical ordering

$$\underbrace{\varphi_1^p \quad \varphi_2^p \quad \varphi_3^p \quad \cdots \qquad }_{p+1}$$

• M_h^p : Dual space spanned by biorthogonal basis functions of degree p• $\Psi_p := \{\psi_1^p, \dots, \psi_{p+1}^p\}$: Set of local biorthogonal basis functions of degree p

$$\int_{I} \psi_{i}^{p}(s) \varphi_{j}^{p}(s) \ ds = \delta_{ij} \int_{I} \varphi_{j}^{p}(s) \ ds$$

Special interest for mortar, Darcy, biharmonic and elasticity mixed finite elements:

$$V_h^{p-1} \subset M_h^p$$

Biorthogonality in Finite Elements

- First approach: Lagrange nodal FE. Optimal a priori estimates only for p = 1 and p = 2.
- Second approach: Lagrange hierarchical FE. No nodal property. Existence of optimal biorthogonal base. BUT [Oswald et al. 01] larger support (≥ 3 edges).
- Third approach: Gauss-Lobatto nodal FE. Optimal biorthogonal spaces for a finite element space of any order with equal support.

Next slide: examples of these three types of basis functions $\{\phi_1^p,\cdots,\phi_m^p\}$ for p=2,3,4. Here m=p+1.

Introduction Finite Element Method Biorthogonality in Finite Elements

Finite Element Basis Functions on the Reference Edge

Bishnu P. Lamichhane, b.p.lamichhane@maths.anu.edu

Biorthogonal System in Approximation Theory

Finite Element Basis Functions on the Reference Edge

There are two types of basis functions in one dimension.

- Two basis functions associated with the vertices
- p-1 inner basis functions

The glueing condition does not affect the inner basis functions. It only affects the two vertex basis functions.

Algebraic Condition

 Ψ_p and Φ_p span the space of polynomials of degree p, say $\mathcal{P}_p(I)$. Let us regard Ψ_p and Φ_p as column vectors with an abuse of notation.

$$\mathbf{\Phi}_{p} = [\phi_{1}^{p}, \cdots, \phi_{p+1}^{p}]^{T}, \quad \mathbf{\Psi}_{p} = [\psi_{1}^{p}, \cdots, \psi_{p+1}^{p}]^{T}.$$

Since $\Psi_p = \{\psi_1^p, \cdots, \psi_{p+1}^p\}$ also spans a polynomial space of degree p, there exists a matrix N^p with

 $N^p \in \mathbb{R}^{p \times p+1}$

such that

$$\mathbf{\Phi}_{p-1} = N^p \mathbf{\Psi}_p.$$

Local space Ψ_p contains the polynomial space of degree p, but the global space may not contain even a piecewise polynomial space of degree p-1.

Algebraic Condition

Lemma

 $V_h^{p-1} \subset M_h^p$ if and only if

$$\begin{split} n^p_{1,1} &= n^p_{p,p+1} \quad \text{and} \quad n^p_{p,1} = n^p_{1,p+1} = 0, \\ n^p_{i,1} &= n^p_{i,p+1} = 0 \quad \text{for all} \quad 2 \leq i \leq p-1, \end{split}$$

where $n_{i,j}^p$ is the (i,j)-th entry of the matrix N^p .

$$N^{p} = \begin{bmatrix} * & ** & \cdots & 0 \\ 0 & ** & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & ** & \cdots & 0 \\ 0 & ** & \cdots & * \end{bmatrix}$$

Analytic Condition

• If the nodal points x_1^p,\ldots,x_{p+1}^p are symmetric, these conditions reduce to

 $\varphi_1^p \in \operatorname{span}\{\varphi_2^{p-1},\ldots,\varphi_p^{p-1}\}^\perp \text{ and } \varphi_{p+1}^p \in \operatorname{span}\{\varphi_1^{p-1},\ldots,\varphi_{p-1}^{p-1}\}^\perp.$

- If we define $\varphi_1^p = c_1(1-x)L'_p(x)$, and $\varphi_{p+1}^p = c_2(1+x)L'_p(x)$, then the above conditions are satisfied (L_p is the Legendre polynomial of degree p).
- If $S_p := \{-1 =: x_1^p < x_2^p < \cdots < x_{n+1}^p =: 1\}$ be the zeros of polynomial $(1-x^2)L'_p(x)$, then S_p is the set of Gauss–Lobatto nodes of order p.

Introduction Finite Element Method Biorthogonality in Finite Elements

$$\varphi_1^p \quad \varphi_2^p \quad \varphi_3^p \quad \cdots \qquad \varphi_{p+1}^p$$

Example: p = 3

$$N_{\mathsf{Gauss-Lobatto}}^{3} = \begin{bmatrix} 1 & \frac{1+\sqrt{5}}{10} & \frac{1-\sqrt{5}}{10} & 0\\ 0 & \frac{4}{5} & \frac{4}{5} & 0\\ 0 & \frac{1-\sqrt{5}}{10} & \frac{1+\sqrt{5}}{10} & 1 \end{bmatrix}, \quad N_{\mathsf{Lagrange}}^{3} = \begin{bmatrix} \frac{11}{15} & \frac{2}{5} & -\frac{1}{5} & 0\\ \frac{4}{15} & \frac{4}{5} & \frac{4}{5} & \frac{4}{15}\\ 0 & -\frac{1}{5} & \frac{2}{5} & \frac{11}{15} \end{bmatrix}$$

 \implies biorthogonal basis (equidistant nodes): $V_h^2 \not\subset M_h^3$ \implies biorthogonal basis (Gauss-Lobatto nodes): $V_h^2 \subset M_h^3$

Bishnu P. Lamichhane, b.p.lamichhane@maths.anu.edu

Biorthogonal System in Approximation Theory

Analytic Condition

Gauss–Lobatto nodes \Longrightarrow there exists a Quadrature formula exact for all polynomials of degree $\leq 2p-1$

$$\int_{I} \varphi_{l}^{p}(\hat{s}) \varphi_{i}^{p-1}(\hat{s}) \, d\hat{s} = \sum_{j=1}^{p+1} w_{j}^{p} \varphi_{l}^{p}(x_{j}^{p}) \varphi_{i}^{p-1}(x_{j}^{p}) = 0, \begin{cases} l = 1, 2 \le i \le p \\ l = p+1, 1 \le i \le p-1 \end{cases}$$

Theorem

 $V_h^{p-1} \subset M_h^p$ if and only if the finite element basis of V_h^p which defines M_h^p is based on the Gauss–Lobatto points.

 \Longrightarrow Optimal a priori estimates for mortar finite elements, biharmonic, Darcy and elasticity equations.

Introduction Finite Element Method Biorthogonality in Finite Elements

Biorthogonal basis functions for cubic and quartic finite element spaces

Extension to Higher Dimension

- If a finite element space has a tensor product structure, the biorthogonal basis functions can be constructed by using the tensor product construction. This includes meshes of *d*-parallelotopes.
- In simplicial meshes, the lowest order case is straightforward. The biorthogonal basis with such optimal approximation property does not exist for the quadratic case. Relax the notion and use quasi-biorthogonality.
- The situation for serendipity elements is similar.

Numerical Results for Biharmonic Equation

We want to find $u \in H_0^2(\Omega)$ such that $\int_{\Omega} \Delta u \Delta v \, dx = \int_{\Omega} f \, v \, dx$, $v \in H_0^2(\Omega)$ in $\Omega := (0,1)^2$. Here we put $\phi = \Delta u$, and get the weak form using the clamped boundary condition

$$\int_{\Omega} \phi \psi \, dx = \int_{\Omega} \Delta u \psi \, dx = - \int_{\Omega} \nabla u \cdot \nabla \psi \, dx.$$

Table: Discretization errors in different norms for the clamped boundary condition

level	# elem.	$\ u-u_h\ _{0,\Omega}$		$ u-u_h _{1,\Omega}$		$\ \Delta u - \phi_h\ _{0,\Omega}$	
0	32	5.34290e-01		6.32693e-01		6.32041e-01	
1	128	3.26972e-01	0.71	4.01635e-01	0.66	5.16879e-01	0.29
2	512	1.30302e-01	1.33	1.89139e-01	1.09	3.34937e-01	0.63
3	2048	3.99107e-02	1.71	8.32646e-02	1.18	1.88319e-01	0.83
4	8192	1.08809e-02	1.87	3.88438e-02	1.10	9.92016e-02	0.93
5	32768	2.82773e-03	1.94	1.89646e-02	1.03	5.08074e-02	0.97
6	131072	7.19891e-04	1.97	9.41839e-03	1.01	2.56967e-02	0.98
7	524288	1.81559e-04	1.99	4.70081e-03	1.00	1.29204e-02	0.99

Conclusion and Future Work

Conclusion:

- The importance of biorthogonality is highlighted
- $\bullet\,$ The biorthogonal system using nodal finite element space of degree p is constructed
- The approximation property of the biorthogonal system is analyzed

Future work:

- Extend the idea to other splines: e.g., splines with higher smoothness
- Quasi-biorthogonality may be a key where biorthogonality is not possible

Thank you