On the topology of pointwise convergence on the boundaries of L_1 -preduals

Warren B. Moors

Department of Mathematics

The University of Auckland

Auckland

New Zealand

THE UNIVERSITY OF AUCKLAND NEW ZEALAND

Dedicated to $\mathcal{J}ohn \ \mathcal{R}. \ \mathcal{G}iles$

Introduction

We shall say that a Banach space $(X, \|\cdot\|)$ is an L_1 -predual if X^* is isometric to $L_1(\mu)$ for some suitable measure μ . Some examples of L_1 -preduals include $(C(K), \|\cdot\|_{\infty})$, and more generally, the space of continuous affine functions on a Choquet simplex endowed with the supremum norm. The other notion we shall consider in this talk is that of a boundary. Specifically, for a non-trivial Banach space X over $\mathbb R$ we say that a subset B of B_{X^*} , the closed unit ball of X^* , is a boundary, if for each $x \in X$ there exists a $b^* \in B$ such that $b^*(x) = ||x||$. The prototypical example of a boundary is $Ext(B_{X^*})$ - the set of all extreme points of B_{X^*} , but there are many other interesting examples. In a recent paper by Moors and Reznichenko the authors investigated the topology on a Banach space X that is generated by $Ext(B_{X^*})$ and, more generally, the topology on X generated by an arbitrary

boundary of X. In this talk we continue this study.

To be more precise we must first introduce some notation. For a nonempty subset Y of the dual of a Banach space X we shall denote by $\sigma(X, Y)$ the weakest linear topology on X that makes all the functionals from Y continuous. In the paper by MR they showed that "for any compact Hausdorff space K, any countable subset $\{x_n : n \in \mathbb{N}\}$ of C(K) and any boundary B of $(C(K), \|\cdot\|_{\infty})$, the closure of $\{x_n : n \in \mathbb{N}\}$ with respect to the $\sigma(C(K), B)$ topology is separable with respect to the topology generated by the norm".

In this talk we extend this result by showing that if $(X, \|\cdot\|)$ is an L_1 -predual, B is any boundary of X and $\{x_n : n \in \mathbb{N}\}$ is any subset of X then the closure of $\{x_n : n \in \mathbb{N}\}$ in the $\sigma(X, B)$ topology is separable with respect to the topology generated by the norm whenever $\operatorname{Ext}(B_{X^*})$ is weak* Lindelöf.

Preliminary Results

Let X be a topological space and let \mathcal{F} be a family of nonempty, closed and separable subsets of X. Then \mathcal{F} is rich if the following two conditions are fulfilled:

- (i) for every separable subspace Y of X, there exists a $Z \in \mathcal{F}$ such that $Y \subseteq Z$;
- (ii) for every increasing sequence $(Z_n : n \in \mathbb{N})$ in \mathcal{F} , $\overline{\bigcup_{n \in \mathbb{N}} Z_n} \in \mathcal{F}$.

For any topological space X, the collection of all rich families of subsets forms a partially ordered set, under the binary relation of set inclusion. This partially ordered set has a greatest element, namely,

 $\mathcal{G}_X := \{S \in 2^X : S \text{ is a closed and separable subset of } X\}.$ On the other hand, if X is a separable space, then the partially ordered set has a least element, namely, $\mathcal{G}_{\varnothing} := \{X\}.$ The raison d'être for rich families is revealed next.

Proposition 1 Suppose that X is a topological space. If $\{\mathcal{F}_n : n \in \mathbb{N}\}$ are rich families of X then so is $\bigcap_{n \in \mathbb{N}} \mathcal{F}_n$.

Throughout this talk we will be primarily working with Banach spaces and so a natural class of rich families, given a Banach space X, is the family of all closed separable linear subspaces of X, which we denote by S_X . There are however many other interesting examples of rich families.

Theorem 1 Let X be an L_1 -predual. Then the set of all closed separable linear subspaces of X that are themselves L_1 -preduals forms a rich family.

Lemma 1 Let Y be a closed separable linear subspace of a Banach space X and suppose that $L \subseteq \text{Ext}(B_{X^*})$ is weak^{*} Lindelöf. Then there exists a closed separable linear subspace Z of X, containing Y, such that for any $l^* \in L$ and any x^* , $y^* \in B_{Z^*}$ if $l^*|_Z = \frac{1}{2}(x^* + y^*)$ then $x^*|_Y = y^*|_Y$.

Using this Lemma we can obtain the following theorem.

Theorem 2 Let X be a Banach space and let $L \subseteq \text{Ext}(B_{X^*})$ be a weak^{*} Lindelöf subset. Then the set of all Z in S_X such that $\{l^*|_Z : l^* \in L\} \subseteq \text{Ext}(B_{Z^*})$ forms a rich family.

Proof: Let \mathscr{L} denote the family of all closed separable linear subspaces Z of X such that $\{l^*|_Z : l^* \in L\} \subseteq \operatorname{Ext}(B_{Z^*})$. We shall verify that \mathscr{L} is a rich family of closed separable linear subspaces of X. So first let us consider an arbitrary closed separable linear subspace Y of X, with the aim of showing that there exists a subspace $Z \in \mathscr{L}$ such that $Y \subseteq Z$. We begin by inductively applying Lemma 1 to obtain an increasing sequence $(Z_n : n \in \mathbb{N})$ of closed separable linear subspaces of X such that: $Y \subseteq Z_1$ and for any $l^* \in L$ and any $x^*, y^* \in$ $B_{Z_{n+1}^*}$ if $l^*|_{Z_{n+1}} = \frac{1}{2}(x^* + y^*)$ then $x^*|_{Z_n} = y^*|_{Z_n}$. We now claim that if $Z := \overline{\bigcup_{n \in \mathbb{N}} Z_n}$ then $l^*|_Z \in \text{Ext}(B_{Z^*})$ for each $l^* \in L$. To this end, suppose that $l^* \in L$ and $l^*|_Z = \frac{1}{2}(x^* + y^*)$ for some $x^*, y^* \in B_{Z^*}$. Then for each $n \in \mathbb{N}$,

 $l^*|_{Z_{n+1}} = (l^*|_Z)|_{Z_{n+1}} = \frac{1}{2}(x^*+y^*)|_{Z_{n+1}} = \frac{1}{2}(x^*|_{Z_{n+1}}+y^*|_{Z_{n+1}})$ and $x^*|_{Z_{n+1}}, y^*|_{Z_{n+1}} \in B_{Z_{n+1}^*}$ Therefore, by construction $x^*|_{Z_n} = y^*|_{Z_n}$. Now since $\bigcup_{n \in \mathbb{N}} Z_n$ is dense in Z and both x^* and y^* are continuous we may deduce that $x^* = y^*$; which in turn implies that $l^*|_Z \in \text{Ext}(B_{Z^*})$. This shows that $Y \subseteq Z$ and $Z \in \mathscr{L}$.

To complete this proof we must verify that for each increasing sequence of closed separable subspaces $(Z_n : n \in \mathbb{N})$ in $\mathscr{L}, \ \overline{\bigcup_{n \in \mathbb{N}} Z_n} \in \mathscr{L}.$ This however, follows easily from the definition of the family \mathscr{L} .

Let X be a normed linear space. Then we say that an element $x^* \in B_{X^*}$ is weak* exposed if there exists an element $x \in X$ such that $y^*(x) < x^*(x)$ for all $y^* \in B_{X^*} \setminus \{x^*\}$. It is not difficult to show that if $\operatorname{Exp}(B_{X^*})$ denotes the set of all weak* exposed points of B_{X^*} then $\operatorname{Exp}(B_{X^*}) \subseteq \operatorname{Ext}(B_{X^*})$. However, if X is a separable L_1 -predual then the relationship between $\operatorname{Exp}(B_{X^*})$ and $\operatorname{Ext}(B_{X^*})$ is much closer.

Lemma 2 If X is a separable L_1 -predual, then $Exp(B_{X^*}) = Ext(B_{X^*})$.

Let us also pause for a moment to recall that if B is any boundary of a Banach space X then

 $\operatorname{Exp}(B_{X^*}) \subseteq B \cap \operatorname{Ext}(B_{X^*}) \subseteq \operatorname{Ext}(B_{X^*}) \subseteq \overline{B}^{\operatorname{weak}^*}.$

The fact that $\operatorname{Ext}(B_{X^*}) \subseteq \overline{B}^{\operatorname{weak}^*}$ follows from Milman's theorem and the fact that $B_{X^*} = \overline{\operatorname{co}}^{\operatorname{weak}^*}(B)$; which in turn follows from a separation argument.

Let us also take this opportunity to observe that if B_X denotes the closed unit ball in X then B_X is closed in the $\sigma(X, B)$ topology for any boundary B of X.

Finally, let us end this part of the talk with one more simple observation that will turn out to be useful in our later endeavours.

Proposition 2 Suppose that Y is a linear subspace of a Banach space $(X, \|\cdot\|)$ and B is any boundary for X. Then for each $e^* \in \text{Exp}(B_{Y^*})$ there exists $b^* \in B$ such that $e^* = b^*|_Y$.

Proof: Suppose that $e^* \in \text{Exp}(B_{Y^*})$ then there exists an $x \in Y$ such that $y^*(x) < e^*(x)$ for each $y^* \in B_{Y^*} \setminus \{e^*\}$. By the fact that B is a boundary of $(X, \|\cdot\|)$ there exists a $b^* \in B$ such that $b^*(x) = ||x|| \neq 0$. Then for any $y^* \in B_{Y^*}$ we have

$$y^*(x) \le |y^*(x)| \le ||y^*|| ||x|| \le ||x|| = b^*(x) = (b^*|_Y)(x).$$

In particular, $e^*(x) \leq b^*|_Y(x)$. Since $b^*|_Y \in B_{Y^*}$ and $y^*(x) < e^*(x)$ for all $y^* \in B_{Y^*} \setminus \{e^*\}$, it must be the case that $e^* = b^*|_Y$.

The Main Results

Theorem 3 Let B be any boundary for a Banach space X that is an L_1 -predual and suppose that $\{x_n : n \in \mathbb{N}\} \subseteq X$, then $\overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)} \subseteq \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,\operatorname{Ext}(B_{X^*}))}$.

Proof: In order to obtain a contradiction let us suppose that

$$\overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)} \not\subseteq \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,\operatorname{Ext}(B_{X^*}))}.$$

Choose $x \in \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)} \setminus \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,\operatorname{Ext}(B_{X^*}))}$. Then there exists a finite set $\{e_1^*, e_2^*, \dots, e_m^*\} \subseteq \operatorname{Ext}(B_{X^*})$ and $\varepsilon > 0$ so that

$$\bigcap_{1 \le k \le m} \{ y \in X : |e_k^*(x) - e_k^*(y)| < \varepsilon \} \cap \{ x_n : n \in \mathbb{N} \} = \emptyset.$$

Let $Y := \overline{\operatorname{span}}(\{x_n : n \in \mathbb{N}\} \cup \{x\})$, let \mathcal{F}_1 be any rich family of L_1 -preduals; whose existence is guaranteed by Theorem 1, and let \mathcal{F}_2 be any rich family such that for every $Z \in \mathcal{F}_2$ and every $1 \leq k \leq m$, $e_k^*|_Z \in \operatorname{Ext}(B_{Z^*})$; whose existence is guaranteed by Theorem 2. Next, let us choose $Z \in \mathcal{F}_1 \cap \mathcal{F}_2$ so that $Y \subseteq Z$. Recall that this is possible because, by Proposition 1, $\mathcal{F}_1 \cap \mathcal{F}_2$ is a rich family. Since Z is a separable L_1 -predual we have by Lemma 2 that $e_k^*|_Z \in \operatorname{Exp}(B_{Z^*})$ for each $1 \leq k \leq m$. Now, by Proposition 2 for each $1 \leq k \leq m$ there exists a $b_k^* \in B$ such that $e_k^*|_Z = b_k^*|_Z$. Therefore,

$$|b_k^*(x) - b_k^*(x_j)| = |(b_k^*|_Z)(x) - (b_k^*|_Z)(x_j)|$$

= $|(e_k^*|_Z)(x) - (e_k^*|_Z)(x_j)|$
= $|e_k^*(x) - e_k^*(x_j)|.$

for all $j \in \mathbb{N}$ and all $1 \leq k \leq m$. Thus,

$$\bigcap_{1 \le k \le m} \{ y \in X : |b_k^*(x) - b_k^*(y)| < \varepsilon \} \cap \{ x_n : n \in \mathbb{N} \} = \emptyset.$$

This contradicts the fact that $x \in \overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)}$; which completes the proof.

Corollary 1 Let *B* be any boundary for a Banach space *X* that is an L_1 -predual. Then every relatively countably $\sigma(X, B)$ -compact subset is relatively countably $\sigma(X, \text{Ext}(B_{X^*}))$ -compact. In particular, every norm bounded, relatively countably $\sigma(X, B)$ -compact subset is relatively weakly compact.

Proof: Suppose that a nonempty set $C \subseteq X$ is relatively countably $\sigma(X, B)$ -compact. Let $\{c_n : n \in \mathbb{N}\}$ be any sequence in C then by Theorem 3

$$\emptyset \neq \bigcap_{n \in \mathbb{N}} \overline{\{c_k : k \ge n\}}^{\sigma(X,B)} \subseteq \bigcap_{n \in \mathbb{N}} \overline{\{c_k : k \ge n\}}^{\sigma(X,\operatorname{Ext}(B_{X^*}))}$$

Hence C is relatively countably $\sigma(X, \operatorname{Ext}(B_{X^*}))$ -compact. In the case when C is also norm bounded the result follows from an earlier result of Kharana.

Recall that a network for a topological space X is a family \mathscr{N} of subsets of X such that for any point $x \in X$ and any open neighbourhood U of x there is an $N \in \mathscr{N}$ such that $x \in N \subseteq U$, and a topological space X is said to be \aleph_0 -monolithic if the closure of every countable set has a countable network.

Corollary 2 Let *B* be any boundary for a Banach space *X* that is an L_1 -predual and suppose that $\{x_n : n \in \mathbb{N}\} \subseteq X$. Then $\overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)}$ is norm separable whenever *X* is \aleph_0 -monolithic in the $\sigma(X, \operatorname{Ext}(B_{X^*}))$ topology. In particular, $\overline{\{x_n : n \in \mathbb{N}\}}^{\sigma(X,B)}$ is norm separable whenever $\operatorname{Ext}(B_{X^*})$ is weak* Lindelöf. **Proposition 3** Let B be any boundary for a Banach space X that is an L_1 -predual and suppose that A is a separable Baire space. If X is \aleph_0 -monolithic in the $\sigma(X, \operatorname{Ext}(B_{X^*}))$ topology then for each continuous mapping $f : A \to (X, \sigma(X, B))$ there exists a dense subset D of A such that f is continuous with respect to the norm topology on X at each point of D.

Proof: Fix $\varepsilon > 0$ and consider the open set:

 $O_{\varepsilon} := \bigcup \{ U \subseteq A : U \text{ is open and } \| \cdot \| - \operatorname{diam}[f(U)] \le 2\varepsilon \}.$

We shall show that O_{ε} is dense in A. To this end, let W be a nonempty open subset of A and let $\{a_n : n \in \mathbb{N}\}$ be a countable dense subset of W. Then by continuity

$$f(W) \subseteq \overline{\{f(a_n) : n \in \mathbb{N}\}}^{\sigma(X,B)}$$

which is norm separable by Corollary 2. Therefore there exists a countable set $\{x_n : n \in \mathbb{N}\}$ in X such that $f(W) \subseteq$ $\bigcup_{n\in\mathbb{N}}(x_n+\varepsilon B_X). \text{ For each } n\in\mathbb{N}, \text{ let } C_n:=f^{-1}(x_n+\varepsilon B_X).$ Since each $x_n+\varepsilon B_X$ is closed in the $\sigma(X,B)$ topology each set C_n is closed in A and moreover, $W\subseteq \bigcup_{n\in\mathbb{N}}C_n$. Since Wis of the second Baire category in A there exist a nonempty open set $U\subseteq W$ and a $k\in\mathbb{N}$ such that $U\subseteq C_k$. Then $U\subseteq O_{\varepsilon}\cap W$ and so O_{ε} is indeed dense in A. Clearly, f is $\|\cdot\|$ -continuous at each point of $\bigcap_{n\in\mathbb{N}}O_{1/n}$.

Theorem 4 Suppose that A is a topological space with countable tightness that possesses a rich family \mathcal{F} of Baire subspaces and suppose that X is an L_1 -predual. Then for any boundary B of X and any continuous function $f : A \rightarrow$ $(X, \sigma(X, B))$ there exists a dense subset D of A such that f is continuous with respect to the norm topology on X at each point of D provided X is \aleph_0 -monolithic in the $\sigma(X, \operatorname{Ext}(B_{X^*}))$ topology. **Proof:** In order to obtain a contradiction let us suppose that f does not have a dense set of points of continuity with respect to the norm topology on X. Since A is a Baire space this implies that for some $\varepsilon > 0$ the open set:

$$O_{\varepsilon} := \bigcup \{ U \subseteq A : U \text{ is open and } \| \cdot \| \text{-diam}[f(U)] \le 2\varepsilon \}$$

is not dense in A. That is, there exists a nonempty open subset W of A such that $W \cap O_{\varepsilon} = \emptyset$. For each $x \in A$, let

$$F_x := \{ y \in A : \| f(y) - f(x) \| > \varepsilon \}.$$

Then $x \in \overline{F_x}$ for each $x \in W$. Moreover, since A has countable tightness, for each $x \in W$, there exists a countable subset C_x of F_x such that $x \in \overline{C_x}$. Next, we inductively define an increasing sequence of separable subspaces $(F_n : n \in \mathbb{N})$ of A and countable sets $(D_n : n \in \mathbb{N})$ in A such that:

(i)
$$W \cap F_1 \neq \emptyset$$
;

(ii) $\bigcup \{C_x : x \in D_n \cap W\} \cup F_n \subseteq F_{n+1} \in \mathcal{F} \text{ for all } n \in \mathbb{N},$ where D_n is any countable dense subset of F_n .

Note that since the family \mathcal{F} is rich this construction is possible.

Let $F := \overline{\bigcup_{n \in \mathbb{N}} F_n}$ and $D := \bigcup_{n \in \mathbb{N}} D_n$. Then $\overline{D} = F \in \mathcal{F}$ and $\|\cdot\|$ -diam $[f(U)] \ge \varepsilon$ for every nonempty open subset U of $F \cap W$. Therefore, $f|_F$ has no points of continuity in $F \cap W$ with respect to the $\|\cdot\|$ -topology. This however, contradicts Proposition 3. **Corollary 3** Suppose that A is a topological space with countable tightness that possesses a rich family of Baire subspaces and suppose that K is a compact Hausdorff space. Then for any boundary of $(C(K), \|\cdot\|_{\infty})$ and any continuous function $f: A \to (C(K), \sigma(C(K), B))$ there exists a dense subset D of A such that f is continuous with respect to the $\|\cdot\|_{\infty}$ topology at each point of D.

———— The End ————————