Parity bias in fundamental units of real quadratic fields

Florian Breuer

School of Information and Physical Sciences University of Newcastle, Australia florian.breuer@newcastle.edu.au

Cameron Shaw-Carmody School of Information and Physical Sciences University of Newcastle, Australia cameron.shaw-carmody@newcastle.edu.au

August 15, 2024

Abstract

We compute primes $p \equiv 5 \mod 8$ up to 10^{11} for which the Pellian equation x^2 – $py^2 = -4$ has no solutions in odd integers; these are the members of sequence A130229 in the OEIS. We find that the number of such primes $p \leq x$ is well approximated by $\frac{1}{12}\pi(x) - 0.037 \int_2^x$ dt $\frac{dt}{t^{1/6} \log t}$, where $\pi(x)$ is the usual prime counting function. The second term shows a surprising bias away from membership of this sequence.

Keywords. Pellian equation; fundamental units; primes; OEIS A130229

2020 MSC. 11D09; 11R27; 11Y65

1 Introduction

For a prime $p \equiv 5 \mod 8$, consider the real quadratic field $K = \mathbb{Q}(\sqrt{p})$, with ring of integers $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{p}}{2}]$ $\left[\frac{\sqrt{p}}{2}\right]$ and fundamental unit $\varepsilon_p = \frac{x_0 + y_0\sqrt{p}}{2}$ $\frac{y_0 \sqrt{p}}{2} > 1$. Then (x_0, y_0) is a fundamental solution to the Pellian equation

$$
x^2 - py^2 = -4.\t\t(1)
$$

The prime 2 is inert in K/\mathbb{Q} , and $\varepsilon_p \equiv 1 \mod 2\mathcal{O}_K$ if and only if the equation [\(1\)](#page-0-0) has no odd integer solutions. Primes $p \equiv 5 \mod 8$ satisfying the above equivalent conditions define sequence A130229 in [\[OEIS\]](#page-3-0). They also appear in [\[B19,](#page-3-1) [B21,](#page-3-2) [XYY16\]](#page-3-3).

Since ε_p mod $2\mathcal{O}_K$ can take any of three non-zero values in $\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_4$, it is reasonable to expect roughly one third of all primes $p \equiv 5 \mod 8$ to be members of this sequence.

Define

$$
\chi(p) := \begin{cases} 1 & \text{if } p \equiv 5 \bmod 8 \text{ and } \varepsilon_p \equiv 1 \bmod 2\mathcal{O}_K \\ -\frac{1}{2} & \text{if } p \equiv 5 \bmod 8 \text{ and } \varepsilon_p \not\equiv 1 \bmod 2\mathcal{O}_K \\ 0 & \text{if } p \not\equiv 5 \bmod 8 \end{cases}
$$

and the modified counting function

$$
\theta_{\chi}(x) := \sum_{p \leqslant x} \chi(p) \log p.
$$

Then the above heuristic leads us to expect $\theta_{\chi}(x) = o(x)$ as $x \to \infty$.

In this note, we report on computations of $\theta_{\chi}(x)$ for $x \leq 10^{11}$, which show a surprising bias away from the $\varepsilon_p \equiv 1 \mod 2\mathcal{O}_K$ case, hinted at in related computations reported in [\[B19,](#page-3-1) §4]. We thus pose

Conjecture 1.1 There exists a constant $c \approx -0.066$ for which

 $\theta_{\chi}(x) \sim cx^{\frac{5}{6}}$

as $x \to \infty$.

2 Results

We computed ε_p using the continued fraction method in [\[JW09,](#page-3-4) §3.3], with the modification that B_i and G_i are only computed modulo 2, since we only need to know the parity of ε_p . This significantly reduces the memory requirements of the calculation.

We implemented the algorithm to run on a GPU using the Python Numba library [\[LP15\]](#page-3-5). The final computation for all $p < 10^{11}$ took about 17 hours on an entry-level gaming laptop with an Nvidia RTX 3050 GPU. The source code and data are available at [https:](https://github.com/florianbreuer/A130229) [//github.com/florianbreuer/A130229](https://github.com/florianbreuer/A130229).

Table [1](#page-2-0) lists some values for the naive counting function

$$
\pi_1(x) = \sum_{p \le x, \ \chi(p)=1} 1.
$$

It is advantageous to study the "smoothed" counting function $\theta_{\chi}(x) = \sum_{p \leq x} \chi(p) \log p$. Figure [1](#page-2-1) plots $-\theta_x(x)$ for $x \le 10^{11}$ on logarithmic axes. The plot resembles a straight line with slope 5/6. The least squares best fit of the form $f(x) = cx^{5/6}$ is found to have $c \approx -0.06626$, computed using the find fit method in SageMath v9.3 [\[Sage\]](#page-3-6). The error term $\theta_{\chi}(x) - cx^{5/6}$ is shown in Figure [2.](#page-3-7) This provides evidence for Conjecture [1.1.](#page-1-0) Moreover, it appears likely that the error is of the order $O(x^{\frac{1}{2}+\varepsilon})$.

\boldsymbol{x}	$\pi_1(x)$	approximation	\boldsymbol{x}	$\pi_1(x)$	approximation
10^{2}			$\sqrt{2 \cdot 10^{10}}$	72770931	72761719
10^{3}	15	11	$3 \cdot 10^{10}$	107298975	107293481
10 ⁴	98	90	$4 \cdot 10^{10}$	141363308	141357259
10^{5}	741	735	$5 \cdot 10^{10}$	175085540	175080418
10 ⁶	6200	6187	$6 \cdot 10^{10}$	208542967	208537579
10^{7}	53382	53348	$7 \cdot 10^{10}$	241775700	241776120
10^{8}	468223	468144	$8 \cdot 10^{10}$	274823028	274829667
10 ⁹	4164936	4165422	$9 \cdot 10^{10}$	307723656	307723171
10^{10}	37490293	37483463	10^{11}	340472393	340476359

Table 1: Some values of the counting function $\pi_1(x)$ for sequence A130229.

Figure 1: log-log plot of $-\theta_{\chi}(x)$ for $x \leq 10^{11}$.

From this we may also deduce a good approximation for $\pi_1(x)$. Define

$$
\pi_{-\frac{1}{2}}(x) = \sum_{p \leqslant x, \, \chi(p) = -\frac{1}{2}} 1 \quad \text{and} \quad \pi_{\chi}(x) = \sum_{p \leqslant x} \chi(p) = \pi_1(x) - \frac{1}{2} \pi_{-\frac{1}{2}}(x).
$$

Then $\theta_{\chi}(x) \sim cx^{5/6} \approx c \cdot \frac{5}{6}$ $\frac{5}{6} \int_{2}^{x} t^{-1/6} dt$ suggests

$$
\pi_{\chi}(x) \approx c \cdot \frac{5}{6} \int_{2}^{x} \frac{t^{-1/6}}{\log t} dt \sim c \frac{x^{5/6}}{\log x}.
$$
\n
$$
(2)
$$

Then from $\pi_1(x) + \pi_{-\frac{1}{2}}(x) \approx \frac{1}{4}$ $\frac{1}{4}\pi(x)$, where $\pi(x)$ is the usual prime counting function, we arrive at

$$
\pi_1(x) \approx \frac{1}{12}\pi(x) + \frac{2}{3}\pi_x(x) \approx \frac{1}{12}\pi(x) + c \cdot \frac{5}{9} \int_2^x \frac{t^{-1/6}}{\log t} dt.
$$
 (3)

These approximations are compared to the computed values of $\pi_1(x)$ in Table [1.](#page-2-0)

Acknowledgements.

The first author would like to thank James Punch for useful discussions, Frank Calegari for suggesting that the correct exponent is likely to be 5/6 and GPT-4 for help with porting the

Figure 2: Plot of the error term $\theta_{\chi}(x) - cx^{5/6}$ for $c \approx -0.06626$

algorithm to a GPU. The second author was supported by a 2020-2021 Vacation Research Scholarship by the Australian Mathematical Sciences Institute (AMSI).

References

- [B19] Breuer, F., Periods of Ducci sequences and odd solutions to a Pellian equation, Bull. Aust. Math. Soc. 100 (2019), 201-205. <doi:10.1017/S0004972719000212> [1,](#page-0-1) [2](#page-1-1)
- [B21] Breuer, F., Multiplicative orders of Gauss periods and the arithmetic of real quadratic fields, Finite Fields Appl. 73 (2021), 101848. [https://doi.org/10.1016/](https://doi.org/10.1016/j.ffa.2021.101848) [j.ffa.2021.101848](https://doi.org/10.1016/j.ffa.2021.101848) [1](#page-0-1)
- [JW09] Jacobson, M. J. and Williams, H. C., Solving the Pell Equation, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2009. [2](#page-1-1)
- [LP15] Lam, S. T., Pitrou, A. and Seibert, S., Numba: a LLVM-based Python JIT compiler, In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (2015), Association for Computing Machinery, New York, NY, USA. <https://doi.org/10.1145/2833157.2833162> [2](#page-1-1)
- [OEIS] On-line Encyclopedia of Integer Sequences, entry #A130229, [https://oeis.org/](https://oeis.org/A130229) [A130229](https://oeis.org/A130229). [1](#page-0-1)
- [Sage] The Sage Developers, SageMath, the Sage Mathematics Software System (Version (9.3) <https://www.sagemath.org>, [2](#page-1-1)021. 2
- [XYY16] Xue, J., Yang, T.-C. and Yu, C.-F., Numerical invariants of totally imaginary quadratic $\mathbb{Z}[\sqrt{p}]$ -orders. Taiwanese J. Math. 2 ¯ 0 (2016), no.4, 723–741. [https://doi.](https://doi.org/10.11650/tjm.20.2016.6464) [org/10.11650/tjm.20.2016.6464](https://doi.org/10.11650/tjm.20.2016.6464) [1](#page-0-1)