
3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

Mahler Measures, Short Walks and
Log-sine Integrals

A case study in hybrid computation

Jonathan M. Borwein frsc faa faaas

Laureate Professor & Director of CARMA, Univ. of Newcastle
this talk: http://carma.newcastle.edu.au/jon/alfcon.pdf

March 16
AlfCon, Newcastle, March 12–16, 2012

Revised: March 14, 2012

Companion paper and software (Th. Comp Sci) : http://carma.newcastle.edu.au/jon/wmi-paper.pdf

J.M. Borwein Mahler Measures

http://carma.newcastle.edu.au/jon/alfcon.pdf
http://carma.newcastle.edu.au/jon/wmi-paper.pdf


3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

Dedication from JB&AS in J. AustMS

Remark

We remark that it is fitting given the dedication of this article and
volume that Alf van der Poorten [1942–2010] wrote the foreword
to Lewin’s “bible”. In fact, he enthusiastically mentions the
[log-sine] evaluation
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and its relation with inverse central binomial sums.
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Abstract toc

• The Mahler measure of a polynomial of several variables has
been a subject of much study over the past thirty years.

• Very few closed forms are proven but more are conjectured.

• We provide systematic evaluations of various higher and
multiple Mahler measures using moments of random walks
and values of log-sine integrals.

• We also explore related generating functions for the log-sine
integrals and their generalizations.

• This work would be impossible without very extensive symbolic
and numeric computations. It also makes frequent use of the
new NIST Handbook of Mathematical Functions.

I intend to show off the interplay between numeric and symbolic
computing while exploring the three mathematical topics in my
title.
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Other References

1 Joint with: Armin Straub (Tulane) and James Wan (UofN)
- and variously with: David Bailey (LBNL), David Borwein

(UWO), Dirk Nuyens (Leuven), Wadim Zudilin (UofN).

2 Most results are written up in FPSAC 2010, ISSAC 2011
(JB-AS: best student paper),RAMA, Exp. Math, J. AustMS,
Can. Math J., Theoretical CS. See:

• www.carma.newcastle.edu.au/~jb616/walks.pdf
• www.carma.newcastle.edu.au/~jb616/walks2.pdf
• www.carma.newcastle.edu.au/~jb616/densities.pdf
• www.carma.newcastle.edu.au/~jb616/logsin.pdf
• www.carma.newcastle.edu.au/~jb616/logsin2.pdf.
• http://carma.newcastle.edu.au/jon/logsin3.pdf

3 This and related talks are housed at www.carma.newcastle.
edu.au/~jb616/papers.html#TALKS
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Multiple Polylogarithms:

Lia1,...,ak(z) :=
∑

n1>···>nk>0

zn1

na11 · · ·n
ak
k

.

Thus, Li2,1(z) =
∑∞

k=1
zk

k2
∑k−1

j=1
1
j . Specializing produces:

• The polylogarithm of order k: Lik(x) =
∑∞

n=1
xn

nk
.

• Multiple zeta values:

ζ(a1, . . . , ak) := Lia1,...,ak(1).

• Multiple Clausen (Cl) and Glaisher functions (Gl) of depth k
and weight w :=

∑
aj :

Cla1,...,ak (θ) :=

{
Im Lia1,...,ak(eiθ) if w even
Re Lia1,...,ak(eiθ) if w odd

}
,

Gla1,...,ak (θ) :=

{
Re Lia1,...,ak(eiθ) if w even
Im Lia1,...,ak(eiθ) if w odd

}
.
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Log-sine Integrals

The log-sine integrals are defined for n = 1, 2, . . . by

Lsn (σ) := −
∫ σ

0
logn−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ dθ (1)

and their moments for k ≥ 0 given by

Ls(k)
n (σ) := −

∫ σ

0
θk logn−1−k

∣∣∣∣2 sin
θ

2

∣∣∣∣ dθ. (2)

• Ls1 (σ) = −σ and Ls
(0)
n (σ) = Lsn (σ), as in Lewin. In

particular,

Ls2 (σ) = Cl2 (σ) :=

∞∑
n=1

sin(nσ)

n2
(3)

is the Clausen function which plays a prominent role.

J.M. Borwein Mahler Measures
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Moments of Uniform Random Walks

Definition (Moments)

For complex s the n-th moment function is

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx

Thus, Wn := Wn(1) is the expectation.

• The integral for Wn is analytic precisely for Re s > −2.

1905. Originated with Pearson, and Raleigh:

“What is probability at time n that the rambler is within
one unit of home?”

J.M. Borwein Mahler Measures
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Clearly W1 = 1. What about W2(1)?

W2 =

∫ 1

0

∫ 1

0

∣∣e2πix + e2πiy
∣∣ dxdy = ?

– Mathematica 7 and Maple 14 think the answer is 0.

• There is always a 1-dimension reduction

Wn(s) =

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki

∣∣∣∣sdx
=

∫
[0,1]n−1

∣∣∣∣1 +
n−1∑
k=1

e2πxki

∣∣∣∣sd(x1, . . . , xn−1)

• So

W2 = 4

∫ 1/4

0
cos(πx) dx =

4

π
.

J.M. Borwein Mahler Measures
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n ≥ 3 highly nontrivial and n ≥ 5 not well understood.

• Similar problems get much more difficult in five or more
dimensions — e.g., Bessel moments, Box integrals, Ising
integrals (work with Bailey, Broadhurst, Crandall, ...).

- In fact, W5 ≈ 2.0081618 was the best estimate we could
compute directly, on 256 cores at Lawrence Berkeley National
Laboratory.

- Bailey and I have a general project to develop symbolic
numeric techniques for (meaningful) multi-dim integrals.

When the facts change, I change my mind. What do you do, sir?
— John Maynard Keynes in Economist Dec 18, 1999.

J.M. Borwein Mahler Measures
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compute directly, on 256 cores at Lawrence Berkeley National
Laboratory.

- Bailey and I have a general project to develop symbolic
numeric techniques for (meaningful) multi-dim integrals.

When the facts change, I change my mind. What do you do, sir?
— John Maynard Keynes in Economist Dec 18, 1999.

J.M. Borwein Mahler Measures
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One 1500-step Ramble: a familiar picture

2D and 3D lattice walks are

different:

A drunk man will
find his way
home but a
drunk bird may
get lost forever.
— Shizuo
Kakutani

• 1D (and 3D) easy. Expectation of RMS distance is easy (
√
n).

• 1D or 2D lattice: probability one of returning to the origin.
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1000 three-step Rambles: a less familiar picture?
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Mahler Measures (1923) in several variables

The logarithmic Mahler measure of a (Laurent) polynomial P :

µ(P ) :=

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
log |P

(
e2πiθ1 , · · · , e2πiθn

)
| dθ1 · · · dθn.

• M1 := P 7→ exp(µ(P )) is multiplicative.
• n = 1: P is a product of cyclotomics ⇔M1(P ) = 1.

Lehmer’s conjecture (1931) is: otherwise
M1(P ) ≥M1(1− x+ x3 − x4 + x5 − x6 + x7 − x9 + x10).

• µ(P ) turns out to be an example of a period.
• When n = 1 and P has integer coefficients M1(P ) is an

algebraic integer.
• In several dimensions life is harder.

- We shall see remarkable recent results — many more
discovered than proven — expressing µ(P ) arithmetically.

J.M. Borwein Mahler Measures
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Carlson’s Theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(z) is analytic for Re (z) ≥ 0, its growth on the imaginary axis
is bounded by ecy, |c| < π, and

0 = f(0) = f(1) = f(2) = . . .

then f(z) = 0 identically.

• sin(πz) does not satisfy the conditions of the theorem, as it
grows like eπy on the imaginary axis.

• Wn(s) satisfies the conditions of the theorem (and is in fact
analytic for Re (s) > −2 when n > 2).

• There is a lovely 1941 proof by Selberg of the bounded case.
• The theorem lies under much of what follows.

J.M. Borwein Mahler Measures
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3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

17. Combinatorics
23. Meijer-G functions
28. Hypergeometric values of W3,W4
31. Probability and Bessel J
39. Derivative values of W3,W4

A Little History: from a vast literature toc

L: Pearson posed question
(Nature, 1905).

R: Rayleigh gave large n asymptotics:
pn(x) ∼ 2x

n e
−x2/n (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he studied
in 1880 (diffusion eq’n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C 7→ K), declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.

- Appear in quantum chemistry, in quantum physics as hexagonal and diamond lattice integers, etc ...
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Wn(k) at even values

Even values are easier (combinatorial – no square roots).

k 0 2 4 6 8 10

W2(k) 1 2 6 20 70 252

W3(k) 1 3 15 93 639 4653

W4(k) 1 4 28 256 2716 31504

W5(k) 1 5 45 545 7885 127905

• Can get started by rapidly computing many values naively as
symbolic integrals.

• Observe that W2(s) =
(
s
s/2

)
for s > −1.

• Entering 1,5,45,545 in the OIES now gives “The function
W5(2n) (see Borwein et al. reference for definition).”

J.M. Borwein Mahler Measures
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Wn(k) at odd integers

n k = 1 k = 3 k = 5 k = 7 k = 9

2 1.27324 3.39531 10.8650 37.2514 132.449

3 1.57460 6.45168 36.7052 241.544 1714.62

4 1.79909 10.1207 82.6515 822.273 9169.62
5 2.00816 14.2896 152.316 2037.14 31393.1

6 2.19386 18.9133 248.759 4186.19 82718.9

Please, memorize this number!
During the three years which I spent at Cambridge my time was wasted, as far as the academical studies were

concerned, as completely as at Edinburgh and at school. I attempted mathematics, and even went during the

summer of 1828 with a private tutor (a very dull man) to Barmouth, but I got on very slowly. The work was

repugnant to me, chiefly from my not being able to see any meaning in the early steps in algebra. This impatience

was very foolish, and in after years I have deeply regretted that I did not proceed far enough at least to understand

something of the great leading principles of mathematics, for men thus endowed seem to have an extra sense. —

Autobiography of Charles Darwin

J.M. Borwein Mahler Measures
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n k = 1 k = 3 k = 5 k = 7 k = 9

2 1.27324 3.39531 10.8650 37.2514 132.449

3 1.57460 6.45168 36.7052 241.544 1714.62

4 1.79909 10.1207 82.6515 822.273 9169.62
5 2.00816 14.2896 152.316 2037.14 31393.1

6 2.19386 18.9133 248.759 4186.19 82718.9

Please, memorize this number!
During the three years which I spent at Cambridge my time was wasted, as far as the academical studies were

concerned, as completely as at Edinburgh and at school. I attempted mathematics, and even went during the

summer of 1828 with a private tutor (a very dull man) to Barmouth, but I got on very slowly. The work was

repugnant to me, chiefly from my not being able to see any meaning in the early steps in algebra. This impatience

was very foolish, and in after years I have deeply regretted that I did not proceed far enough at least to understand

something of the great leading principles of mathematics, for men thus endowed seem to have an extra sense. —

Autobiography of Charles Darwin

J.M. Borwein Mahler Measures
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Resolution at even values

• General even formula counts n-letter abelian squares xπ(x) of
length 2k.

– Shallit and Richmond (2008) give asymptotics:

Wn(2k) =
∑

a1+...+an=k

(
k

a1, ..., an

)2

. (4)

• Known to satisfy convolutions:

Wn1+n2(2k) =

k∑
j=0

(
k

j

)2

Wn1(2j)Wn2(2(k − j)).

• Has recursions such as:

(k + 2)2W3(2k + 4)− (10k2 + 30k + 23)W3(2k + 2)

+9(k + 1)2W3(2k) = 0.
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3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

17. Combinatorics
23. Meijer-G functions
28. Hypergeometric values of W3,W4
31. Probability and Bessel J
39. Derivative values of W3,W4

Resolution at even values

• General even formula counts n-letter abelian squares xπ(x) of
length 2k.

– Shallit and Richmond (2008) give asymptotics:

Wn(2k) =
∑

a1+...+an=k

(
k

a1, ..., an

)2

. (4)

• Known to satisfy convolutions:

Wn1+n2(2k) =

k∑
j=0

(
k

j

)2

Wn1(2j)Wn2(2(k − j)).

• Has recursions such as:

(k + 2)2W3(2k + 4)− (10k2 + 30k + 23)W3(2k + 2)

+9(k + 1)2W3(2k) = 0.

J.M. Borwein Mahler Measures



3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

17. Combinatorics
23. Meijer-G functions
28. Hypergeometric values of W3,W4
31. Probability and Bessel J
39. Derivative values of W3,W4

Resolution at even values

• General even formula counts n-letter abelian squares xπ(x) of
length 2k.

– Shallit and Richmond (2008) give asymptotics:

Wn(2k) =
∑

a1+...+an=k

(
k

a1, ..., an

)2

. (4)

• Known to satisfy convolutions:

Wn1+n2(2k) =

k∑
j=0

(
k

j

)2

Wn1(2j)Wn2(2(k − j)).

• Has recursions such as:

(k + 2)2W3(2k + 4)− (10k2 + 30k + 23)W3(2k + 2)

+9(k + 1)2W3(2k) = 0.

J.M. Borwein Mahler Measures



3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

17. Combinatorics
23. Meijer-G functions
28. Hypergeometric values of W3,W4
31. Probability and Bessel J
39. Derivative values of W3,W4

Analytic continuation: From Carlson’s Theorem

• So integer recurrences yield complex functional equations. Viz

(s+4)2W3(s+4)−2(5s2+30s+46)W3(s+2)+9(s+2)2W3(s) = 0.

• This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

– W3(s) has a simple pole at −2 with residue 2√
3π
, and other

simple poles at −2k with residues a rational multiple of Res−2.

“For it is easier to supply the proof when we have previously acquired, by

the method [of mechanical theorems], some knowledge of the questions

than it is to find it without any previous knowledge. — Archimedes.
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Odd dimensions look like 3

W3(s) on [−6, 5
2 ]

• JW proved zeroes near to but not at integers: W3(−2n− 1) ↓ 0.
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Some even dimensions look more like 4

L: W4(s) on [−6, 1/2]. R: W5 on [−6, 2] (T), W6 on [−6, 2] (B).

• The functional equation (with double poles) for n = 4 is

(s+ 4)3W4(s+ 4) − 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2)

+ 64(s+ 2)3W4(s) = 0

• There are (infinitely many) multiple poles if and only if 4|n.
• Why is W4 positive on R?
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Meijer-G functions (1936– )

Definition

Gm,np,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x) :=
1

2πi
×

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏p

j=n+1 Γ(aj − s)
∏q
j=m+1 Γ(1− bj + s)

xsds.

• Contour L lies between poles of Γ(1−ai− s) and of Γ(bi + s).

- A broad generalization of hypergeometric functions —
capturing Bessel Y,K and much more.

- Important in CAS — if better hidden; often lead to
superpositions of generalized hypergeometric terms pFq.
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Meijer-G forms for W3

Theorem (Meijer form for W3)

For s not an odd integer

W3(s) =
Γ(1 + s

2)
√
π Γ(− s

2)
G21

33

(
1, 1, 1

1
2 ,−

s
2 ,−

s
2

∣∣∣∣14
)
.

• First found by Crandall via CAS.
• Proved using residue calculus methods.
• W3(s) is among few non-trivial Meijer-G with a closed form.

The most important aspect in solving a mathematical problem is the

conviction of what is the true result. Then it took 2 or 3 years using

the techniques that had been developed during the past 20 years or so.

— Lennart Carleson (From 1966 IMU address on his positive solution of

Luzin’s problem).
J.M. Borwein Mahler Measures
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Meijer-G form for W4

Theorem (Meijer form for W4)

For Re s > −2 and s not an odd integer

W4(s) =
2s

π

Γ(1 + s
2)

Γ(− s
2)

G22
44

(
1, 1−s

2 , 1, 1
1
2 −

s
2 ,−

s
2 ,−

s
2

∣∣∣∣1
)
. (5)

• Not helpful for odd integers. We must again look elsewhere ...

He [Gauss(or Mma)] is like the fox, who effaces his tracks in the sand with his tail.— Niels Abel (1802-1829)J.M. Borwein Mahler Measures
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Visualizing W4 in the complex plane

• Easily drawn now in Mathematica from recursion and
Meijer-G form.

– To (L) each value is coloured differently (black is zero and
white infinity). To (R) we colour by quadrants. Note the poles
and zeros.

J.M. Borwein Mahler Measures
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Simplifying the Meijer integral

Corollary (Hypergeometric forms for noninteger s > −2)

W3(s) =
1

22s+1
tan

(
πs

2

)(
s
s−1
2

)2

3F2

(
1
2
, 1
2
, 1
2

s+3
2
, s+3

2

∣∣∣∣ 1
4

)
+

(
s

s
2

)
3F2

(
− s

2
,− s

2
,− s

2

1,− s−1
2

∣∣∣∣ 1
4

)
,

and

W4(s) =
1

22s
tan

(
πs

2

)(
s
s−1
2

)3

4F3

(
1
2
, 1
2
, 1
2
, s
2

+ 1

s+3
2
, s+3

2
, s+3

2

∣∣∣∣1
)

+

(
s

s
2

)
4F3

(
1
2
,− s

2
,− s

2
,− s

2

1, 1,− s−1
2

∣∣∣∣1
)
.

• We (humans) were able to provably take the limit:

W4(−1) =
π

4
7F6

(
5
4
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

1
4
, 1, 1, 1, 1, 1

∣∣∣∣1
)

=
π

4

∞∑
n=0

(4n + 1)
(
2n
n

)6
46n

=
π

4
6F5

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

1, 1, 1, 1, 1

∣∣∣∣1
)

+
π

64
6F5

(
3
2
, 3
2
, 3
2
, 3
2
, 3
2
, 3
2

2, 2, 2, 2, 2

∣∣∣∣1
)
.

• We have proven the corresponding result for W4(1) ....
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∣∣∣∣1
)

=
π

4

∞∑
n=0

(4n + 1)
(
2n
n

)6
46n

=
π

4
6F5

(
1
2
, 1
2
, 1
2
, 1
2
, 1
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∣∣∣∣1
)

+
π
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6F5
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, 3
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, 3
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, 3
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, 3
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∣∣∣∣1
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∣∣∣∣1
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∣∣∣∣1
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Hypergeometric values of W3,W4: from Meijer-G values.

Much work involving moments of elliptic integrals yields:

Theorem (Tractable hypergeometric form for W3)

(a) For s 6= −3,−5,−7, . . . , we have

W3(s) =
3s+3/2

2π
β

(
s+

1

2
, s+

1

2

)
3F2

(
s+2

2 , s+2
2 , s+2

2

1, s+3
2

∣∣∣∣14
)
.

(6)

(b) For every natural number k = 1, 2, . . .,

W3(−2k − 1) =

√
3
(

2k
k

)2
24k+132k 3F2

( 1
2 ,

1
2 ,

1
2

k + 1, k + 1

∣∣∣∣14
)
.
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A Discovery Demystified: on piecing all this together
We first noted that:

W3(2k) =
∑

a1+a2+a3=k

(
k

a1, a2, a3

)2

= 3F2

(
1/2,−k,−k

1, 1

∣∣∣∣4)︸ ︷︷ ︸
=:V3(2k)

.

We discovered numerically that: V3(1) = 1.57459− .12602652i

Theorem (Real part)

For all integers k we have W3(k) = Re (V3(k)).

We have a habit in writing articles published in scientific journals to

make the work as finished as possible, to cover up all the tracks, to not

worry about the blind alleys or describe how you had the wrong idea first.

. . . So there isn’t any place to publish, in a dignified manner, what you

actually did in order to get to do the work. — Richard Feynman (Nobel

acceptance 1966)
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Closed Forms for W3

• We then confirmed 175 digits of

W3(1) ≈ 1.57459723755189365749 . . .

• Armed with a knowledge of elliptic integrals:

W3(1) =
16 3
√

4π2

Γ(1
3)6

+
3Γ(1

3)6

8 3
√

4π4
= W3(−1) +

6/π2

W3(−1)
, (7)

W3(−1) =
3Γ(1

3)6

8 3
√

4π4
=

2
1
3

4π2
β2

(
1

3

)
. (8)

Here β(s) := B(s, s) = Γ(s)2

Γ(2s) .

• Obtained via singular values of the elliptic integral and
Legendre’s identity.
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Probability: Bessel function representations

1906. J.C. Kluyver (1860-1932) derived the cumulative radial
distribution function (Pn) and density (pn) of the n-step distance:

Pn(t) = t

∫ ∞
0

J1(xt) Jn0 (x) dx

pn(t) = t

∫ ∞
0

J0(xt) Jn0 (x)x dx (n ≥ 4) (9)

where Jn(x) is a Bessel function of the first kind
• See also Watson (1932, §49) – 3-dim walks are elementary.

• From (11) below, we find

pn(1) = Res−2 (Wn+1) (n 6= 4). (10)

• As p2(α) = 2
π
√

4−α2
, we check in Maple that the following

code returns R = 2/(
√

3π) symbolically:
R:=identify(evalf[20](int(BesselJ(0,x)^3*x,x=0..infinity)))
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A Bessel Integral for Wn

• Now Pn(1) = J0(0)n+1

n+1 = 1
n+1 (Pearson’s original question).

• Broadhurst used (9) for 2k > s > −n
2 to write

Wn(s) = 2s+1−k Γ(1 + s
2)

Γ(k − s
2)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x)dx,

(11)
a useful oscillatory 1-dim integral (used below).

• Thence

Wn(−1) =

∫ ∞
0

Jn0 (x)dx, Wn(1) = n

∫ ∞
0

J1(x)J0(x)n−1 dx

x
.

(12)

Integrands for W4(−1) (blue) and
W4(1) (red) on [π, 4π] from (12).
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The Densities for n = 3, 4 are Modular
Let σ(x) := 3−x

1+x . Then σ is an involution on [0, 3] sending [0, 1] to [1, 3]:

p3(x) =
4x

(3− x)(x+ 1)
p3(σ(x)).

So 3
4p
′
3(0) = p3(3) =

√
3

2π , p(1) =∞. We found:

p3(α) =
2
√
3α

π
(
3 + α2

) 2F1

 1
3
, 2
3

1

∣∣∣∣α2
(
9− α2

)2
(
3 + α2

)3
 =

2
√
3

π

α

AG3(3 + α2, 3
(
1− α2

)2/3)
where AG3 is the cubically convergent mean iteration (1991):

AG3(a, b) :=
a + 2b

3

⊗(
b ·

a2 + ab + b2

3

)1/3

. The densities p3 (L) and p4 (R)
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Formula for the ‘shark-fin’ p4

We ultimately deduce on 2 ≤ α ≤ 4 a hyper-closed form:

p4(α) =
2

π2

√
16− α2

α
3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− α2

)3
108α4

)
. (13)

← p4 from (13) vs 18-terms of series

X Proves p4(2) = 27/3π
3
√
3

Γ
(
2
3

)−6
=

√
3
π W3(−1) ≈ 0.494233 < 1

2

• Marvelously, we found — and proved
by a subtle use of distributional Mellin
transforms — that on [0, 2] as well:

p4(α) =
2

π2

√
16− α2

α
Re 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− α2

)3
108α4

)
(Discovering this Re brought us full circle.)
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Densities for 5 ≤ n ≤ 8 (and large n approximation)
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Both p2n+4, p2n+5 are n-times continuously differentiable for x > 0

(pn(x) ∼ 2x
n e
−x2/n). So “four is small” but “eight is large.”
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The Five Step Walk

• The functional equation for W5 is:

225(s + 4)
2
(s + 2)

2
W5(s) = −(35(s + 5)

4
+ 42(s + 5)

2
+ 3)W5(s + 4)

+ (s + 6)
4
W5(s + 6) + (s + 4)

2
(259(s + 4)

2
+ 104)W5(s + 2).

• We deduce the first two poles — and so all — are simple since

lim
s→−2

(s+ 2)2W5(s) =
4

225
(285W5(0)− 201W5(2) + 16W5(4)) = 0

lim
s→−4

(s+ 4)2W5(s) = − 4

225
(5W5(0)−W5(2)) = 0.

• We stumbled upon

p4(1) =Res−2(W5) =

√
15

3π
3F2

( 1
3 ,

2
3 ,

1
2

1, 1

∣∣∣∣−4

)
.

??? Is there a hyper-closed form for W5(∓1) ???
J.M. Borwein Mahler Measures
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W5 and p5: Bessel integrals are hard

• We only knew Res−4(W5) numerically — but to 500 digits:
(Bailey in about 5.5hrs on 1 MacPro core).

– Sidi-“mW” method used: i.e., Gaussian quadrature on
intervals of [nπ, (n+ 1)π] plus Richardson-like extrapolation.

– July 2011. r5(2) was identified (with help from QFT)!

r5(2)
?
=

13

225
r5(1)− 2

5π4

1

r5(1)
. (14)

• Here r5(k) := Res(−2k)(W5). Other residues are then
combinations as follows:

• From the W5-recursion: given r5(0) = 0, r5(1) and r5(2) we have

r5(k + 3) =
k4r5(k)−

(
5 + 28 k + 63 k2 + 70 k3 + 35 k4

)
r5(k + 1)

225(k + 1)2(k + 2)2

+

(
285 + 518 k + 259 k2

)
r5(k + 2)

225(k + 2)2
.
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W5 and p5: Bessel integrals can be hard
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Figure: The series at zero and p5.
• 1963. Fettis first rigorously established nonlinearity. A few more

residues yield p5(x) = 0.329934x+ 0.00661673x3 +
0.000262333x5 + 0.0000141185x7 +O(x9)

Hence the strikingly straight shape of p5(x) on [0, 1] :

“the graphical construction, however carefully reinvestigated, did not per-
mit of our considering the curve to be anything but a straight line. . . Even
if it is not absolutely true, it exemplifies the extraordinary power of such
integrals of J products to give extremely close approximations to such
simple forms as horizontal lines.” — Karl Pearson (1906)
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Short Random Walks: Derivatives of W3,W4

From the hypergeometric forms above we get:

W ′3(0) =
1

π
3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣∣14
)

=
1

π
Cl
(π

3

)
. (15)

The last equality follows from setting θ = π/6 in the identity

2 sin(θ)3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣∣sin2 θ

)
= Cl (2 θ) + 2 θ log (2 sin θ) .

Also

W ′4(0) =
4

π2 4F3

(
1
2 ,

1
2 ,

1
2 , 1

3
2 ,

3
2 ,

3
2

∣∣∣∣1
)

=
7ζ(3)

2π2
. (16)

Here Cl(θ) :=
∑∞

n=1
sin(nθ)

n2 is Clausen’s function. Likewise:

W
′
3(2) =

3

π
Cl
(π

3

)
− 3
√

3

2π
+ 2 . . .
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39. Derivative values of W3,W4

Short Random Walks: Derivatives of W3,W4

From the hypergeometric forms above we get:

W ′3(0) =
1

π
3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣∣14
)

=
1

π
Cl
(π

3

)
. (15)

The last equality follows from setting θ = π/6 in the identity

2 sin(θ)3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣∣sin2 θ

)
= Cl (2 θ) + 2 θ log (2 sin θ) .

Also

W ′4(0) =
4

π2 4F3

(
1
2 ,

1
2 ,

1
2 , 1

3
2 ,

3
2 ,

3
2

∣∣∣∣1
)

=
7ζ(3)

2π2
. (16)

Here Cl(θ) :=
∑∞

n=1
sin(nθ)

n2 is Clausen’s function. Likewise:

W
′
3(2) =

3

π
Cl
(π

3

)
− 3
√

3

2π
+ 2 . . .
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44. Boyd’s Conjectures

Multiple Mahler Measures: for P1, P2, . . . , Pm toc

µ(P1, P2, . . . , Pm) :=

∫ 1

0

· · ·
∫ 1

0

m∏
k=1

log
∣∣Pk (e2πiθ1 , · · · , e2πiθn)∣∣ dθ1 · · · dθn,

was introduced by Sasaki (2010); while

µm(P ) := µ(P,P, . . . , P ), (µ1(P ) = µ(P ))

is a higher Mahler measure as in (KLO) Kurakowa, Laĺın and
Ochiai (2008). Also

µm

(
1 +

n−1∑
k=1

xk

)
= W (m)

n (0), (17)

was evaluated in (15), (16) for n = 3 and n = 4 and m = 1:

1 µ(1 + x+ y) = L
′
3(−1) = 1

π Cl
(
π
3

)
(Smyth)

2 µ(1 + x+ y + z) = 14 ζ
′
(−2) = 7

2
ζ(3)
π2 (Smyth)

– So (17) recaptured both Smyth’s results.
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Ochiai (2008). Also

µm

(
1 +

n−1∑
k=1

xk

)
= W (m)

n (0), (17)

was evaluated in (15), (16) for n = 3 and n = 4 and m = 1:

1 µ(1 + x+ y) = L
′
3(−1) = 1

π Cl
(
π
3

)
(Smyth)

2 µ(1 + x+ y + z) = 14 ζ
′
(−2) = 7

2
ζ(3)
π2 (Smyth)

– So (17) recaptured both Smyth’s results.

J.M. Borwein Mahler Measures



3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

41. Relations to η
42. Smyth’s results revisited
44. Boyd’s Conjectures

Multiple Mahler Measures: for P1, P2, . . . , Pm toc

µ(P1, P2, . . . , Pm) :=

∫ 1

0

· · ·
∫ 1

0

m∏
k=1

log
∣∣Pk (e2πiθ1 , · · · , e2πiθn)∣∣ dθ1 · · · dθn,

was introduced by Sasaki (2010); while

µm(P ) := µ(P,P, . . . , P ), (µ1(P ) = µ(P ))

is a higher Mahler measure as in (KLO) Kurakowa, Laĺın and
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44. Boyd’s Conjectures

Relations to Dedekind’s η

Denninger’s 1997 conjecture, proven recently by Rogers and
Zudilin (2011), is

µ(1 + x+ y + 1/x+ 1/y)
?
=

15

4π2
LE(2)

– an L-series value for an elliptic curve E with conductor 15.

• For (17) with n = 5, 6 conjectures of Villegas become:

W
′

5(0)
?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt

W
′

6(0)
?
=

(
3

π2

)3 ∫ ∞
0

η2(e−t)η2(e−2t)η2(e−3t)η2(e−6t) t4 dt

where Dedekind’s η is η(q) := q1/24
∑∞

n=−∞(−1)nqn(3n+1)/4.

• Confirmed to 600 (Sidi) and to 80 digits respectively.
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µ(1 + x+ y) and µ(1 + x+ y + z) revisited

We recall:

Lemma (Jensen’s formula)∫ 1

0
log
∣∣α+ e2πi t

∣∣ dt = log (max{|α|, 1}) . (18)

We use (18) to reduce to a one dimensional integral:

µ(1 + x+ y) =

∫ 5/6

1/6
log(2 sin(πy)) dy =

1

π
Ls2

(π
3

)
=

1

π
Cl2

(π
3

)
,

which is (15).
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µ(1 + x+ y) and µ(1 + x+ y + z) revisited

Following Boyd, on applying Jensen’s formula, for complex a and b
we have µ(ax+ b) = log |a| ∨ log |b|. Let w := y/z. We now write

µ(1 + x+ y + z) = µ(1 + x+ z(1 + w)) = µ(log |1 + w| ∨ log |1 + x|)

=
1

π2

∫ π

0

dθ

∫ π

0

max

{
log

(
2 sin

θ

2

)
, log 2

(
sin

t

2

)}
dt

=
2

π2

∫ π

0

dθ

∫ θ

0

log

(
2 sin

θ

2

)
dt

=
2

π2

∫ π

0

θ log

(
2 sin

θ

2

)
dθ

= − 2

π2
Ls

(1)
3 (π) =

7

2

ζ(3)

π2
,

which is (16).
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Boyd’s 1998 Conjectures

Theorem (Two quadratic evaluations)

Below L−n is a primitive L-series and G is Catalan’s constant.

µ3 := µ(y2(x+ 1)2 + y(x2 + 6x+ 1) + (x+ 1)2) =
16

3π
L−4(2)

=
16

3π
G,

µ−5 := µ(y2(x+ 1)2 + y(x2 − 10x+ 1) + (x+ 1)2) =
5
√

3

π
L−3(2)

=
20

3π
Cl2

(π
3

)
.
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Log-sine Integrals are Again Inside

First proven in 2008 using Bloch-Wigner logarithms, we used a
variant of Jensen’s formula and slick trigonometry to arrive at:

µ3 =
1

π

∫ π

0
log(1 + 4| cos θ|+ 4| cos2 θ|) dθ

=
4

π

∫ π/2

0
log(1 + 2 cos θ) dθ

=
4

π

∫ π/2

0
log

(
2 sin 3θ

2

2 sin θ
2

)
dθ

=
4

3π

(
Ls2

(
3π

2

)
− 3 Ls2

(π
2

))
=

16

3

L−4(2)

π

as needed, since Ls2

(
3π
2

)
= −Ls2

(
π
2

)
= L−4(2), which is

Catalan’s G. (µ5 is similar.)

J.M. Borwein Mahler Measures



3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

41. Relations to η
42. Smyth’s results revisited
44. Boyd’s Conjectures

Log-sine Integrals are Again Inside

First proven in 2008 using Bloch-Wigner logarithms, we used a
variant of Jensen’s formula and slick trigonometry to arrive at:

µ3 =
1

π

∫ π

0
log(1 + 4| cos θ|+ 4| cos2 θ|) dθ

=
4

π

∫ π/2

0
log(1 + 2 cos θ) dθ

=
4

π

∫ π/2

0
log

(
2 sin 3θ

2

2 sin θ
2

)
dθ

=
4

3π

(
Ls2

(
3π

2

)
− 3 Ls2

(π
2

))
=

16

3

L−4(2)

π

as needed, since Ls2

(
3π
2

)
= −Ls2

(
π
2

)
= L−4(2), which is

Catalan’s G. (µ5 is similar.)

J.M. Borwein Mahler Measures



3. Introduction
15. Short Random Walks

39. Multiple Mahler Measures
45. Log-sine Integrals

46. Sasaki’s Mahler Measures
53. Three Cognate Evaluations
55. KLO’s Mahler Measures
59. Conclusion

Sasaki’s Multiple Mahler Measures toc

µk(1 + x+ y∗) := µ(1 + x+ y1, 1 + x+ y2, . . . , 1 + x+ yk)

was studied by Sasaki (2010). He used (18) to observe that

µk(1 + x+ y∗) = −
∫ 5/6

1/6
logk

∣∣1 + e2πi t
∣∣ dt (19)

and so provides an evaluation of µ2(1 + x+ y∗). Immediately from
(19) and the definition of the log-sine integrals we have:

Theorem (For k = 1, 2, ...)

µk(1 + x+ y∗) =
1

π

{
Lsk+1

(π
3

)
− Lsk+1 (π)

}
, (20)

where Lsk+1 is as given by (1).
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Lsk (π) and Ls(k)
n (π)

− 1

π

∞∑
m=0

Lsm+1 (π)
um

m!
=

Γ (1 + u)

Γ2
(
1 + u

2

) =

(
u

u/2

)
. (21)

Example (Values of Lsn (π))

For instance, we have Ls2 (π) = 0 as well as

−Ls3 (π) =
1

12
π3 Ls4 (π) =

3

2
π ζ(3)

−Ls5 (π) =
19

240
π5 Ls6 (π) =

45

2
π ζ(5) +

5

4
π3ζ(3)

−Ls7 (π) =
275

1344
π7 +

45

2
π ζ2(3)
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Lsn (π) and Ls(k)
n (π)

Equation (21) is made for a CAS (Mma, Sage or Maple):
for k to 7 do

simplify(subs(x=0,diff(Pi*binomial(x,x/2),x$k))) od

We studied general log-sine evaluations with an emphasis on
automatic provable evaluations. For example:

Theorem (Borwein-Straub)

For 2|µ| < λ < 1 we have

−
∑
n,k≥0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
= i
∑
n≥0

(
λ

n

)
(−1)neiπ

λ
2 − eiπµ

µ− λ
2 + n

.
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Ls(k)
n (τ) is Made of Sterner Stuff.

• Contour integration and “polylogarithmics” yield an ugly but
very efficient result:

Theorem (Reduction Theorem for 0 ≤ τ ≤ 2π )

For n, k such that n− k ≥ 2, we have

ζ(k, {1}n)−
k−2∑
j=0

(−iτ)j

j!
Lik−j,{1}n (e

iτ
)

=
(−i)k−1

(k − 2)!

(−1)n

(n + 1)!

n+1∑
r=0

r∑
m=0

(
n + 1

r

)(
r

m

)(
i

2

)r
(−π)r−mLs

(k+m−2)
n+k−(r−m)

(τ).

where Li2+k−j,{1}n−k−2(eiτ ) is a harmonic polylogarithm and

ζ(n− k, {1}k) is an Euler-Zagier sum.
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Ls(k)
n

(
π
3

)
: A small miracle occurs: e−i

π
3 = ei

π
3 .

The Reduction Theorem now lets us find all values of Ls
(k)
n

(
π
3

)
and so of µk(1 + x+ y∗):

Example (Values of Lsn (π/3))

Ls2

(π
3

)
= Cl2

(π
3

)
− Ls3

(π
3

)
=

7

108
π3

Ls4

(π
3

)
=

1

2
π ζ(3) +

9

2
Cl4

(π
3

)
−Ls5

(π
3

)
=

1543

19440
π5 − 6 Gl4,1

(π
3

)
Ls6

(π
3

)
=

15

2
π ζ(5) +

35

36
π3ζ(3) +

135

2
Cl6

(π
3

)
−Ls7

(π
3

)
=

74369

326592
π7 +

15

2
πζ(3)2 − 135 Gl6,1

(π
3

)
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A Result for General τ

• An illustration of results produced by our programs:

Example (For 0 ≤ τ ≤ 2π)

Ls
(1)
4 (τ) = 2ζ(3, 1)− 2 Gl3,1 (τ)− 2τ Gl2,1 (τ)

+
1

4
Ls

(3)
4 (τ)− 1

2
π Ls

(2)
3 (τ) +

1

4
π2 Ls

(1)
2 (τ)

=
1

180
π4 − 2 Gl3,1 (τ)− 2τ Gl2,1 (τ)

− 1

16
τ4 +

1

6
πτ3 − 1

8
π2τ2.
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A Result for General τ

• An illustration of results produced by our programs:

Example (For 0 ≤ τ ≤ 2π)

Ls
(1)
4 (τ) = 2ζ(3, 1)− 2 Gl3,1 (τ)− 2τ Gl2,1 (τ)

+
1

4
Ls

(3)
4 (τ)− 1

2
π Ls

(2)
3 (τ) +

1

4
π2 Ls

(1)
2 (τ)

=
1

180
π4 − 2 Gl3,1 (τ)− 2τ Gl2,1 (τ)

− 1

16
τ4 +

1

6
πτ3 − 1

8
π2τ2.
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Irreducibility and Binomial Sums

Example (The first presumably irreducible value for π/3)

Gl4,1

(π
3

)
=

∞∑
n=1

∑n−1
k=1

1
k

n4
sin
(nπ

3

)
=

3341

1632960
π5 − 1

π
ζ2(3)− 3

4π

∞∑
n=1

1(
2n
n

)
n6

while always

Ls
(1)
n+2

(π
3

)
=

n!(−1)n+1

2n

∞∑
k=1

1

kn+2
(

2k
k

) .
• Alternating binomial sums come from imaginary values of τ

via log sinh integrals at ρ = 1+
√

5
2 .
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First Evaluation
Let

µk(1 + x+ y∗ + z∗) := µ(1 + x+ y1 + z1, . . . , 1 + x+ yk + zk).
(22)

Theorem

For all positive integers k, we have

µk(1 + x+ y∗ + z∗) = − 1

πk+1

∫ π

0

(
θ log

(
2 sin

θ

2

)
− Cl2 (θ)

)k
dθ

Then

µ1(1 + x+ y∗ + z∗) = − 2

π2
Ls

(1)
3 (π) =

7

2

ζ(3)

π2
,

µ2(1 + x+ y∗ + z∗) = − 1

π3
Ls

(2)
5 (π) +

π2

90
=

4

π2
Li3,1(−1) +

7

360
π2.
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Two More Evaluations: with Kummer-type logarithms
Let

λn(x) := (n− 2)!

n−2∑
k=0

(−1)k

k!
Lin−k(x) logk |x|+ (−1)n

n
logn |x|,

so that

λ1

(
1
2

)
= log 2, λ2

(
1
2

)
=

1

2
ζ(2), λ3

(
1
2

)
=

7

8
ζ(3),

and λ4

(
1
2

)
is the first to reveal the presence of Lin

(
1
2

)
. From the

value of W
′′
4 (0) we derive:

Theorem

µ2(1 + x+ y + z) =
12

π2
λ4

(
1
2

)
− π2

5

µ(1 + x, 1 + x, 1 + x+ y + z) =
4

3π2
λ5

(
1
2

)
− 3

4
ζ(3) +

31

16π2
ζ(5).
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KLO’s Mahler Measures

Theorem (Hypergeometric forms for µn(1 + x+ y))

For complex |s| < 2, we may write

∞∑
n=0

µn(1 + x+ y)
sn

n!
=

√
3

2π
3s+1 Γ(1 + s

2 )2

Γ(s+ 2)
3F2

(
s+2
2 , s+2

2 , s+2
2

1, s+3
2

∣∣∣∣14
)
(23)

=

√
3

π

(
3

2

)s+1 ∫ 1

0

z1+s2F1

(
1+ s

2 ,1+
s
2

1

∣∣∣∣ z24 )
√

1− z2
dz.
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Evaluation of µn(1 + x+ y) Requires a Taylor Expansion

Consider

3F2

(
ε+2

2 , ε+2
2 , ε+2

2

1, ε+3
2

∣∣∣∣14
)

=

∞∑
n=0

αnε
n. (24)

Indeed, from (23) and Leibnitz’ rule we have

µn(1 + x+ y) =

√
3

2π

n∑
k=0

(
n

k

)
αkβn−k (25)

where βk is defined by

3ε+1 Γ(1 + ε
2)2

Γ(ε+ 2)
=

∞∑
n=0

βnε
n.

Note, as above, that βk is easy to compute.
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Faà di Bruno’s Formula

We can now read off the terms αn of the ε-expansion:

Theorem (For n = 0, 1, 2, . . .)

Let Ak,j :=
∑2j−1
m=2

2(−1)m+1−1
mk

. Then

[εn] 3F2

(
ε+2
2 , ε+2

2 , ε+2
2

1, ε+3
2

∣∣∣∣14
)

= (−1)n
∞∑
j=1

2

j

1(
2j
j

) ∑ n∏
k=1

Amkk,j
mk!kmk

(26)

where we sum over all m1, . . . ,mn with m1 + 2m2 + . . .+ nmn = n.

Proof.

Equation (26) follows from (23) on using Faà di Bruno’s formula for the
n-th derivative of the composition on two functions via Pochhammer
notation.
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Davydychev and Kalmykov’s Binomial Sums Yield:

Example

µ1(1 + x+ y) =
3

2π
Ls2

(
2π

3

)
µ2(1 + x+ y) =

3

π
Ls3

(
2π

3

)
+
π2

4

µ3(1 + x+ y)
?
=

6

π
Ls4

(
2π

3

)
− 9

π
Cl4

(π
3

)
− π

4
Cl2

(π
3

)
− 1

2
ζ(3).

As we had obtained by other methods. Also PSLQ then finds:

πµ4(1 + x+ y)
?
= 12 Ls5

(
2π

3

)
− 49

3
Ls5

(π
3

)
+ 81 Gl4,1

(
2π

3

)
+ 3π2 Gl2,1

(
2π

3

)
+ 2ζ(3) Cl2

(π
3

)
+ πCl2

(π
3

)2
− 29

90
π5.
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Conclusion

We also have generalized arctangent forms, such as:

µ2(1 +x+ y) =
24

5π
Ti3

(
1√
3

)
+

2 log 3

π
Cl2

(π
3

)
− log2 3

10
− 19π2

180
.

1 We still seek for a complete accounting of µn(1 + x+ y).

2 Our log-sine and MZV algorithms uncovered many errors and
gaps (e.g., values of Euler sums such as ζ(2n+ 11) in terms

of Ls
(2n−3)
2n (π)) in the literature.

3 Automated simplification, validation and correction tools are
more and more important.

4 Thank you!
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