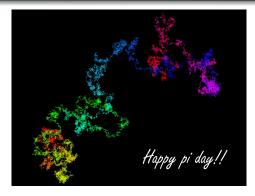
The Life of π : History and Computation a Talk for PiDay

Jonathan M. Borwein FRSC FAA FAAAS

Laureate Professor & Director of CARMA University of Newcastle http://carma.newcastle.edu.au/jon/piday.pdf

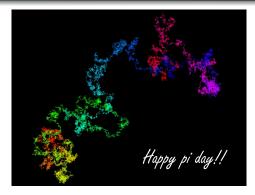
Workshop in Honour of Alf van der Poorten March 15, 2012 Revised: 14.03.2012



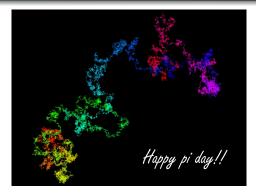
J.M. Borwein Life of Pi (CARMA)

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 107. Computing Individual Digits of π

- Pi in popular culture: Pi Day 3.14.
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.



- Pi in popular culture: Pi Day 3.14.
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.


Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 107. Computing Individual Digits of π

- Pi in popular culture: Pi Day 3.14.
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 107. Computing Individual Digits of π

- Pi in popular culture: Pi Day 3.14.
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

Outline. We will cover Some of:

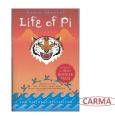
19. Pi's Childhood

3

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

- 2 38. Pi Adolescence Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic
 - 43. Adulthood of Pi Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?
 - 74. Pi in the Digital Age Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

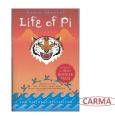
107. Computing Individual Digits of BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3



Introduction: Pi is ubiquitous

- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians — great and less great — for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

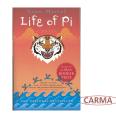
Pi, uniquely in mathematics, is pervasive in popular culture and the popular imagination.



Introduction: Pi is ubiquitous

- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians — great and less great — for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

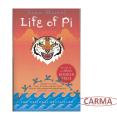
Pi, uniquely in mathematics, is pervasive in popular culture and the popular imagination.



Introduction: Pi is ubiquitous

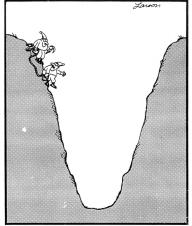
- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians — great and less great — for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

Pi, uniquely in mathematics, is pervasive in popular culture and the popular imagination.



Introduction: Pi is ubiquitous

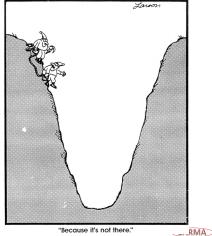
- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians — great and less great — for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.


Pi, uniquely in mathematics, is pervasive in popular culture and the popular imagination.

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.

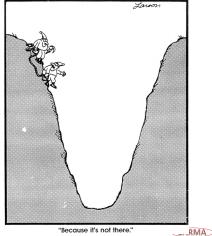


"Because it's not there."

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;

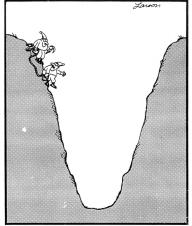


"Because it's not there."

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

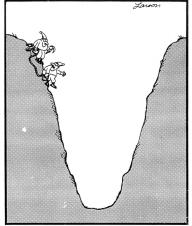
- of important mathematics;



"Because it's not there."

The Life of Pi Teaches a Great Deal:

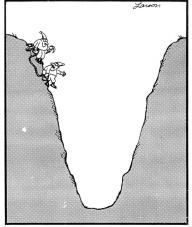
We shall learn that scientists are humans and see a lot:


- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.

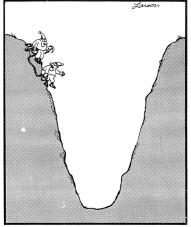


Pi's Childhood
 Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

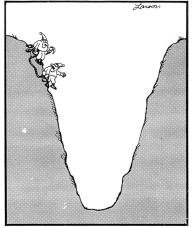
- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.


"Because it's not there."

Pi's Childhood
 Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

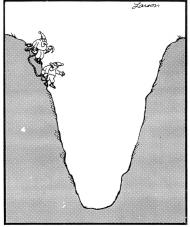
The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:


- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.

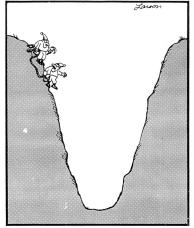
The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:


- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.

The Life of Pi Teaches a Great Deal:

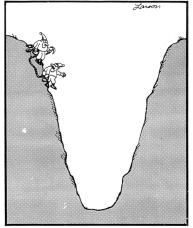
We shall learn that scientists are humans and see a lot:


- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.

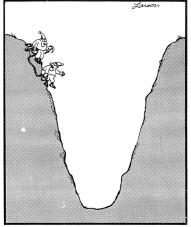


Pi's Childhood
 Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.



"Because it's not there."

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird — stuff.

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

low I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Now I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Now I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Now I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Now I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

Pi's Childhood
 Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

Life of Pi (2001): Yann Martel's 2002 Booker Prize winning novel starts

''My name is <u>Pi</u>scine Molitor Patel known to all as Pi Patel For good measure I added $\pi = 3.14$ and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of geometry.''

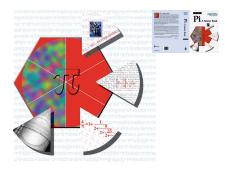
- **1706**. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) popularized π .
 - One of the three or four greatest mathematicians of all times:
 - He introduced much of our modern notation: $\int, \Sigma, \phi, e, \Gamma, \dots$

Pi's Childhood
 Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

Life of Pi (2001): Yann Martel's 2002 Booker Prize winning novel starts

''My name is <u>Pi</u>scine Molitor Patel known to all as Pi Patel For good measure I added $\pi = 3.14$ and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of geometry.''

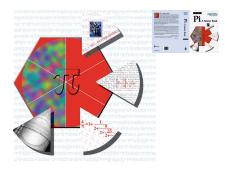
- **1706**. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) popularized π .
 - One of the three or four greatest mathematicians of all times:
 - He introduced much of our modern notation: $\int \Sigma, \phi, e, \Gamma, \ldots$


Life of Pi (2001): Yann Martel's 2002 Booker Prize winning novel starts

''My name is <u>Pi</u>scine Molitor Patel known to all as Pi Patel For good measure I added $\pi = 3.14$ and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of geometry.''

- 1706. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) popularized π .
 - One of the three or four greatest mathematicians of all times:
 - He introduced much of our modern notation: $\int, \Sigma, \phi, e, \Gamma, \dots$

Pi: the Source Book (1997)



- Berggren, Borwein and Borwein, 3rd Ed, Springer, **2004**. (3,650 years of copyright releases. *E-rights* for Ed. 4 are in process.)
 - MacTutor at www-gap.dcs.st-and.ac.uk/~history (my home town) is a good informal mathematical history source.

CARMA

See also www.cecm.sfu.ca/~jborwein/pi_cover.html.

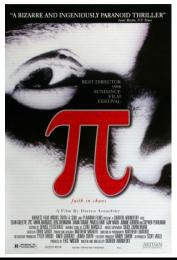
Pi: the Source Book (1997)

- Berggren, Borwein and Borwein, 3rd Ed, Springer, **2004**. (3,650 years of copyright releases. *E-rights* for Ed. 4 are in process.)
 - MacTutor at www-gap.dcs.st-and.ac.uk/~history (my home town) is a good informal mathematical history source.

CARMA

See also www.cecm.sfu.ca/~jborwein/pi_cover.html.

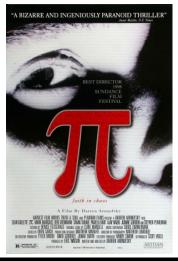
Pi: in The Matrix (1999)


Keanu Reeves, Neo, only has **314** seconds to enter "The Source." (Do we need Parts 4 and 5?)

From http://www.freakingnews.com/Pi-Day-Pictures--1860.asp

J.M. Borwein Life of Pi (CARMA)

CARMA


Pi the Movie (1998): a Sundance screenplay winner

Roger Ebert gave the film 3.5 stars out of 4: "Pi is a thriller. I am not very thrilled these days by whether the bad guys will get shot or the chase scene will end one way instead of another. You have to make a movie like that pretty skillfully before I care.

"But I am thrilled when a man risks his mind in the pursuit of a dangerous obsession."

Pi the Movie (1998): a Sundance screenplay winner

Roger Ebert gave the film 3.5 stars out of 4: "Pi is a thriller. I am not very thrilled these days by whether the bad guys will get shot or the chase scene will end one way instead of another. You have to make a movie like that pretty skillfully before I care.

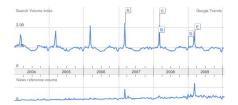
"But I am thrilled when a man risks his mind in the pursuit of a dangerous obsession."

Pi to 1,000,000 places

Pi to one MILLION decimal places

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

file://C] Document/s/20an/s/205etings/Jon/s/20Borwain/My/s/20Documents/La../s/20Opt/s/20Taiks/Lid/s/2004/s/20Taiks/Eid/s/2014/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/201aiks/Eid/s/2004/s/200


From 3.141592653589793238462643383279502884197169399375105820974944592.com/ This 2005 URL seems to have disappeared.

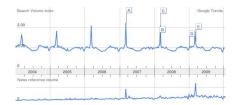
J.M. Borwein Life of

Life of Pi (CARMA)

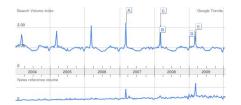
Pi's Childhood
 Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π



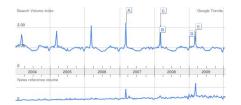
- From www.google.com/trends?q=Pi+
 - A: "Pi fans to meet March 14 (3.14, get it?)" Bloomington Pantagraph-Mar 12 2007.
 - **C**: "Happy Pi Day!" *LAist*-Mar 14 2008.
- 1989. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.


Pi's Childhood
 Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

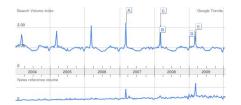
- From www.google.com/trends?q=Pi+
 - A: "Pi fans to meet March 14 (3.14, get it?)" Bloomington Pantagraph-Mar 12 2007.
 - **C**: "Happy Pi Day!" *LAist*-Mar 14 2008.
- 1989. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.



- From www.google.com/trends?q=Pi+
 - A: "Pi fans to meet March 14 (3.14, get it?)" Bloomington Pantagraph-Mar 12 2007.
 - C: "Happy Pi Day!" LAist-Mar 14 2008.
- 1989. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.



- From www.google.com/trends?q=Pi+
 - A: "Pi fans to meet March 14 (3.14, get it?)" Bloomington Pantagraph-Mar 12 2007.
 - C: "Happy Pi Day!" LAist-Mar 14 2008.
- 1989. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.



- From www.google.com/trends?q=Pi+
 - A: "Pi fans to meet March 14 (3.14, get it?)" Bloomington Pantagraph-Mar 12 2007.
 - C: "Happy Pi Day!" LAist-Mar 14 2008.
- 1989. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.

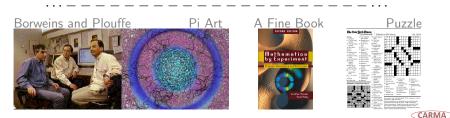
- From www.google.com/trends?q=Pi+
 - A: "Pi fans to meet March 14 (3.14, get it?)" Bloomington Pantagraph-Mar 12 2007.
 - C: "Happy Pi Day!" LAist-Mar 14 2008.
- 1989. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.

Crossword Pi — NYT March 14, 2007


- To solve the puzzle, first note that the clue for 28 DOWN is March 14, to Mathematicians, to which the answer is PIDAY. Moreover, roughly a dozen other characters in the puzzle are π=PI.
- For example, the clue for 5 down was More pleased with the six character answer HAP π ER.

	lerk there		y Will Shorts		No. 0214
Artes - Copyre - Copyre	 D. Senserie D. Senserie R. Santon R. Sa	 Internet of the second s			
	l	 Stanfall Rear Leader 	10 III and here 10 June 10 June	a arab ta	And a second sec

CARMA



Crossword Pi — NYT March 14, 2007

• To solve the puzzle, first note that the clue for 28 DOWN is March 14, to Mathematicians,

to which the answer is PIDAY. Moreover, roughly a dozen other characters in the puzzle are $\pi = PI$.

• For example, the clue for 5 down was More pleased with the six character answer HAP π ER.

(MSNBC Thanksgiving 1997)

The Puzzle (By Permission)

The New]	Hork Eimes Crossword	d	Edited b	oy V	Vill	Sł	nor	rtz	
Across	33 Vice president	63	It gets bigger at	1	2	э	4	5	
1 Enlighten	after Hubert		night	14	+	-	+	+	
6 A couple CBS spinoffs	36 Patient wife of Sir Geraint		"Hold your horses!"	17	-			⊢	
10 1972 Broadway musical	38 Action to an ante		Idiots Europe/Asia	20	-	-	-	┝	2
14 Metal giant	39 Gain		border river	23	-	-	_	24	∔
15 Evict	40 French artist	67	Suffix with launder	~				~	L
16 Area	Odilon						27	Г	Т
17 Surface again, as a road	42 Grape for winemaking		Erownback and	33	34	35			3
18 Pirate or Padre,	43 Single-dish meal		Obama, e.g.: Abbr	39					4
briefly	45 Broad valley	70	Bick with the	43	-	-	-	44	L
19 Camera feature	46 See 21-Down		1976 #1 hit						
20 Barracks	47 Artery inserts		"Disco Duck"	47				Г	4
artwork, perhaps	49 Offspring	71	Yegg's targets				51	+	t
22 River to the	51 Mexican mouse catcher		Down	57	58	59			6
Ligurian Sea		1	Mastodon trap	63	-		-		6.
23 Keg necessity	53 Medical procedure, in	2	"Mefistofele"	0.0					Ľ
24 " he drove out of	brief		soprano	66	Γ				6.
sight"	54 "Wheel of		Misbehave	69	+	+	+		7
25 St. Louis,	Fortune" option		Pen						
III.	57 Animal with	5	More pleased Treated with	Puzzl	e by F	eter /	A. Col	lins	
27 Preen	striped legs	•	disdain	30 E	Book	par	t i		4
29 Greek peak	60 Editorial	7	Enterprise	31 Powder, e.g.					
ANSWER TO PREVIOUS PUZZLE			crewman	32 007 and others:					
		8	Rhone feeder		bbr.	and i	2010		
ARFSAC	9	Many a webcast	33 Drains					4	
CORKTR	10	Mushroom, for	34 Stove feature					5	
		11 Unfortunate 35 Feet per						5	
LEN RAN DOCTORK			Nevada's state						5
			tree	37 Italian range					5
TYBONEP		13	Disney fish				.90		
RUEDA		21	Colonial figure with 46-Across	For	ansı	vers	, ca	11	90
BAABAA	ORE	26	Poker champion	Ann					
IRISH	COUNTIES		Ungar	cros					
	RADEDXC	27	Self-medicating	Onli					
	ATIYIPE		excessively	past					
GILIARE	TENDOWN	28	March 14, to	Sha	re tip	os: r	rytim	185.	20

1	2	э	4	5		6	7	8	9		10	11	12	ī
14	t	t	+	t		15	t	t	t		16	+		t
17	+	+	+	+		18	+	+	+		19	+	1	t
20	+	⊢	┢	⊢	21		⊢	⊢	⊢		22	+	+	t
23	⊢	⊢		24	⊢	⊢		25	⊢	26		-		ł
			27		⊢	+	28		29	⊢	+	30	31	1
33	34	35			36	-	+	37		38	+	+	-	t
39		+	+		40	+	+	+	41		42	+		t
43	⊢	⊢	+	44		45	⊢	⊢	⊢		46	+	+	t
47	t	t	t	t	48		49	t	t	50		1		ł
			51	┢	┢	52		53	t	t		54	55	ŀ
57	58	59			60		61		t	+	62			t
63	+	+	+		64	+	+	+	t	65	+	+	\vdash	t
66	t	t	t		67	⊢	⊢	t		68	t	+	+	t
69	+	+	+		70	+	+	+		71	+	+	+	+

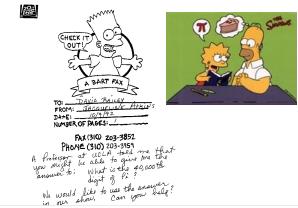
41 Prefix with 56 Settles in surgery 57 Symphony or 44 Captain's sonata announcement, 58 Japanese city for short bombed in W.W 48 Tucked away 50 Stealthy fighters 59 Beelike 52 Sedative 61 Evening, in ads 54 Letter feature 62 Religious 55 Jam artwork

For answers, call 1-900-285-5656, \$1.20 a minute; or, with a credit card, 1-800-814-5554.

Poker champion Ungar crosswords from the last 50 years: 1-886-7-ACOSS. Self-medicating Online subscriptions: Today's puzzle and more than 2,000 sats puzzles, nytimes.com/crosswords (334-55 year). March 14,10 Share tips: nytimes.com/crosswords for young solvers: nytimes.com/narring/words.

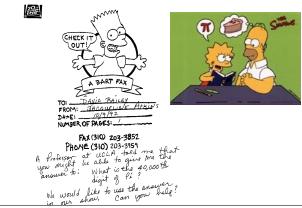
J.M. Borwein

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π


The Puzzle Answered

ANSWER TO PREVIOUS PUZZLE

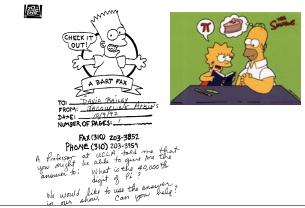
The Simpsons (Permission refused by Fox)



Apu: I can recite pi to 40,000 places. The last digit is 1. Homer: Mmm... pie. ("Marge in Chains." May 6, 1993

 See also "Springfield Theory." (Science News, June 10, 2006) at vww.aarms.math.ca/ACMN/links, Mouthful of Pi, http://tvtropes.org/pmwiki/pmwiki.php/Main/MouthfulOfPi and http://www.recordholders.org/en/list/memory.html#pi. The record is now over 80,000.

The Simpsons (Permission refused by Fox)



Apu: I can recite pi to 40,000 places. The last digit is 1. Homer: Mmm... pie. ("Marge in Chains." May 6, 1993)

 See also "Springfield Theory." (Science News, June 10, 2006) at www.aarms.math.ca/ACMN/links, Mouthful of Pi, http://tvtropes.org/pmwiki/pmwiki.php/Main/MouthfulOfPi and http://www.recordholders.org/en/list/memory.html#pi. The record is now over 80,000.

The Simpsons (Permission refused by Fox)

Apu: I can recite pi to 40,000 places. The last digit is 1. Homer: Mmm... pie. ("Marge in Chains." May 6, 1993)

 See also "Springfield Theory." (Science News, June 10, 2006) at www.aarms.math.ca/ACMN/links, Mouthful of Pi, http://tvtropes.org/pmwlki/pmwlki.php/Main/MouthfulOfPi and http://www.recordholders.org/en/list/memory.html#pi. The record is now over 80,000.

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress **2007- 2011.** Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption: To celebrate PI Day 2008, the San Francisco Exploratorium made a Pi string with more than 4,000 colored basis on 1, each color representing a digit from 0 to 9. (Credit Dariel Tardinan(CNET)

Washington politicians took time from bailouts and carmark-laden spending packages on Wednesday for what might seem like an unusual act: officially designating a National Pi Day.

That's Pi as in ratio-of-a-circle's-circumference-to-diameter, better known as the mathematical constant beginning with 3.14159.

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress

2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption: To celebrate PI Day 2008, the San Francisco Exploratorium made a PI string with more than 4,000 colored bands on 1, each color representing a digit from 0 to 9. (Credit: Daniel Terdinanc/CNET)

Washington politicians took time from bailouts and carmark-laden spending packages on Wednesday for what might seem like an unusual act: officially designating a National Pi Day.

That's Pi as in ratio-of-a-circle's-circumference-to-diameter, better known as the mathematical constant beginning with 3.14159.

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress 2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption: To celebrate PI Day 2008, the San Francisco Exploratorium made a Pi string with more than 4,000 colored bands on 1, each color representing a digit from 0 to 9. (Credit: Daniel Terdinanc/CNET)

Washington politicians took time from bailouts and carmark-laden spending packages on Wednesday for what might seem like an unusual act: officially designating a National Pi Day.

That's Pi as in ratio-of-a-circle's-circumference-to-diameter, better known as the mathematical constant beginning with 3.14159.

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress 2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved.

Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption: To celebrate PI Day 2008, the San Francisco Exploratorium made a Pi string with more than 4,000 colored basis on 1, each color representing a digit from 0 to 9. (Credit Dariel Tardinan(CNET)

Washington politicians took time from bailouts and carmark-laden spending packages on Wednesday for what might seem like an unusual act: officially designating a National Pi Day.

That's Pi as in ratio-of-a-circle's-circumference-to-diameter, better known as the mathematical constant beginning with 3.14159.

 $\begin{array}{c} 19. \ \mathrm{Pi's} \ \mathrm{Childhood}\\ 38. \ \mathrm{Pi's} \ \mathrm{Adolescence}\\ 43. \ \mathrm{Adulthood} \ \mathrm{of} \ \mathrm{Pi}\\ 74. \ \mathrm{Pi} \ \mathrm{in} \ \mathrm{the} \ \mathrm{Digital} \ \mathrm{Age}\\ 107. \ \mathrm{Computing} \ \mathrm{Individual} \ \mathrm{Digits} \ \mathrm{of} \ \pi \end{array}$

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress 2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption: To celebrate Pi Day 2008, the San Francisco Exploratorium made a Pisting with more than 4,000 colored basis on 1, each color representing a digit from 0 to 9. (Credit: Dariel Tardinan(XET)

Washington politicians took time from bailouts and carmark-laden spending packages on Wednesday for what might seem like an unusual act: officially designating a National Pi Day.

That's Pi as in ratio-of-a-circle's-circumference-to-diameter, better known as the mathematical constant beginning with 3.14159.

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress 2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption: To celebrate Pi Day 2008, the San Francisco Exploratorium made a Pisting with more than 4,000 colored basis on 1, each color representing a digit from 0 to 9. (Credit: Dariel Tardinan(XET)

Washington politicians took time from bailouts and carmark-laden spending packages on Wednesday for what might seem like an unusual act: officially designating a National Pi Day.

That's Pi as in ratio-of-a-circle's-circumference-to-diameter, better known as the mathematical constant beginning with 3.14159.

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 107. Computing Individual Digits of π

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'

By Elizabeth Landau, CNN March 12, 2010 12:38 p.m. ESTMarch 12, 2010 12:38 p.m. EST

Sunday is Pi Day, on which math peeks celebrate the number representing the ratio of circumference to diameter of a circle.

STORY HIGHLIGHTS

Pi Day falls on March 14, which breaths or gentle humming. For Marc Umile, it's is also Albert Einstein's birthday "3.14159265358979..."

The true 'randomness' of pi's digits -- 3.14 and so on -- has never been revuen

The U.S. House passed a resolution supporting Pi Day in March 2009

Whether in the shower, driving to work, or walking down the street, he'll mentally rattle off digits of pi to pass the time. Holding 10th place in the world for pi memoization -- he typed out 15,314 digits from memory in 2007 -- Ulmile mediates through one of the most beloved and mysterious numbers in all of mathematics.

(CNN) -- The sound of meditation for some people is full of deep

Google's homage to 3.14.10

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 107. Computing Individual Digits of π

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'

By Elizabeth Landau, CNN March 12, 2010 12:38 p.m. ESTMarch 12, 2010 12:38 p.m. EST

Sunday is Pi Day, on which math peeks celebrate the number representing the ratio of circumference to diameter of a circle.

STORY HIGHLIGHTS

Pi Day falls on March 14, which breaths or gentle humming. For Marc Umile, it's is also Albert Einstein's birthday "3.14159265358979..."

The true 'randomness' of pi's digits -- 3.14 and so on -- has never been revuen

The U.S. House passed a resolution supporting Pi Day in March 2009

Whether in the shower, driving to work, or walking down the street, he'll mentally rattle off digits of pi to pass the time. Holding 10th place in the world for pi memoization -- he typed out 15,314 digits from memory in 2007 -- Ulmile mediates through one of the most beloved and mysterious numbers in all of mathematics.

(CNN) -- The sound of meditation for some people is full of deep

Google's homage to 3.14.10

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 107. Computing Individual Digits of π

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'

By Elizabeth Landau, CNN March 12, 2010 12:38 p.m. ESTMarch 12, 2010 12:38 p.m. EST

Sunday is Pi Day, on which math peeks celebrate the number representing the ratio of circumference to diameter of a circle.

STORY HIGHLIGHTS

Pi Day falls on March 14, which breaths or gentle humming. For Marc Umile, it's is also Albert Einstein's birthday "3.14159265358979..."

The true "randomness" of pi's digits -- 3.14 and so on -- has

The U.S. House passed a resolution supporting Pi Day in March 2009 Whether in the shower, driving to work, or walking down the street, he'll mentally rattle off digits of pi to pass the time. Holding 10th place in the world for pi memoization -- he typed out 15,314 digits from memory in 2007 -- Ulmile mediates through one of the most beloved and mysterious numbers in all of mathematics.

(CNN) -- The sound of meditation for some people is full of deep

Google's homage to 3.14.10

π Records *Always* Make The News

At Yahoo, a cluster of 1,000 computers implemented this algorithm to solve an equation that plucks out specific digits of pl.

record.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

20. Links and References

- 1 The Pi Digit site: http://carma.newcastle.edu.au/bbp
- 2 Dave Bailey's Pi Resources: http://crd.lbl.gov/~dhbailey/pi/
- 3 The Life of Pi: http://carma.newcastle.edu.au/jon/pi-2010.pdf.
- 4 Experimental Mathematics: http://www.experimentalmath.info/.
- Dr Pi's brief Bio: http://carma.newcastle.edu.au/jon/bio_short.html.

D.H. Bailey, and J.M. Borwein, Mathematics by Experiment: Plausible Reasoning in the 21st Century, AK Peters Ltd, 2003, ISBN: 1-56881-136-5. See http://www.experimentalmath.info/

J.M. Borwein, "Pi: from Archimedes to ENIAC and beyond," in *Mathematics and Culture*, Einaudi, 2006. Updated 2010: http://carma.newcastle.edu.au/jon/pi-2010.pdf.

J.M. & P.B. Borwein, and D.A. Bailey, "Ramanujan, modular equations and pi or how to compute a billion digits of pi," MAA Monthly, 96 (1989), 201–219. Reprinted in Organic Mathematics, www.cem.sfu.ca/organics, 1996, CMS/AMS Conference Proceedings, 20 (1997), ISSN: 0731-1036.

J.M. Borwein and P.B. Borwein, "Ramanujan and Pi," Scientific American, February 1988, 112–117. Also pp. 187-199 of Ramanujan: Essays and Surveys, Bruce C. Berndt and Robert A. Rankin Eds., AMS-LMS History of Mathematics, vol. 22, 2001.

Jonathan M. Borwein and Peter B. Borwein, Selected Writings on Experimental and Computational Mathematics, PsiPress. October 2010.¹

6 L. Berggren, J.M. Borwein and P.B. Borwein, *Pi: a Source Book*, Springer-Verlag, (1997), (2000), (2004). Fourth Edition, in Press.

¹Contains many of the other references and is available as an iBook.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter nine has the area of a square of side eight: $\pi = \frac{256}{81} = 3.1604\ldots$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$: Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{81} = 3.1604...$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$: Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{81} = 3.1604...$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$: Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{81} = 3.1604\dots$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$:

Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

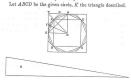
1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{81} = 3.1604\dots$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$:

Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages


There are two Pi(es): Did they tell you?

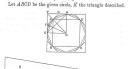
Archimedes of Syracuse (c.287 – 212 BCE) was first to show that the "two Pi's" are one in *Measurement of the Circle* (c.250 BCE):

Area $= \pi_1 r^2$ and Perimeter $= 2 \pi_2 r$.

The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference, of the circle.

is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages


There are two Pi(es): Did they tell you?

Archimedes of Syracuse (c.287 – 212 BCE) was first to show that the "two Pi's" are one in *Measurement of the Circle* (c.250 BCE):

Area $= \pi_1 r^2$ and Perimeter $= 2 \pi_2 r$.

The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference, of the circle.

is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

There are two Pi(es): Did they tell you?

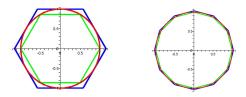

Archimedes of Syracuse (c.287 – 212 BCE) was first to show that the "two Pi's" are one in *Measurement of the Circle* (c.250 BCE):

Area $= \pi_1 r^2$ and Perimeter $= 2 \pi_2 r$.

The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference, of the circle.

Let ABCD be the given circle, K the triangle described.

is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.


Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

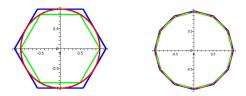
Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$\mathbf{6} \mapsto \mathbf{12} \mapsto 24 \mapsto 48 \mapsto \mathbf{96}$

to obtain the bounds $3rac{10}{71} < \pi < 3rac{1}{7}.$

 Archimedes' scheme is the *first true algorithm for* π, in that it is capable of producing an arbitrarily accurate value for π.


Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

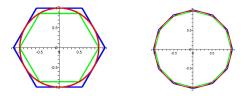
Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$\mathbf{6}\mapsto\mathbf{12}\mapsto24\mapsto48\mapsto\mathbf{96}$

to obtain the bounds $3rac{10}{71} < \pi < 3rac{1}{7}.$

 Archimedes' scheme is the *first true algorithm for* π, in that it is capable of producing an arbitrarily accurate value for π. Pi's Childhood
 Bi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π


Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Method circa 250 BCE

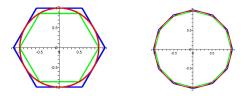
The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$\mathbf{6}\mapsto\mathbf{12}\mapsto24\mapsto48\mapsto\mathbf{96}$

to obtain the bounds $3\frac{10}{71} < \pi < 3\frac{1}{7}$.

• Archimedes' scheme is the *first true algorithm for* π , in that it is capable of producing an arbitrarily accurate value for π .

Pi's Childhood
 Bi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

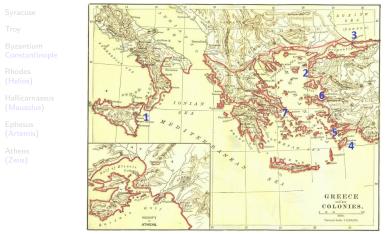

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$\mathbf{6}\mapsto\mathbf{12}\mapsto24\mapsto48\mapsto\mathbf{96}$

to obtain the bounds $3\frac{10}{71} < \pi < 3\frac{1}{7}$.



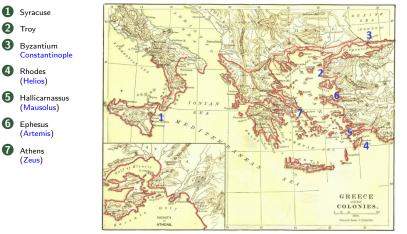
• Archimedes' scheme is the *first true algorithm for* π , in that it is capable of producing an arbitrarily accurate value for π .

 $\begin{array}{c} \textbf{19. Pi's Childhood}\\ 38. Pi's Adolescence\\ 43. Adulthood of Pi\\ 74. Pi in the Digital Age\\ 107. Computing Individual Digits of <math display="inline">\pi\end{array}$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Where Greece Was: Magna Graecia

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon



SKIP

J.M. Borwein Life of Pi (CARMA)

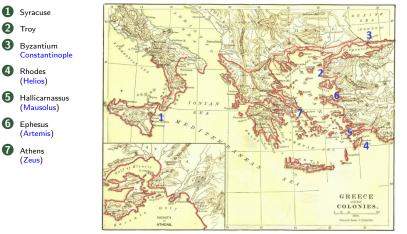
Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Where Greece Was: Magna Graecia

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon

CARMA>

SKIP


J.M. Borwein Life of Pi (CARMA)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE

Where Greece Was: Magna Graecia

6

6

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon

SKIP

J.M. Borwein Life of Pi (CARMA)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - 1998. Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - 1998. Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - 1998. Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

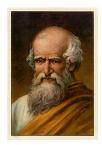
- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - **1998.** Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - **1998.** Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages


Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - **1998.** Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes from *The Method*

"... certain things first became clear to me by a mechanical method, although they had to be proved by geometry afterwards because their investigation by the said method did not furnish an actual proof. But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the proof than it is to find it without any previous knowledge."

CARMA

J.M. Borwein Life of Pi (CARMA)

 19. Pi's Childhood
 Links and References

 38. Pi's Adolescence
 Babylon, Egypt and Israel

 43. Adulthood of Pi
 Archimedes Method circa 250 BCE

 74. Pi in the Digital Age
 Precalculus Calculation Records

 107. Computing Individual Digits of π
 The Fairly Dark Ages

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$0 < \int_0^1 \frac{(1-x)^4 x^4}{1+x^2} \, dx = \frac{22}{7} - \pi, \tag{1}$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on (0,1), and the answer in (1) is an area and so strictly positive, despite millennia of claims that π is 22/7.

• Accidentally, 22/7 is one of the early continued fraction approximation to π . These commence:

$$3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \dots$$

CARP

 19. Pi's Childhood
 Links and References

 38. Pi's Adolescence
 Babylon, Egypt and Israel

 43. Adulthood of Pi
 Archimedes Method circa 250 BCE

 74. Pi in the Digital Age
 Precalculus Calculation Records

 107. Computing Individual Digits of π
 The Fairly Dark Ages

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$0 < \int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} dx = \frac{22}{7} - \pi, \qquad (1)$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on (0, 1), and the answer in (1) is an area and so strictly positive, despite millennia of claims that π is 22/7.

• Accidentally, 22/7 is one of the early continued fraction approximation to π . These commence:

$$3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \dots$$

CARN

19. Pi's ChildhoodLinks and References38. Pi's AdolescenceBabylon, Egypt and Israel43. Adulthood of PiArchimedes Method circa 250 BCE74. Pi in the Digital AgePrecalculus Calculation Records107. Computing Individual Digits of π The Fairly Dark Ages

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$0 < \int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} dx = \frac{22}{7} - \pi, \qquad (1)$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on (0, 1), and the answer in (1) is an area and so strictly positive, despite millennia of claims that π is 22/7.

• Accidentally, 22/7 is one of the early continued fraction approximation to π . These commence:

$$3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \dots$$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

ARN

Archimedes Method circa 1800 CE

As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_0 := 2\sqrt{3}, b_0 := 3$. Compute

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$$
(H)
$$b_{n+1} = \sqrt{a_{n+1} b_n}$$
(G)

These tend to π , error decreasing by a *factor of four* at each step.

 The greatest mathematician (scientist) to live before the *Enlightenment*. To compute π Archimedes had to *invent many subjects* — including numerical and interval analysis.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

ARN

Archimedes Method circa 1800 CE

As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_0 := 2\sqrt{3}, b_0 := 3$. Compute

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$$
(H)
$$b_{n+1} = \sqrt{a_{n+1} b_n}$$
(G)

These tend to π , error decreasing by a *factor of four* at each step.

 The greatest mathematician (scientist) to live before the Enlightenment. To compute π Archimedes had to invent many subjects — including numerical and interval analysis.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

ARM

Archimedes Method circa 1800 CE

As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_0 := 2\sqrt{3}, b_0 := 3$. Compute

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$$
(H)
$$b_{n+1} = \sqrt{a_{n+1} b_n}$$
(G)

These tend to π , error decreasing by a *factor of four* at each step.

 The greatest mathematician (scientist) to live before the *Enlightenment*. To compute π Archimedes had to *invent many subjects* — including numerical and interval analysis.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

CARMA

Archimedes Method circa 1800 CE

As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_0 := 2\sqrt{3}, b_0 := 3$. Compute

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$$
(H)
$$b_{n+1} = \sqrt{a_{n+1} b_n}$$
(G)

These tend to π , error decreasing by a *factor of four* at each step.

• The greatest mathematician (scientist) to live before the *Enlightenment*. To compute π Archimedes had to *invent many subjects* — including numerical and interval analysis.

 19. Pi's Childhood
 Links and References

 38. Pi's Adolescence
 Babylon, Egypt and Israel

 43. Adulthood of Pi
 Archimedes Method circa 250 BCE

 74. Pi in the Digital Age
 Precalculus Calculation Records

 107. Computing Individual Digits of π
 The Fairly Dark Ages

Proving π is not $\frac{22}{7}$

In this case, the indefinite integral provides immediate reassurance. We obtain

$$\int_{0}^{t} \frac{x^{4} (1-x)^{4}}{1+x^{2}} dx = \frac{1}{7} t^{7} - \frac{2}{3} t^{6} + t^{5} - \frac{4}{3} t^{3} + 4t - 4 \arctan(t)$$

as differentiation easily confirms, and the fundamental theorem of calculus proves (1). QED

One can take this idea a bit further. Note that

$$\int_0^1 x^4 \left(1-x\right)^4 dx = \frac{1}{630}.$$

J.M. Borwein Life of Pi (CARMA)

 19. Pi's Childhood
 Links and References

 38. Pi's Adolescence
 Babylon, Egypt and Israel

 43. Adulthood of Pi
 Archimedes Method circa 250 BCE

 74. Pi in the Digital Age
 Precalculus Calculation Records

 107. Computing Individual Digits of π
 The Fairly Dark Ages

Proving π is not $\frac{22}{7}$

In this case, the indefinite integral provides immediate reassurance. We obtain

$$\int_{0}^{t} \frac{x^{4} (1-x)^{4}}{1+x^{2}} dx = \frac{1}{7} t^{7} - \frac{2}{3} t^{6} + t^{5} - \frac{4}{3} t^{3} + 4t - 4 \arctan(t)$$

as differentiation easily confirms, and the fundamental theorem of calculus proves (1). QED

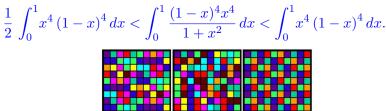
One can take this idea a bit further. Note that

$$\int_0^1 x^4 \left(1 - x\right)^4 dx = \frac{1}{630}.$$
 (2)

 19. Pi's Childhood
 Links

 38. Pi's Adolescence
 Baby

 43. Adulthood of Pi
 Arch


 74. Pi in the Digital Age
 Prec

 107. Computing Individual Digits of π
 The

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

... Going Further

Hence

Archimedes: 223/71 < π < 22/7

Combine this with (1) and (2) to derive:

 $223/71 < 22/7 - 1/630 < \pi < 22/7 - 1/1260 < 22/7$

and so re-obtain Archimedes' famous

$$3rac{10}{71} < \pi < 3rac{10}{70}.$$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Never Trust Secondary References

See Dalziel in *Eureka* (1971), a Cambridge student journal.
Integral (1) was on the 1968 *Putnam*, an early 60's Sydney exam, and traces back to **1944** (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Never Trust Secondary References

- See Dalziel in *Eureka* (1971), a Cambridge student journal.
- Integral (1) was on the 1968 *Putnam*, an early 60's Sydney exam, and traces back to **1944** (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Never Trust Secondary References

- See Dalziel in *Eureka* (1971), a Cambridge student journal.
- Integral (1) was on the 1968 *Putnam*, an early 60's Sydney exam, and traces back to **1944** (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Never Trust Secondary References

- See Dalziel in *Eureka* (1971), a Cambridge student journal.
- Integral (1) was on the 1968 *Putnam*, an early 60's Sydney exam, and traces back to **1944** (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Kuhnian 'Paradigm Shifts' and Normal Science

Variations of Archimedes' method were used for all calculations of π for **1800** years — well beyond its 'best before' date.

– **480CE**. In China Tsu Chung-Chih got π to seven digits.

1429. A millennium later, Al-Kashi in Samarkand — on the silk road — "*who could calculate as eagles can fly*" computed 2π in sexagecimal:

$$2\pi = 6 + \frac{16}{60^1} + \frac{59}{60^2} + \frac{28}{60^3} + \frac{01}{60^4} + \frac{34}{60^5} + \frac{51}{60^6} + \frac{46}{60^7} + \frac{14}{60^8} + \frac{50}{60^9}$$

good to ${f 16}$ decimal places (using $3\cdot 2^{28}$ -gons).

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Kuhnian 'Paradigm Shifts' and Normal Science

Variations of Archimedes' method were used for all calculations of π for **1800** years — well beyond its 'best before' date.

- **480CE**. In China Tsu Chung-Chih got π to seven digits.

1429. A millennium later, Al-Kashi in Samarkand — on the silk road — "*who could calculate as eagles can fly*" computed 2π in sexagecimal:

CARMA

$$2\pi = 6 + \frac{16}{60^1} + \frac{59}{60^2} + \frac{28}{60^3} + \frac{01}{60^4} + \frac{34}{60^5} + \frac{51}{60^6} + \frac{46}{60^7} + \frac{14}{60^8} + \frac{50}{60^9},$$

good to ${f 16}$ decimal places (using $3\cdot 2^{28}$ -gons).

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Kuhnian 'Paradigm Shifts' and Normal Science

Variations of Archimedes' method were used for all calculations of π for **1800** years — well beyond its 'best before' date.

– **480CE**. In China Tsu Chung-Chih got π to seven digits.

1429. A millennium later, Al-Kashi in Samarkand — on the silk road — "who could calculate as eagles can fly" computed 2π in sexagecimal:

CARMA

$$2\pi = 6 + \frac{16}{60^1} + \frac{59}{60^2} + \frac{28}{60^3} + \frac{01}{60^4} + \frac{34}{60^5} + \frac{51}{60^6} + \frac{46}{60^7} + \frac{14}{60^8} + \frac{50}{60^9},$$

good to **16 decimal places** (using $3 \cdot 2^{28}$ -gons).

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Name	Year	Digits
Babylonians	2000? BCE	1
Egyptians	2000? BCE	1
Hebrews (1 Kings 7:23)	550? BCE	1
Archimedes	250? BCE	3
Ptolemy	150	3
Liu Hui	263	5
Tsu Ch'ung Chi	480?	7
Al-Kashi	1429	14
Romanus	1593	15
Van Ceulen (Ludolph's number*)	1615	35

* Used 2^{62} -gons for 39 places/35 correct — published posthumously.

19. Pi's Childhood

38. Pi's Adolescence 43. Adulthood of Pi 74. Pi in the Digital Age 107. Computing Individual Digits of π Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Ludolph's Rebuilt Tombstone in Leiden

Ludolph van Ceulen (1540-1610)

• Destroyed several centuries ago; the plans remained.

19. Pi's Childhood

 $\begin{array}{rrr} \textbf{38.} & \textbf{Pi's Adolescence} \\ \textbf{43.} & \textbf{Adulthood of Pi} \\ \textbf{74.} & \textbf{Pi in the Digital Age} \\ \textbf{107.} & \textbf{Computing Individual Digits of } \pi \end{array}$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Ludolph's Reconsecrated Tombstone in Leiden

- Tombstone reconsecrated July 5, 2000.
 - Attended by Dutch royal family and 750 others
 - My brother lectured on Pi from halfway up to the pulpit.

19. Pi's Childhood 38. Pi's Adolescence

43. Adulthood of Pi 74. Pi in the Digital Age 107. Computing Individual Digits of π Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Ludolph's Reconsecrated Tombstone in Leiden

- Tombstone reconsecrated July 5, 2000.
 - Attended by Dutch royal family and 750 others
 - My brother lectured on Pi from halfway up to the pulpit.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE **Precalculus Calculation Records** The Fairly Dark Ages

Ludolph's Reconsecrated Tombstone in Leiden

- Tombstone reconsecrated July 5, 2000.
 - Attended by Dutch royal family and 750 others.
 - My brother lectured on Pi from halfway up to the pulpit.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Fairly Dark Ages

Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE): *modern positional, zero-based decimal arithmetic* — the "Indo-Arabic" system.

- Came to Europe between **1000** (Gerbert/Sylvester) and **1202 CE** (Fibonacci's *Liber Abaci*).
- Still underestimated, this greatly enhanced arithmetic and mathematics in general, and computing π in particular.
 - Resistance ranged from accountants who feared for their livelihood to clerics who saw the system as 'diabolical' — they incorrectly assumed its origin was Islamic.
 - European commerce resisted until 18th century, and even in scientific circles usage was limited into 17th century.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Fairly Dark Ages

Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE): *modern positional, zero-based decimal arithmetic* — the "Indo-Arabic" system.

- Came to Europe between 1000 (Gerbert/Sylvester) and 1202 CE (Fibonacci's Liber Abaci).
- Still underestimated, this greatly enhanced arithmetic and mathematics in general, and computing π in particular.
 - Resistance ranged from accountants who feared for their livelihood to clerics who saw the system as 'diabolical' — they incorrectly assumed its origin was Islamic.
 - European commerce resisted until 18th century, and even in scientific circles usage was limited into 17th century.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Fairly Dark Ages

Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE): *modern positional, zero-based decimal arithmetic* — the "Indo-Arabic" system.

- Came to Europe between **1000** (Gerbert/Sylvester) and **1202 CE** (Fibonacci's *Liber Abaci*).
- Still underestimated, this greatly enhanced arithmetic and mathematics in general, and computing π in particular.
 - Resistance ranged from accountants who feared for their livelihood to clerics who saw the system as 'diabolical' — they incorrectly assumed its origin was Islamic.
 - European commerce resisted until 18th century, and even in scientific circles usage was limited into 17th century.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Arithmetic was Hard

• The prior difficulty of arithmetic² is indicated by 'college placement' advice to a wealthy 16th century German merchant:

If you only want him to be able to cope with addition and subtraction, then any French or German university will do. But if you are intent on your son going on to multiplication and division — assuming that he has sufficient gifts — then you will have to send him to Italy. — George Ifrah or Tobias Danzig

²Claude Shannon (**1913-2006**) had 'Throback 1' built to compute in CARMA Roman, at Bell Labs in 1953.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Arithmetic was Hard

• The prior difficulty of arithmetic² is indicated by 'college placement' advice to a wealthy 16th century German merchant:

If you only want him to be able to cope with addition and subtraction, then any French or German university will do. But if you are intent on your son going on to multiplication and division — assuming that he has sufficient gifts — then you will have to send him to Italy. — George Ifrah or Tobias Danzig

²Claude Shannon (**1913-2006**) had 'Throback 1' built to compute in CARMA Roman, at Bell Labs in 1953. 19. Pi's Childhood

 $\begin{array}{rrr} \textbf{38.} & \textbf{Pi's Adolescence} \\ \textbf{43.} & \textbf{Adulthood of Pi} \\ \textbf{74.} & \textbf{Pi in the Digital Age} \\ \textbf{107.} & \textbf{Computing Individual Digits of } \pi \end{array}$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Google Buys (Pi-3) \times 100,000,000 Shares

Google

The New York Times

nytimes.com

August 19, 2005

14,159,265 New Slices of Rich Technology

By JOHN MARKOFF

SAN FRANCISCO, Aug. 18 - <u>Google</u> said in a surprise move on Thursday that it would raise a \$4 billion war chest with a new stock offering. The announcement stirred widespread speculation in Silicon Valley that Google, the premier online search site, would move aggressively into businesses well beyond Web searching and search-based advertising.

Google, which raised \$1.67 billion in its initial public offering last August, expects to collect \$4.04 billion by selling 14,159,265 million Class A shares, based on Wednesday's closing price of \$285.10. In Google's whimsical fashion, the number of shares offered is the same as the first eight digits after the decimal point in pi, the ratio of the circumference of a circle to its diameter, which starts with 3.14159265.

• Why did Google want precisely this many pieces of the Pie? CARMA

J.M. Borwein Life of Pi (CARMA)

19. Pi's Childhood

 $\begin{array}{rrr} \textbf{38.} & \textbf{Pi's Adolescence} \\ \textbf{43.} & \textbf{Adulthood of Pi} \\ \textbf{74.} & \textbf{Pi in the Digital Age} \\ \textbf{107.} & \textbf{Computing Individual Digits of } \pi \end{array}$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Google Buys (Pi-3) \times 100,000,000 Shares

Google

The New York Times

nytimes.com

August 19, 2005

14,159,265 New Slices of Rich Technology

By JOHN MARKOFF

SAN FRANCISCO, Aug. 18 - <u>Google</u> said in a surprise move on Thursday that it would raise a \$4 billion war chest with a new stock offering. The announcement stirred widespread speculation in Silicon Valley that Google, the premier online search site, would move aggressively into businesses well beyond Web searching and search-based advertising.

Google, which raised \$1.67 billion in its initial public offering last August, expects to collect \$4.04 billion by selling 14,159,265 million Class A shares, based on Wednesday's closing price of \$285.10. In Google's whimsical fashion, the number of shares offered is the same as the first eight digits after the decimal point in pi, the ratio of the circumference of a circle to its diameter, which starts with 3.14159265.

• Why did Google want precisely this many pieces of the Pie? CARMAD

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

39. Pi's (troubled) Adolescence

1579. Modern mathematics dawns in Viéte's product

$$\frac{\sqrt{2}}{2} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots = \frac{2}{\pi}$$
(4)

— considered to be the *first truly infinite formula* — and in the *first continued fraction* given by Lord Brouncker (**1620-1684**):

$$\frac{2}{\pi} = \frac{1}{1 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + \dots}}}}$$

CARMA>

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Wallis Product

Eqn. (4) was based on John Wallis' (**1613-1706**) 'interpolated' product:

$$\frac{1\cdot 3}{2\cdot 2} \cdot \frac{3\cdot 5}{4\cdot 4} \cdot \frac{5\cdot 7}{6\cdot 6} \cdots = \prod_{k=1}^{\infty} \frac{4k^2 - 1}{4k^2} = \frac{2}{\pi}$$
(5)

which led to discovery of the Gamma function and much more.

• Christiaan Huygens (**1629-1695**) did not believe (5) before he checked it numerically.

It's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs: Can the totality see no pattern, revealing order as reality's disguise?

Self-referent mnemonic from http://www.newscientist.com/blogs/culturelab/2010/03/happy-pi-day.php

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Wallis Product

Eqn. (4) was based on John Wallis' (**1613-1706**) 'interpolated' product:

$$\frac{1\cdot 3}{2\cdot 2} \cdot \frac{3\cdot 5}{4\cdot 4} \cdot \frac{5\cdot 7}{6\cdot 6} \cdots = \prod_{k=1}^{\infty} \frac{4k^2 - 1}{4k^2} = \frac{2}{\pi}$$
(5)

which led to discovery of the Gamma function and much more.

• Christiaan Huygens (**1629-1695**) did not believe (5) before he checked it numerically.

lt's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs: Can the totality see no pattern, revealing order as reality's disguise?

CARMA

Self-referent mnemonic from http://www.newscientist.com/blogs/culturelab/2010/03/happy-pi-day.php

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Wallis Product

Eqn. (4) was based on John Wallis' (**1613-1706**) 'interpolated' product:

$$\frac{1\cdot 3}{2\cdot 2} \cdot \frac{3\cdot 5}{4\cdot 4} \cdot \frac{5\cdot 7}{6\cdot 6} \cdots = \prod_{k=1}^{\infty} \frac{4k^2 - 1}{4k^2} = \frac{2}{\pi}$$
(5)

which led to discovery of the Gamma function and much more.

• Christiaan Huygens (**1629-1695**) did not believe (5) before he checked it numerically.

It's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs: Can the totality see no pattern, revealing order as reality's disguise?

CARMA

Self-referent mnemonic from http://www.newscientist.com/blogs/culturelab/2010/03/happy-pi-day.php

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Wallis Product

Eqn. (4) was based on John Wallis' (**1613-1706**) 'interpolated' product:

$$\frac{1\cdot 3}{2\cdot 2} \cdot \frac{3\cdot 5}{4\cdot 4} \cdot \frac{5\cdot 7}{6\cdot 6} \cdots = \prod_{k=1}^{\infty} \frac{4k^2 - 1}{4k^2} = \frac{2}{\pi}$$
(5)

which led to discovery of the Gamma function and much more.

• Christiaan Huygens (**1629-1695**) did not believe (5) before he checked it numerically.

It's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs: Can the totality see no pattern, revealing order as reality's disguise?

Self-referent mnemonic from http://www.newscientist.com/blogs/culturelab/2010/03/happy-pi-day.php

CARMA

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) \tag{6}$$

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by *considering* $\sin(\pi x)$ *as an 'infinite' polynomial* and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) \tag{6}$$

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) \tag{6}$$

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) \tag{6}$$

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) \tag{6}$$

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

François (Vieta) Viéte (1540-1603)

Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently designated by rational numbers, and irrational by irrational [numbers]. If someone measures magnitudes with numbers and by his calculation get them different from what they really are, it is not the reckoning's fault but the reckoner's.

- The inventor of 'x' and 'y', he did not believe in negative numbers.
- Geometry had ruled for two millennia before Vieta and Descartes.

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

François (Vieta) Viéte (1540-1603)

Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently designated by rational numbers, and irrational by irrational [numbers]. If someone measures magnitudes with numbers and by his calculation get them different from what they really are, it is not the reckoning's fault but the reckoner's.

- The inventor of 'x' and 'y', he did not believe in negative numbers.
- Geometry had ruled for two millennia before Vieta and Descartes.

J.M. Borwein Life of Pi (CARMA)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a drink, alcoholic of course" is often used to help memorize this. **ANSWER: What is Pi? FINAL SCORES:**

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system *routed* Jeopardy champs Jennings and Rutter: http://www.CARMA

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a **drink**, **alcoholic of course**" is often used to help memorize this. ANSWER: What is Pi? FINAL SCORES:

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system *routed* Jeopardy champs Jennings and Rutter: http://www.

ytimes.com/interactive/2010/06/16/magazine/watson-trivia-game.html

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a **drink**, **alcoholic of course**" is often used to help memorize this. **ANSWER: What is Pi? FINAL SCORES:**

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system *routed* Jeopardy champs Jennings and Rutter: http://www.

ytimes.com/interactive/2010/06/16/magazine/watson-trivia-game.html

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a **drink, alcoholic of course**" is often used to help memorize this. **ANSWER: What is Pi? FINAL SCORES:**

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system *routed* Jeopardy champs Jennings and Rutter: http://www.

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a **drink, alcoholic of course**" is often used to help memorize this. **ANSWER: What is Pi? FINAL SCORES:**

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system *routed* Jeopardy champs Jennings and Rutter: http://www.

ytimes.com/interactive/2010/06/16/magazine/watson-trivia-game.html

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a **drink, alcoholic of course**" is often used to help memorize this. **ANSWER: What is Pi? FINAL SCORES:**

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system *routed* Jeopardy champs Jennings and Rutter: http://www.

nytimes.com/interactive/2010/06/16/magazine/watson-trivia-game.html

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Pi's Adult Life with Calculus

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, **1666**

- **17C** Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for π .

One early use comes from the arctan integral and series:³

 $\tan^{-1} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x (1-t^2+t^4-t^6+\cdots) dt$ $= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$

³Known to Madhava of Sangamagrama (c. 1350 c. 1425) near Kerala. Hecarma probably computed 13 digits of Pi.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Pi's Adult Life with Calculus

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, **1666**

- 17C Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for π .

One early use comes from the arctan integral and series:³

 $\tan^{-1} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x (1-t^2+t^4-t^6+\cdots) dt$ $= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$

³Known to Madhava of Sangamagrama (c. 1350 c. 1425) near Kerala. Hecarma probably computed 13 digits of Pi.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Pi's Adult Life with Calculus

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, **1666**

- 17C Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for π .

One early use comes from the arctan integral and series:³

 $\tan^{-1} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x (1-t^2+t^4-t^6+\cdots) dt$ $= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$

³Known to Madhava of Sangamagrama (c. 1350 c. 1425) near Kerala. Hecarma probably computed 13 digits of Pi.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Madahava–Gregory–Leibniz formula

Formally x := 1 gives the Gregory–Leibniz formula (1671–74) $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$

- Naively, this is useless hundreds of terms produce two digits.
- Sharp guided by Edmund Halley (1656-1742) used $an^{-1}(1/\sqrt{3})$
- By contrast, Euler's (1738) trigonometric identity

$$\tan^{-1}(1) = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$
 (7)

produces the geometrically convergent:

$$\frac{\pi}{4} = \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \cdots + \frac{1}{3} - \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} - \frac{1}{7 \cdot 3^7} + \cdots$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Madahava–Gregory–Leibniz formula

Formally x := 1 gives the Gregory–Leibniz formula (1671–74) $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$

- Naively, this is useless hundreds of terms produce two digits.
- Sharp guided by Edmund Halley (1656-1742) used $\tan^{-1}(1/\sqrt{3})$
- By contrast, Euler's (1738) trigonometric identity

$$\tan^{-1}(1) = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$

produces the geometrically convergent:

$$\frac{\pi}{4} = \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \cdots + \frac{1}{3} - \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} - \frac{1}{7 \cdot 3^7} + \cdots$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Madahava–Gregory–Leibniz formula

Formally x := 1 gives the Gregory–Leibniz formula (1671–74) $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$

- Naively, this is useless hundreds of terms produce two digits.
- Sharp guided by Edmund Halley (1656-1742) used $an^{-1}(1/\sqrt{3})$
- By contrast, Euler's (1738) trigonometric identity

$$\tan^{-1}(1) = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$
 (7)

produces the geometrically convergent:

$$\frac{\pi}{4} = \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \cdots + \frac{1}{3} - \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} - \frac{1}{7 \cdot 3^7} + \cdots$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

John Machin (1680-1751) and Brook Taylor (1685-1731)

An even faster formula, found earlier by John Machin — Brook Taylor's teacher — lies in the identity

$$\frac{\pi}{4} = 4\tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right).$$
 (9)

Machin

Taylor

ARMA

- Used in numerous computations of π (starting in **1706**) culminating with Shanks' computation of π to **707** decimals in **1873**.
- 1945. Found to be wrong by Ferguson after 527 decimal places
 as De Morgan had suspected. (A Guinness record?)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

John Machin (1680-1751) and Brook Taylor (1685-1731)

An even faster formula, found earlier by John Machin — Brook Taylor's teacher — lies in the identity

$$\frac{\pi}{4} = 4\tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right).$$
 (9)

• Used in numerous computations of π (starting in **1706**) culminating with Shanks' computation of π to **707** decimals in **1873**.

- 1945. Found to be wrong by Ferguson — after 527 decimal places
 — as De Morgan had suspected. (A Guinness record?)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Isaac Newton's arcsin

Newton discovered a different (disguised \arcsin) formula. He considered the area A of the red region to the right:

Now $A := \int_0^{1/4} \sqrt{x - x^2} \, dx$ equals the circular sector, $\pi/24$, less the triangle, $\sqrt{3}/32$. His new binomial theorem gave:

$$A = \int_0^{\frac{1}{4}} x^{1/2} (1-x)^{1/2} dx = \int_0^{\frac{1}{4}} x^{1/2} \left(1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \frac{5x^4}{128} - \cdots \right) dx$$
$$= \int_0^{\frac{1}{4}} \left(x^{1/2} - \frac{x^{3/2}}{2} - \frac{x^{5/2}}{8} - \frac{x^{7/2}}{16} - \frac{5x^{9/2}}{128} \cdots \right) dx.$$

Integrating term-by-term and combining the above:

$$\pi = \frac{3\sqrt{3}}{4} + 24\left(\frac{2}{3\cdot 8} - \frac{1}{5\cdot 32} - \frac{1}{7\cdot 512} - \frac{1}{9\cdot 4096}\cdots\right)$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Isaac Newton's arcsin

Newton discovered a different (disguised \arcsin) formula. He considered the area A of the red region to the right:

Now $A := \int_0^{1/4} \sqrt{x - x^2} \, dx$ equals the circular sector, $\pi/24$, less the triangle, $\sqrt{3}/32$. His new binomial theorem gave:

$$A = \int_0^{\frac{1}{4}} x^{1/2} (1-x)^{1/2} dx = \int_0^{\frac{1}{4}} x^{1/2} \left(1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \frac{5x^4}{128} - \cdots \right) dx$$
$$= \int_0^{\frac{1}{4}} \left(x^{1/2} - \frac{x^{3/2}}{2} - \frac{x^{5/2}}{8} - \frac{x^{7/2}}{16} - \frac{5x^{9/2}}{128} \cdots \right) dx.$$

Integrating term-by-term and combining the above:

$$\pi = \frac{3\sqrt{3}}{4} + 24\left(\frac{2}{3\cdot8} - \frac{1}{5\cdot32} - \frac{1}{7\cdot512} - \frac{1}{9\cdot4096}\cdots\right)$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Isaac Newton's arcsin

Newton discovered a different (disguised \arcsin) formula. He considered the area A of the red region to the right:

.

CARM

Now $A := \int_0^{1/4} \sqrt{x - x^2} \, dx$ equals the circular sector, $\pi/24$, less the triangle, $\sqrt{3}/32$. His new binomial theorem gave:

$$A = \int_0^{\frac{1}{4}} x^{1/2} (1-x)^{1/2} dx = \int_0^{\frac{1}{4}} x^{1/2} \left(1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \frac{5x^4}{128} - \cdots \right) dx$$
$$= \int_0^{\frac{1}{4}} \left(x^{1/2} - \frac{x^{3/2}}{2} - \frac{x^{5/2}}{8} - \frac{x^{7/2}}{16} - \frac{5x^{9/2}}{128} \cdots \right) dx.$$

Integrating term-by-term and combining the above:

$$\pi = \frac{3\sqrt{3}}{4} + 24\left(\frac{2}{3\cdot 8} - \frac{1}{5\cdot 32} - \frac{1}{7\cdot 512} - \frac{1}{9\cdot 4096} \cdots\right)$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Newton's (1643-1727) Annus Mirabilis

Newton used his formula to find **15 digits** of π .

• As noted, he 'apologized' for "having no other business at the time." A standard **1951** MAA chronology said, condescendingly, "Newton never tried to compute π ."

Newton, Gregory (1638-1675) and Leibniz (1646-1716)

The fire of London ended the plague in September **1666**. The plague closed Cambridge and left Newton free at his country home to think. Wikipedia: Newton made revolutionary inventions and discoveries in calculus, motion, optics and gravitation. As such, it has later been called Isaac Newton's "Annus Mirabilis."

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Newton's (1643-1727) Annus Mirabilis

Newton used his formula to find **15 digits** of π .

• As noted, he 'apologized' for "having no other business at the time." A standard **1951** MAA chronology said, condescendingly, "Newton never tried to compute π ."

Newton, Gregory (1638-1675) and Leibniz (1646-1716)

The fire of London ended the plague in September **1666**. The plague closed Cambridge and left Newton free at his country home to think.

Wikipedia: Newton made revolutionary inventions and discoveries in calculus, motion, optics and gravitation. As such, it has later been called Isaac Newton's "Annus Mirabilis."

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Calculus π Calculations: and an IBM 7090

Name	Year	Digits
Sharp (and Halley)	1699	71
Machin	1706	100
Strassnitzky and Dase	1844	200
Rutherford	1853	440
W. Shanks	1874	(707) 527
Ferguson (Calculator)	1947	808
Reitwiesner et al. (ENIAC)	1949	2,037
Genuys	1958	10,000
D. Shanks and Wrench (IBM)	1961	100,265
Guilloud and Bouyer	1973	1,001,250

▶ SKIP

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Why a Serial God Should Not Play Dice

Buffon (1707-78) & Ulam (1909-84)

Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.

1. Draw a unit square and inscribe a circle within: the area of the circle is $\frac{\pi}{4}$.

2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they *should* fall inside the circle with probability $\frac{\pi}{4}$.

3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to $\frac{\pi}{4}$.

CARMA

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Why a Serial God Should Not Play Dice

Buffon (1707-78) & Ulam (1909-84)

Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.

1. Draw a unit square and inscribe a circle within: the area of the circle is $\frac{\pi}{4}$.

2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they *should* fall inside the circle with probability $\frac{\pi}{4}$.

3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to $\frac{\pi}{4}$.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Why a Serial God Should Not Play Dice

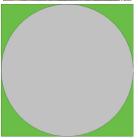
Buffon (1707-78) & Ulam (1909-84)

Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.

1. Draw a unit square and inscribe a circle within: the area of the circle is $\frac{\pi}{4}$.

2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they *should* fall inside the circle with probability $\frac{\pi}{4}$.


3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to $\frac{\pi}{4}$.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Why a Serial God Should Not Play Dice

Buffon (1707-78) & Ulam (1909-84)

Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.

1. Draw a unit square and inscribe a circle within: the area of the circle is $\frac{\pi}{4}$.

2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they *should* fall inside the circle with probability $\frac{\pi}{4}$.

3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to $\frac{\pi}{4}$.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Monte Carlo Methods

- This is a Monte Carlo estimate (MC) for π .
- MC simulation: slow (√n) convergence but great in parallel on *Beowulf clusters*.
- Used in Manhattan project ... the atomic-bomb predates digital computers!

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Gauss (1777-1855), Johan Dase and William Shanks

In his teens, Viennese *computer* and 'kopfrechner' Dase (1824 -1861) publicly demonstrated his skill by multiplying $79532853 \times 93758479 = 7456879327810587$

- in **54 seconds**; 20-digits in 6 min; 40-digits in 40 min; **100-digit** numbers in $8\frac{3}{4}$ hours etc.
 - Gauss was not impressed.
- 1844. Calculated π to 200 places on learning Euler's

$$\frac{\pi}{4} = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right)$$

from Strassnitsky — in his head correctly in 2 months.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Gauss (1777-1855), Johan Dase and William Shanks

In his teens, Viennese *computer* and 'kopfrechner' Dase (1824 -1861) publicly demonstrated his skill by multiplying $79532853 \times 93758479 = 7456879327810587$

- in 54 seconds; 20-digits in 6 min; 40-digits in 40 min; 100-digit numbers in 8³/₄ hours etc.
 - Gauss was not impressed.
- 1844. Calculated π to 200 places on learning Euler's

$$\frac{\pi}{4} = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right)$$

from Strassnitsky — in his head correctly in 2 months.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Gauss (1777-1855), Johan Dase and William Shanks

CARMA

In his teens, Viennese *computer* and 'kopfrechner' Dase (1824 -1861) publicly demonstrated his skill by multiplying $79532853 \times 93758479 = 7456879327810587$

• in **54 seconds**; 20-digits in 6 min; 40-digits in 40 min; **100-digit** numbers in $8\frac{3}{4}$ hours etc.

- Gauss was not impressed.

• 1844. Calculated π to 200 places on learning Euler's

$$\frac{\pi}{4} = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right)$$

from Strassnitsky — in his head correctly in 2 months.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Dase and Experimental Mathematics

▶ SKIP

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number). CARMAD

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Dase and Experimental Mathematics

► SKIP

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number). CARMAD

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

SKIP

Dase and Experimental Mathematics

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- **1861**. When Dase died he had *only* reached **8,000,000**.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number). CARMAD

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Dase and Experimental Mathematics

▶ SKIP

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number). CARMAD

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Dase and Experimental Mathematics

▶ SKIP

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

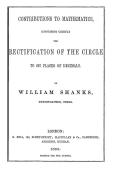
- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number). CARMAD

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Dase and Experimental Mathematics

▶ SKIP

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).



- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number). CARMAD

Machin Formulas Calculus Calculation Records Mathematical Interlude, II

William Shanks (1812-82): "A Human Computer" (1853)

Towarps the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of leisure with the achievement of something original, and which, at the same time, should not subject him either to great tension of thought, or to consult books. He is aware that works on nearly every branch of Mathematics are being published almost weekly, both in Europe and America; and that it has therefore become no easy task to ascertain what really is original matter, even in the pure science itself. Beautiful speculations, especially in both Plane and Curved

mentary sheets might som be firmished. April 30, 1853.

• 30 Subscribers : Rutherford, De Morgan, Herschel (1792-1871)

- In error after 527 places occurred in the "rush to publish"?

 19. Pi's Childhood
 Machin Formulas

 38. Pi's Adolescence
 Newton and Pi

 43. Adulthood of Pi
 Calculus Calculation Records

 74. Pi in the Digital Age
 Mathematical Interlude, II

 107. Computing Individual Digits of π Why Pi?

William Shanks (1812-82): "A Human Computer" (1853)

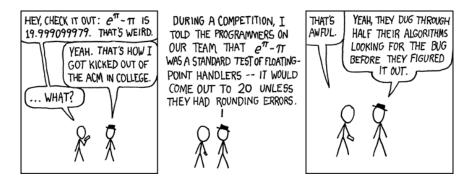
TowARDS the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of iginal and which

Life of Pi (CARMA)

J.M. Borwein

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

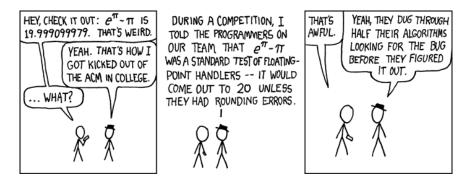
William Shanks (1812-82): "A Human Computer" (1853)


Towarps the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of leisure with the achievement of something original, and which, at the same time, should not subject him either to great tension of thought, or to consult books. He is aware that works on nearly every branch of Mathematics are being published almost weekly, both in Europe and America; and that it has therefore become no easy task to ascertain what really is original matter, even in the pure science itself. Beautiful speculations, especially in both Plane and Curved

- 30 Subscribers : Rutherford, De Morgan, Herschel (1792-1871) Master of the Mint, whose father discovered Uranus, Airy (1801-1892) Astronomer Royal, ...
 - In error after 527 places occurred in the "rush to publish"?
 - He also calculated e and γ .

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Some Things are only Coincidences



• This was weirder on an 8-digit calculator!

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Some Things are only Coincidences

• This was weirder on an 8-digit calculator!

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Number Theoretic Consequences

Lambert (1728-77)

Legendre (1752-1833)

Lindemann (1852-1939)

• Irrationality of π was established by Lambert (1766) and then Legendre. Using the continued fraction for $\arctan(x)$

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Number Theoretic Consequences

Lambert (1728-77)

Legendre (1752-1833)

Lindemann (1852-1939)

• Irrationality of π was established by Lambert (**1766**) and then Legendre. Using the continued fraction for $\arctan(x)$

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Number Theoretic Consequences

Lambert (1728-77)

Legendre (1752-1833)

Lindemann (1852-1939)

 Irrationality of π was established by Lambert (1766) and then Legendre. Using the continued fraction for arctan(x)

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Number Theoretic Consequences

Lambert (1728-77)

Legendre (1752-1833)

Lindemann (1852-1939)

 Irrationality of π was established by Lambert (1766) and then Legendre. Using the continued fraction for arctan(x)

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Number Theoretic Consequences

Lambert (1728-77)

Legendre (1752-1833)

Lindemann (1852-1939)

• Irrationality of π was established by Lambert (1766) and then Legendre. Using the continued fraction for $\arctan(x)$

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

The Three Construction Problems of Antiquity

The other two are doubling the cube and trisecting the angle

- This settled once and for all, the ancient Greek question of whether the circle could be squared with ruler and compass.
- It cannot, because lengths of lines that can be constructed using ruler and compasses (constructible numbers) are necessarily algebraic, and squaring the circle is equivalent to constructing the value of π .
- Aristophanes (448-380 BCE) 'knew' this and derided all 'circle-squarers' in his play The Birds of 414 BCE.

τετραγωσιειν

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

The Three Construction Problems of Antiquity

The other two are doubling the cube and trisecting the angle

- This settled once and for all, the ancient Greek question of whether the circle could be squared with ruler and compass.
- It cannot, because lengths of lines that can be constructed using ruler and compasses (constructible numbers) are necessarily algebraic, and squaring the circle is equivalent to constructing the value of π.
- Aristophanes (448-380 BCE) 'knew' this and derided all 'circle-squarers' in his play The Birds of 414 BCE.

τετραγωσιειν

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

The Three Construction Problems of Antiquity

The other two are doubling the cube and trisecting the angle

- This settled once and for all, the ancient Greek question of whether the circle could be squared with ruler and compass.
- It cannot, because lengths of lines that can be constructed using ruler and compasses (constructible numbers) are necessarily algebraic, and squaring the circle is equivalent to constructing the value of π .
- Aristophanes (448-380 BCE) 'knew' this and derided all 'circle-squarers' in his play The Birds of 414 BCE.

 $\tau \varepsilon \tau \rho \alpha \gamma \omega \sigma \iota \varepsilon \iota \nu$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

The Irrationality of π , II

Ivan Niven's 1947 proof that π is irrational. Let $\pi = a/b$, the quotient of positive integers. We define the polynomials

$$f(x) = \frac{x^n (a - bx)^n}{n!}$$

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x)$$

the positive integer being specified later. Since n!f(x) has integral coefficients and terms in x of degree not less than n, f(x) and its derivatives $f^{(j)}(x)$ have integral values for x = 0; also for $x = \pi = a/b$, since f(x) = f(a/b - x). By elementary calculus we have

$$\frac{d}{dx} \{ F'(x) \sin x - F(x) \cos x \}$$

= $F''(x) \sin x + F(x) \sin x = f(x) \sin x$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

The Irrationality of π , II

and

$$\int_0^{\pi} f(x) \sin x dx = [F'(x) \sin x - F(x) \cos x]_0^{\pi}$$

= $F(\pi) + F(0).$ (10)

Now $F(\pi)+F(0)$ is an integer, since $f^{(j)}(0)$ and $f^{(j)}(\pi)$ are integers. But for $0 < x < \pi$,

$$0 < f(x)\sin x < \frac{\pi^n a^n}{n!},$$

so that the integral in (10) is *positive but arbitrarily small* for n sufficiently large. Thus (10) is false, and so is our assumption that π is rational. QED

 This, exact transcription of Niven's proof, is an excellent intimation of more sophisticated irrationality and transcendence proofs.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

The Irrationality of π , II

and

$$\int_0^{\pi} f(x) \sin x dx = [F'(x) \sin x - F(x) \cos x]_0^{\pi}$$

= $F(\pi) + F(0).$ (10)

Now $F(\pi)+F(0)$ is an integer, since $f^{(j)}(0)$ and $f^{(j)}(\pi)$ are integers. But for $0 < x < \pi$,

$$0 < f(x)\sin x < \frac{\pi^n a^n}{n!},$$

so that the integral in (10) is *positive but arbitrarily small* for n sufficiently large. Thus (10) is false, and so is our assumption that π is rational. QED

• This, exact transcription of Niven's proof, is an excellent intimation of more sophisticated irrationality and transcendence proofs.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Life of Pi

• At the end of his story, Piscine (Pi) Molitor writes

Richard Parker (L) and Pi Molitor Ang Lee's upcoming film Life of Pi is now shooting with a planned 2012 release

I am a person who believes in form, in harmony of order. Where we can, we must give things a meaningful shape. For example — I wonder — could you tell my jumbled story in exactly one hundred chapters, not one more, not one less? I'll tell you, that's one thing I hate about my nickname, the way that number runs on forever. It's important in life to conclude things properly. Only then can you let go.

• We may not share the sentiment, but we should *celebrate* that Pi knows Pi to be irrational.

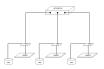
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Life of Pi

• At the end of his story, Piscine (Pi) Molitor writes

Richard Parker (L) and Pi Molitor Ang Lee's upcoming film Life of Pi is now shooting with a planned 2012 release

I am a person who believes in form, in harmony of order. Where we can, we must give things a meaningful shape. For example — I wonder — could you tell my jumbled story in exactly one hundred chapters, not one more, not one less? I'll tell you, that's one thing I hate about my nickname, the way that number runs on forever. It's important in life to conclude things properly. Only then can you let go.


• We may not share the sentiment, but we should *celebrate* that Pi knows Pi to be irrational.

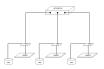
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

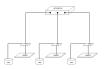
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

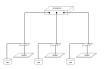
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

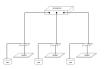
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) — heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

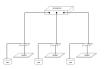
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

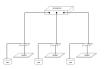
Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.

Substantial practical spin-offs accrue:


- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.

Substantial practical spin-offs accrue:

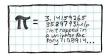
- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

 19. Pi's Childhood
 Machin For

 38. Pi's Adolescence
 Newton an

 43. Adulthood of Pi
 Calculus Ca

 74. Pi in the Digital Age
 Mathemati

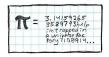

 107. Computing Individual Digits of π
 Why Pi?

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

... Why Pi?

• Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

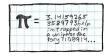
John von Neumann so prompted ENIAC computation of π and e — and e showed anomalies.


- Kanada, e.g., made detailed statistical analysis without success hoping some test suggests *π* is **not** normal.
 - The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.

... Why Pi?

• Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

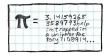
John von Neumann so prompted **ENIAC** computation of π and e — and e showed anomalies.


- Kanada, e.g., made detailed statistical analysis without success hoping some test suggests *π* is **not** normal.
 - The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.

... Why Pi?

• Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

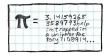
John von Neumann so prompted **ENIAC** computation of π and e — and e showed anomalies.


- Kanada, e.g., made detailed statistical analysis without success hoping some test suggests *π* is **not** normal.
 - The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.

... Why Pi?

• Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

John von Neumann so prompted **ENIAC** computation of π and e — and e showed anomalies.


- Kanada, e.g., made detailed statistical analysis without success hoping some test suggests *π* is **not** normal.
 - The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.

... Why Pi?

• Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

John von Neumann so prompted **ENIAC** computation of π and e — and e showed anomalies.

CARMA

- Kanada, e.g., made detailed statistical analysis without success hoping some test suggests *π* is **not** normal.
 - The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Pi Seems Normal: Things we sort of know about Pi

A walk on a billion hex digits of Pi with box dimension 1.85343...

- A 21Gb ten billion step walk is at http://gigapan.org/gigapans/99214/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal $< 1/10^{3600}$.

D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the normality CARMA

of pi." Exp. Math. In Press, 2012. See: http://www.carma.newcastle.edu.au/jon/normality-long.pdf

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Pi Seems Normal: Things we sort of know about Pi

A walk on a billion hex digits of Pi with box dimension 1.85343...

- A 21Gb ten billion step walk is at http://gigapan.org/gigapans/99214/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal $< 1/10^{3600}$.

D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the normality

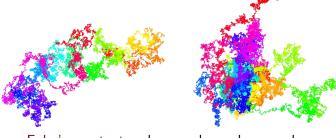

of pi." Exp. Math. In Press, 2012. See: http://www.carma.newcastle.edu.au/jon/normality-long.pdf

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

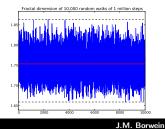
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

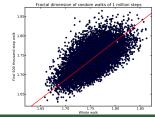
Pi Seems Normal: Things we sort of know about Pi

A walk on a billion hex digits of Pi with box dimension 1.85343...


- A 21Gb ten billion step walk is at http://gigapan.org/gigapans/99214/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal $< 1/10^{3600}$.

D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the normality


of pi." Exp. Math. In Press, 2012. See: http://www.carma.newcastle.edu.au/jon/normality-long.pdf


Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Pi Seems Normal: Some million bit comparisons

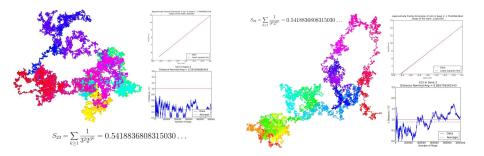
Euler's constant and a pseudo-random number

CARMA

 19. Pi's Childhood
 Machin I

 38. Pi's Adolescence
 Newton

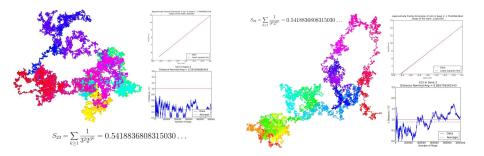
 43. Adulthood of Pi
 Calculus


 74. Pi in the Digital Age
 Mathem

 107. Computing Individual Digits of π
 Why Pi?

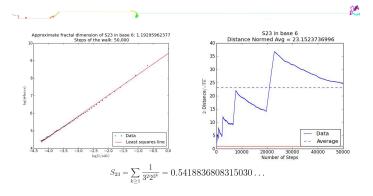
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Pi Seems Normal: Comparisons to Stoneham's number, I


In base 2 Stoneham's number is provably normal. It may be normal base 3.

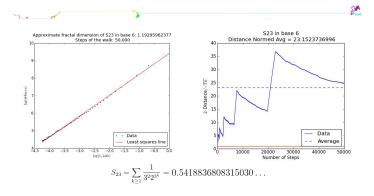
Pi Seems Normal: Comparisons to Stoneham's number, I

In base 2 Stoneham's number is provably normal. It may be normal base 3.



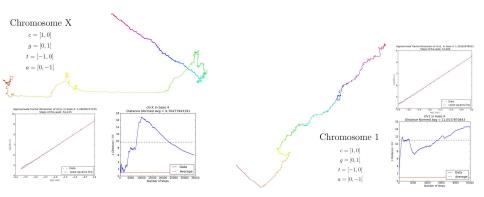
19. Pi's ChildhoodMachin Formulas38. Pi's AdolescenceNewton and Pi43. Adulthood of PiCalculus Calculation Records74. Pi in the Digital AgeMathematical Interlude, II107. Computing Individual Digits of π Why Pi?

Pi Seems Normal: Comparisons to Stoneham's number, II


Stoneham's number is provably abnormal base 6 (too many zeros).

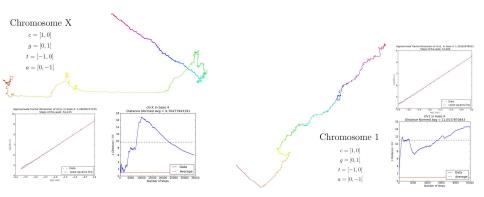
CARMA

Pi Seems Normal: Comparisons to Stoneham's number, II

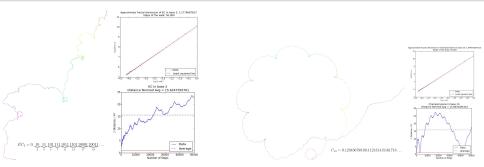

Stoneham's number is provably abnormal base 6 (too many zeros).

CARMA>

Pi Seems Normal: Comparisons to Human Genomes — we are base 4 no's



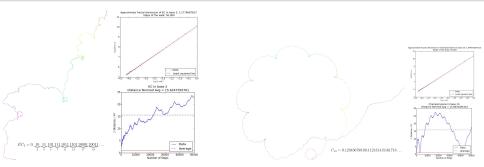
The X Chromosome (34K) and Chromosome One (10K)


Pi Seems Normal: Comparisons to Human Genomes — we are base 4 no's

The X Chromosome (34K) and Chromosome One (10K).

CARMA

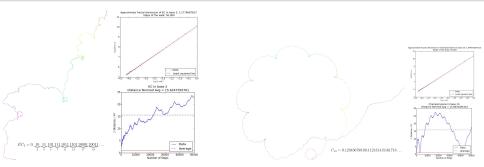
Pi Seems Normal: Comparisons to other provably normal numbers



Erdös-Copeland number (base 2) and Champernowne number (base 10)

All pictures are thanks to Fran Aragon and Jake Fountain http://www.carma.newcastle.edu.au/numberwalks.pdf

Pi Seems Normal: Comparisons to other provably normal numbers



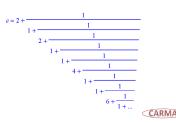
Erdös-Copeland number (base 2) and Champernowne number (base 10).

All pictures are thanks to Fran Aragon and Jake Fountain http://www.carma.newcastle.edu.au/numberwalks.pdf

Pi Seems Normal: Comparisons to other provably normal numbers

Erdös-Copeland number (base 2) and Champernowne number (base 10).

All pictures are thanks to Fran Aragon and Jake Fountain http://www.carma.newcastle.edu.au/numberwalks.pdf

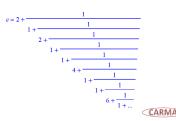


Pi is Still Mysterious: Things we don't know about Pi

We do not 'know' (in the sense of being able to prove) whether

- The simple continued fraction for Pi is unbounded.
 - Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi.
- There are infinitely many ones in the ternary expansion of Pi.
- There are equally many zeroes and ones in the binary expansion of Pi.
- Or pretty much anything I have not told you.

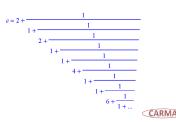
Pi is Still Mysterious: Things we don't know about Pi


We do not 'know' (in the sense of being able to prove) whether

• The simple continued fraction for Pi is unbounded.

- Euler found the 292.

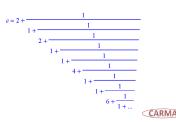
- There are infinitely many sevens in the decimal expansion of Pi.
- There are infinitely many ones in the ternary expansion of Pi.
- There are equally many zeroes and ones in the binary expansion of Pi.
- Or pretty much anything I have not told you.



Pi is Still Mysterious: Things we don't know about Pi

We do not 'know' (in the sense of being able to prove) whether

- The simple continued fraction for Pi is unbounded.
 - Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi.
- There are infinitely many ones in the ternary expansion of Pi.
- There are equally many zeroes and ones in the binary expansion of Pi.
- Or pretty much anything I have not told you.



Pi is Still Mysterious: Things we don't know about Pi

We do not 'know' (in the sense of being able to prove) whether

- The simple continued fraction for Pi is unbounded.
 - Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi.
- There are infinitely many ones in the ternary expansion of Pi.
- There are equally many zeroes and ones in the binary expansion of Pi.
- Or pretty much anything I have not told you.

19. Pi's Childhood 38. Pi's Adolescence 43. Adulthood of Pi 74. Pi in the Digital Age 107. Computing Individual Digits of π	Machin Formulas Newton and Pi Calculus Calculati Mathematical Int Why Pi?		
Decimal Digit Frequency: ar	nd "Johnny" v	on Neumann	IBM F SKIP
1st von Neumann architecture machine	Decimal	Occurren	ces
		99999485	134
	1	999999450	564
	2	1000004800)57
	3	999997878	305
	4	<u>100000</u> 3578	357
$J\nu N~(1903\text{-}57)$ at the Institute for Advanced Study	5	99999671	800
	6	99999807	503
	7	99999818	723

Total 100000000000 CARMA

19. Pi's Childhood 38. Pi's Adolescence 43. Adulthood of Pi 74. Pi in the Digital Age 107. Computing Individual Digits of π	Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?		
Decimal Digit Frequency: a	nd "Johnny"	von Neumann	SM SKIP
Ist von Neumann architecture machine Ist von Neu	Decimal	Occurrences	-
	0	99999485134	
	1	99999945664	
	2	100000480057	
	3	99999787805	
	4	<u>100000</u> 357857	
	5	99999671008	
	6	99999807503	
	7	99999818723	
	8	100000791469	
	9	99999854780	
	Total	1000000000000	CARMA

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Hexadecimal Digit Frequency: and Richard Crandall (Apple HPC)

- 0 62499881108
- 1 62500212206
- 2 62499924780
- 3 62500188844
- 4 62499807368
- 5 62500007205
- 6 62499925426
- 7 62499878794
- 8 <u>62500</u>216752
- 9 62500120671
- A 62500266095
- B 62499955595
- C 62500188610
- D 62499613666
- E 62499875079
- F 62499937801

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Changing Cognitive Tastes

Why in antiquity π was not *measured* to greater accuracy than 22/7 (with rope)?

It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one — see Francis Bacon's *De augmentis scientiarum* (1623).

CARN

• Gauss and Ramanujan did not exploit their identities for π .

- An algorithm, as opposed to a closed form, was unsatisfactory to them — especially Ramanujan. He preferred

 $\frac{3}{\sqrt{163}} \log (640320) \approx \pi \qquad \text{and} \qquad \frac{3}{\sqrt{67}} \log (5280) \approx \pi$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Changing Cognitive Tastes

Why in antiquity π was not *measured* to greater accuracy than 22/7 (with rope)?

It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one — see Francis Bacon's *De augmentis scientiarum* (1623).

CARM

• Gauss and Ramanujan did not exploit their identities for π .

- An algorithm, as opposed to a closed form, was unsatisfactory to them — especially Ramanujan. He preferred

 $\frac{3}{\sqrt{163}} \log (640320) \approx \pi \quad \text{and} \quad \frac{3}{\sqrt{67}} \log (5280) \approx \pi$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Changing Cognitive Tastes

Why in antiquity π was not *measured* to greater accuracy than 22/7 (with rope)?

It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one — see Francis Bacon's *De augmentis scientiarum* (1623).

CARMA

- Gauss and Ramanujan did not exploit their identities for π .
- An algorithm, as opposed to a closed form, was unsatisfactory to them especially Ramanujan. He preferred

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Changing Cognitive Tastes

Why in antiquity π was not *measured* to greater accuracy than 22/7 (with rope)?

It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one — see Francis Bacon's *De augmentis scientiarum* (1623).

- Gauss and Ramanujan did not exploit their identities for π .
- An algorithm, as opposed to a closed form, was unsatisfactory to them especially Ramanujan. He preferred

 $\frac{3}{\sqrt{163}} \log(640320) \approx \pi$ and $\frac{3}{\sqrt{67}} \log(5280) \approx \pi$

correct to 15 and 9 decimal places respectively.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Changing Cognitive Tastes: Truth without Proof

Gourevich used integer relation computer methods to find the Ramanujan-type series — discussed below — in (11):

$$\frac{4}{\pi^3} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^7 (1 + 14n + 76n^2 + 168n^3) \left(\frac{1}{8}\right)^{2n+1}$$
(11)

where $r(n) := \frac{1}{2} \cdot \frac{3}{4} \cdot \cdots \cdot \frac{2n-1}{2n}$.

- I can "discover" it using **30**-digit arithmetic. and check it to **1,000** digits in **0.75** sec, **10,000** digits in **4.01** min with two naive command-line instructions in *Maple*.
 - No one has any inkling of how to prove it.
 - I "know" the beautiful identity is true it would be more remarkable were it eventually to fail.
 - It may be true for no good reason it might just have no proof and be a very concrete Gödel-like statement.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Changing Cognitive Tastes: Truth without Proof

Gourevich used integer relation computer methods to find the Ramanujan-type series — discussed below — in (11):

$$\frac{4}{\pi^3} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^7 (1 + 14n + 76n^2 + 168n^3) \left(\frac{1}{8}\right)^{2n+1}$$
(11)

where $r(n) := \frac{1}{2} \cdot \frac{3}{4} \cdot \cdots \cdot \frac{2n-1}{2n}$.

- I can "discover" it using **30**-digit arithmetic. and check it to **1,000** digits in **0.75** sec, **10,000** digits in **4.01** min with two naive command-line instructions in *Maple*.
 - No one has any inkling of how to prove it.
 - I "know" the beautiful identity is true it would be more remarkable were it eventually to fail.
 - It may be true for no good reason it might just have no proof and be a very concrete Gödel-like statement.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Changing Cognitive Tastes: Truth without Proof

Gourevich used integer relation computer methods to find the Ramanujan-type series — discussed below — in (11):

$$\frac{4}{\pi^3} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^7 (1 + 14n + 76n^2 + 168n^3) \left(\frac{1}{8}\right)^{2n+1}$$
(11)

where $r(n) := \frac{1}{2} \cdot \frac{3}{4} \cdot \cdots \cdot \frac{2n-1}{2n}$.

- I can "discover" it using **30**-digit arithmetic. and check it to **1,000** digits in **0.75** sec, **10,000** digits in **4.01** min with two naive command-line instructions in *Maple*.
 - No one has any inkling of how to prove it.
 - I "know" the beautiful identity is true it would be more remarkable were it eventually to fail.
 - It may be true for no good reason it might just have no proof and be a very concrete Gödel-like statement.

ARMA

Machin Formulas Newton and Pi Calculus Calculation Record Mathematical Interlude, II Why Pi?

Pi in High Culture (1993)

The admirable number pi:

three point one four one.

All the following digits are also initial,

five nine two because it never ends.

It can't be comprehended six five three five at a glance,

eight nine by calculation,

seven nine or imagination

not even three two three eight by wit, that is, by comparison

four six to anything else

two six four three in the world.

The longest snake on earth calls it quits at about forty feet.

Likewise, snakes of myth and legend, though they may hold out a bit longer.

The pageant of digits comprising the number pi doesn't stop at the page's edge.

It goes on across the table, through the air,

over a wall, a leaf, a bird's nest, clouds, straight into the sky,

through all the bottomless, bloated heavens.

1996 Nobel Wislawa Szymborska (2-7-1923 1-2-2012)

Oh how brief - a mouse tail, a pigtail - is the tail of a comet!

How feeble the star's ray, bent by bumping up against space!

While here we have two three fifteen three hundred nineteen

my phone number your shirt size the year

nineteen hundred and seventy-three the sixth floor

the number of inhabitants sixty-five cents

hip measurement two fingers a charade, a code,

in which we find *hail to thee, blithe spirit, bird thou never* wert

alongside ladies and gentlemen, no cause for alarm, as well as heaven and earth shall pass away, but not the number pi, oh no, nothing doing, it keeps right on with its rather remarkable five.

its uncommonly fine eight,

its far from final seven,

nudging, always nudging a sluggish eternity to continue.

Pi in High Culture (1993)

The admirable number pi: three point one four one. All the following digits are also initial, five nine two because it never ends It can't be comprehended six five three five at a glance, eight nine by calculation, seven nine or imagination. not even three two three eight by wit, that is, by comparison four six to anything else two six four three in the world. The longest snake on earth calls it quits at about forty feet Likewise, snakes of myth and legend, though they may hold out a bit longer. The pageant of digits comprising the number pi doesn't stop at the page's edge. It goes on across the table, through the air, over a wall, a leaf, a bird's nest, clouds, straight into the skv. through all the bottomless, bloated heavens,

1996 Nobel Wislawa Szymborska (2-7-1923 1-2-2012)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Oh how brief - a mouse tail, a pigtail - is the tail of a comet!

How feeble the star's ray, bent by bumping up against space!

While here we have two three fifteen three hundred nineteen

my phone number your shirt size the year

nineteen hundred and seventy-three the sixth floor

the number of inhabitants sixty-five cents

hip measurement two fingers a charade, a code,

in which we find *hail to thee, blithe spirit, bird thou never* wert

alongside ladies and gentlemen, no cause for alarm,

but not the number pi, oh no, nothing doing.

it keeps right on with its rather remarkable five

its uncommonly fine eight,

its far from final seven

nudging, always nudging a sluggish eternity to continue.

Pi in High Culture (1993)

The admirable number pi: three point one four one. All the following digits are also initial, five nine two because it never ends It can't be comprehended six five three five at a glance, eight nine by calculation, seven nine or imagination. not even three two three eight by wit, that is, by comparison four six to anything else two six four three in the world. The longest snake on earth calls it quits at about forty feet Likewise, snakes of myth and legend, though they may hold out a bit longer. The pageant of digits comprising the number pi doesn't stop at the page's edge. It goes on across the table, through the air, over a wall, a leaf, a bird's nest, clouds, straight into the skv. through all the bottomless, bloated heavens,

1996 Nobel Wislawa Szymborska (2-7-1923 1-2-2012)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi?

Oh how brief - a mouse tail, a pigtail - is the tail of a comet!

How feeble the star's ray, bent by bumping up against space!

While here we have two three fifteen three hundred nineteen

my phone number your shirt size the year nineteen hundred and seventy-three the sixth floor

the number of inhabitants sixty-five cents

hip measurement two fingers a charade, a code,

in which we find hail to thee, blithe spirit, bird thou never wert

alongside ladies and gentlemen, no cause for alarm, as well as heaven and earth shall pass away, but not the number pi, oh no, nothing doing, it keeps right on with its rather remarkable five.

its uncommonly fine eight,

its far from final seven,

nudging, always nudging a sluggish eternity to continue.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

TOC

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π .

1965. The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

 $x \leftrightarrow x + x(1 - bx)$ $x \leftrightarrow x + x(1 - ax^2)/2$

converts 1/b to $4 \times$

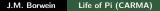
converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.


- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

 $x \leftrightarrow x + x(1 - bx)$ $x \leftrightarrow x + x(1 - ax^2)/c$

converts 1/b to $4 \times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (**7** for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.
- $x \leftrightarrow x + x(1 bx)$ $x \leftrightarrow x + x(1 ax^2)/2$ converts 1/b to $4 \times$ converts $1/\sqrt{a}$ to $6 \times (7$ for \sqrt{a}
 - ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

 $x \leftrightarrow x + x(1 - bx)$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (**7** for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

 $x \leftrightarrow x + x(1 - bx)$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} \times (\mathbf{7} \text{ for } \sqrt{a})$

 $x \leftrightarrow x + x(1 - ax^2)/2$

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

 $x \leftrightarrow x + x(1 - bx)$ $x \leftrightarrow x + x(1 - ax^2)/2$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

 $x \leftrightarrow x + x(1 - bx)$ $x \leftrightarrow x + x(1 - ax^2)/2$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Newton Method Illustrated in Maple for 1/7

>restart:Digits:=100:N:=x->x+x*(1-7*x);

 $N := x \rightarrow x + x (1 - 7 x)$

Newton's method

- Newton's method is self-correcting and quadratically convergent.
- 2 So we start close (to the left); and
- **3** We keep only the first half of each answer.

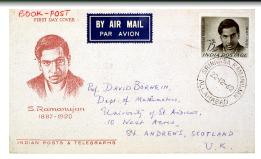
Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Newton Method Illustrated in Maple for 1/7

>restart:Digits:=100:N:=x->x+x*(1-7*x);

 $N := x \rightarrow x + x (1 - 7 x)$

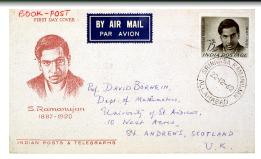
Newton's method


• Newton's method is self-correcting and quadratically convergent.

- **2** So we start close (to the left); and
- 3 We keep only the first half of each answer.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Pi in the Digital Age

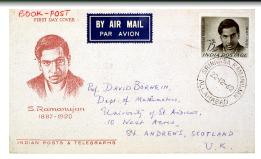


Ramanujan's Seventy-Fifth Birthday Stamp.

- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around **1910**.
 - Based on theory of elliptic integrals or modular functions, they were not well known (nor fully proven) until *recently* when his writings were finally fully published by Bruce Berndt.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Pi in the Digital Age



Ramanujan's Seventy-Fifth Birthday Stamp.

- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around **1910**.
 - Based on theory of elliptic integrals or modular functions, they were not well known (nor fully proven) until *recently* when his writings were finally fully published by Bruce Berndt.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Pi in the Digital Age

Ramanujan's Seventy-Fifth Birthday Stamp.

- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around **1910**.
 - Based on theory of elliptic integrals or modular functions, they were not well known (nor fully proven) until *recently* when his writings were finally fully published by Bruce Berndt.

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 Computing Individual Digits of π

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ramanujan-type Series for $1/\pi$

One of these series is the remarkable:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \left(\mathbf{1103} + 26390k\right)}{(k!)^4 396^{4k}}$$
(12)

• Each term adds an additional **eight** correct digits.

 \diamond **1985**. 'Hacker' Bill Gosper used (12) to compute **17 million digits** of (the continued fraction for) π ; and so the first proof of (12) !

1987. David and Gregory Chudnovsky found a variant:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 640320^{3k+3/2}}$$

• Each term adds an additional 14 correct digits.

J.M. Borwein	Life of Pi	(CARMA)	

CAR

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ramanujan-type Series for $1/\pi$

One of these series is the remarkable:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \left(\mathbf{1103} + 26390k\right)}{(k!)^4 396^{4k}}$$
(12)

- Each term adds an additional **eight** correct digits.
- \diamond **1985**. 'Hacker' Bill Gosper used (12) to compute **17 million digits** of (the continued fraction for) π ; and so the first proof of (12) !

1987. David and Gregory Chudnovsky found a variant:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 640320^{3k+3/2}}$$

• Each term adds an additional 14 correct digits.

J.M. Borwein Life of Pi (CARMA)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ramanujan-type Series for $1/\pi$

One of these series is the remarkable:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \left(\mathbf{1103} + 26390k\right)}{(k!)^4 396^{4k}}$$
(12)

- Each term adds an additional **eight** correct digits.
- \diamond **1985**. 'Hacker' Bill Gosper used (12) to compute **17 million digits** of (the continued fraction for) π ; and so the first proof of (12) !

1987. David and Gregory Chudnovsky found a variant:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 640320^{3k+3/2}}$$
(13)

• Each term adds an additional 14 correct digits.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ramanujan-type Series for $1/\pi$

One of these series is the remarkable:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \,(\mathbf{1103} + 26390k)}{(k!)^4 396^{4k}} \tag{12}$$

- Each term adds an additional **eight** correct digits.
- \diamond **1985**. 'Hacker' Bill Gosper used (12) to compute **17 million digits** of (the continued fraction for) π ; and so the first proof of (12) !

1987. David and Gregory Chudnovsky found a variant:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 640320^{3k+3/2}}$$
(13)

• Each term adds an additional 14 correct digits.

J.M. Borwein	Life of Pi	(CARMA)
--------------	------------	---------

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The Chudnovsky Brothers

- The Chudnovskys implemented (13) with a clever scheme so results at one precision could be reused for higher precision.
 - They used this in several large calculations of π, culminating with a then record computation to over four billion decimal digits in 1994.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The Chudnovsky Brothers

- The Chudnovskys implemented (13) with a clever scheme so results at one precision could be reused for higher precision.
 - They used this in several large calculations of π , culminating with a then record computation to over **four billion** decimal digits in **1994**.

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Some Series Can Save Significant Work

• Relatedly, the Ramanujan-type series:

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \left(\frac{\binom{2n}{n}}{16^n}\right)^3 \frac{42n+5}{16}.$$
 (14)

MA

allows one to compute the billionth binary digit of $1/\pi$, or the like, without computing the first half of the series.

Conjecture (Moore's Law in *Electronics Magazine* 19 April, 1965) "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year" ... [revised to "every 18 months"]

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Some Series Can Save Significant Work

• Relatedly, the Ramanujan-type series:

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \left(\frac{\binom{2n}{n}}{16^n}\right)^3 \frac{42n+5}{16}.$$
 (14)

allows one to compute the billionth binary digit of $1/\pi$, or the like, without computing the first half of the series.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Electronic Numerical Integrator and Calculator, I

SIZE/WEIGHT: ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.

The ENIAC in the Smithsonian

• This Smithsonian 20Mb picture would require 100,000 ENIACs to store. [Moore's Law!]

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Electronic Numerical Integrator and Calculator, I

SIZE/WEIGHT: ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.

The ENIAC in the Smithsonian

• This Smithsonian 20Mb picture would require 100,000 ENIACs to store. [Moore's Law!]

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, II

SPEED/MEMORY: A 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000 — 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of π — suggested by von Neumann — to **2,037 places** in **70 hrs**. Origin of the term '*bug*'?

Programming ENIAC in 1946

CARM

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, II

SPEED/MEMORY: A 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000 — 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of π — suggested by von Neumann — to **2,037 places** in **70 hrs**.

Programming ENIAC in 1946

CARM

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, II

SPEED/MEMORY: A 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000 — 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of π — suggested by von Neumann — to **2,037 places** in **70 hrs**. Origin of the term '*bug*'?

Programming ENIAC in 1946

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, II

SPEED/MEMORY: A 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000 — 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of π — suggested by von Neumann — to **2,037 places** in **70 hrs**. Origin of the term '*bug*'?

Programming ENIAC in 1946

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, III

Presper Eckert and John Mauchly (Feb 1946)

- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).
 - Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673 (D. Minn. 1973) changed the world
 - Search for: IBM, Atanasoff-Berry Co.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, III

Presper Eckert and John Mauchly (Feb 1946)

- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).
 - Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673 (D. Minn. 1973) changed the world
 - Search for: IBM, Atanasoff-Berry Co.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, III

Presper Eckert and John Mauchly (Feb 1946)

- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).
 - Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673 (D. Minn. 1973) changed the world
 - Search for: IBM, Atanasoff-Berry Co.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

CARMA

Ballantine's (1939) Series for π

Another formula of Euler for arccot is:

$$x \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! (x^2+1)^{n+1}} = \arctan\left(\frac{1}{x}\right).$$

As $10(18^2+1) = 57^2+1 = 3250$ we may rewrite the formula

$$\frac{\pi}{4} = \arctan\left(\frac{1}{18}\right) + 8\arctan\left(\frac{1}{57}\right) - 5\arctan\left(\frac{1}{239}\right)$$

used by Shanks and Wrench in 1961 for 100,000 digits, and by Guilloud and Boyer in 1973 for a million digits of Pi in the efficient form

$$\pi = 864 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! \,\mathbf{325}^{n+1}} + 1824 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! \,\mathbf{3250}^{n+1}} - 20 \arctan\left(\frac{1}{239}\right)$$

where terms of the second series are just *decimal shifts* of the first.

 19. Pi's Childhood
 Rat

 38. Pi's Adolescence
 Th

 43. Adulthood of Pi
 Rat

 74. Pi in the Digital Age
 Mo

 107. Computing Individual Digits of π A F

Ramanujan-type Series **The ENIACalculator** Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

CARMA

Ballantine's (1939) Series for π

Another formula of Euler for arccot is:

$$x \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! (x^2+1)^{n+1}} = \arctan\left(\frac{1}{x}\right).$$

As $10(18^2 + 1) = 57^2 + 1 = 3250$ we may rewrite the formula

$$\frac{\pi}{4} = \arctan\left(\frac{1}{18}\right) + 8\arctan\left(\frac{1}{57}\right) - 5\arctan\left(\frac{1}{239}\right)$$

used by Shanks and Wrench in 1961 for 100,000 digits, and by Guilloud and Boyer in 1973 for a million digits of Pi in the efficient form

$$\pi = 864 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! \,\mathbf{325}^{n+1}} + 1824 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! \,\mathbf{3250}^{n+1}} - 20 \,\arctan\left(\frac{1}{239}\right)$$

where terms of the second series are just *decimal shifts* of the first.

J.M. Borwein	Life of Pi ((CARMA)
--------------	--------------	---------

19. Pi's Childhood 38. Pi's Adolescence 43. Adulthood of Pi 74. Pi in the Digital Age

107. Computing Individual Digits of π

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shanks (the 2nd) and Wrench: "A Million Decimals?" (1961)

5. A Million Decimal? Can r be computed to 1,000,000 decimals with the computers of today? From the remarks in the first section we see that the program which we have described would require times of the order of *montas*. But since the memory of a 7000 is too small, by a factor of ten, a modified program, which writes and reads partial results, would take longer stall. One would require year as a sensitive of the order of the

There are, of course, many other formulas similar to (1), (2), and (5), and other programming devices are also possible, but it seems unlikely that any such modification can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, possible. We cite the following: compute 1/r and then take its reciprocal. This sounds fantastic, but, in fact, it can be faster than the use of equation (2). One can compute 1/r by Ramanujan's formula [8]:

(2)	1 1	(1123	22583 1	1.3	44043 1.3	1.3.5.7)
(6)	7 4 882	882	8823 2	4: +	8826 2.4	4 42.82	1

The first fastors here are given by $(-1)^4$ (1123 + 21400k). A binary value of 1/requivalents to 10000D, can be computed on a 7000 using equation (6) in 6 hours instead of the 8 hours required for the application of equation (2).⁴ To resiprocate this value of 1/r would take about 1 hour. Thus, we can reduce the time required by (2) by an hour. But unfortunately we lose our overlapping check, and, in any case, this small pain is quite inadequate for the present question.

One could hope for a theoretical approach to this question of optimization—a theory of the "depth" of numbers—but no such theory now exists. One can guess that ϵ is not as "deep" as π_i fut try to prove it!

Such a theory would, of course, take years to develop. In the meantime—say, in 5 to 7 years—such a computer as we suggested above (100 times as fast, 100 times as reliable, and with 10 times the memory) will, no doubt, become a reality. At that time a computation of τ to 1,000,000D will not be difficult.

 \dagger We have computed e on a 7080 to 100,265D by the obvious program. This takes 2.5 hours instead of the 8-hour run for \star by (2).

5. A Million Decimals? Can + be computed to 1,000,000 decimals with the computers of today? From the remarks in the first section we see that the program which we have described would require items of the order of months. But since the memory of a 7000 is too small, by a factor of ten, a modified program, which writes and reads partial results, would take longer still. One would really want a computer 100 items as fast, 100 times as reliable, and with a memory 10 times as large. No such machine now exist.

There are, of course, many other formulas similar to (1), (2), and (5), and other programming devices are also possible, but it seems unlikely that any such modification can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, possible. We cite the following: compute 1/r and then take its reciprocal. This sounds fantastic, but, in fact, it can be faster than the use of equation (2). One can compute $1/\pi$ by Ramanujan's formula [8]:

(6)
$$\frac{1}{\pi} = \frac{1}{4} \left(\frac{1123}{882} - \frac{22583}{882^4} \frac{1}{2} \cdot \frac{1 \cdot 3}{4^z} + \frac{44043}{882^4} \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1 \cdot 3 \cdot 5 \cdot 7}{4^z \cdot 8^z} - \cdots \right).$$

The first factors here are given by $(-1)^4 (1123 + 21460k)$. A binary value of $1/\tau$ equivalent to 100,000 c, as be computed on a 7000 using equation (6) in 6 hours instead of the 8 hours required for the application of equation (2). * To response this value of $1/\tau$ would take about 1 hour. Thus, we can reduce the time required by (2) by an hour. But unfortunately we loss our overlapping check, and, in any case, this small gain is quite inadequate for the present question.

One could hope for a theoretical approach to this question of optimization—a theory of the "deplh" of numbers—but no such theory now exists. One can guess that e is not as "deep" as r_1 but try to prove it!

Such a theory would, of course, take years to develop. In the meantime—say, in 5 to 7 years—such a computer as we suggested above (100 times as fast, 100 times as reliable, and with 10 times the memory) will, no doubt, become a reality. At that time a computation of π to 1,000,0000 will not be difficult.

CARMA

^{*} We have computed $1/\pi$ by (6) to over 5000D in less than a minute.

^{*} We have computed 1/# by (6) to over 5000D in less than a minute.

[†] We have computed e on a 7090 to 100,255D by the obvious program. This takes 2.5 hours instead of the 8-hour run for π by (2).

19. Pi's Childhood
 38. Pi's Adolescence
 43. Adulthood of Pi
 74. Pi in the Digital Age

107. Computing Individual Digits of π

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shanks (the 2nd) and Wrench: "A Million Decimals?" (1961)

now exists.

There are, of course, many other formulas similar to (1), (2), and (5), and other programming devices are also possible, but it seems unlikely that any such modification can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, possible. We cite the following: compute $1/\pi$ and then take its reciprocal. This sounds fantastic, but, in fact, it can be faster than the use of equation (2). One can compute $1/\pi$ by Ramanujan's formula [8]:

	1	1	(1123	22583	1	1.3	44043	1.3	1.3.5.7	````
(6)	- =	$=\frac{1}{4}\left(\frac{1123}{882}-\right)$	8823	8823 2	42 +	8825	2.4	$4^2 \cdot 8^2$,	

The first factors here are given by $(-1)^{k}$ (1123 + 21460k). A binary value of $1/\pi$ equivalent to 100,000D, can be computed on a 7090 using equation (6) in 6 hours required for the application of equation (2).* To reciprocate this value of $1/\pi$ would take about 1 hour. Thus, we can reduce the time required by (2) by an hour. But unfortunately we lose our overlapping check, and, in any case, this small gain is quite inadequate for the present question.

One could hope for a theoretical approach to this question of optimization—a theory of the "depth" of numbers—but no such theory now exists. One can guess that e is not as "deep" as π , j but try to prove it!

Such a theory would, of course, take years to develop. In the meantime—say, in 5 to 7 years—such a computer as we suggested above (100 times as fast, 100 times as reliable, and with 10 times the memory) will, no doubt, become a reality. At that time a computation of π to 1,000,000D will not be difficult.

 \dagger We have computed e on a 7090 to 100,265D by the obvious program. This takes 2.5 hours instead of the 8-hour run for π by (2).

There are, of course, many other formulas similar to (1), (2 programming devices are also possible, but it seems unlikely th tion can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, following: compute $1/\pi$ and then take its reciprocal. This in fact, it can be faster than the use of equation (2). One Ramanujan's formula [8]:

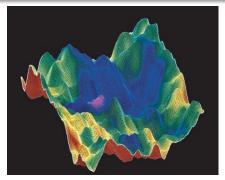
(1	1 1	(1123	$\frac{22583}{882^3}$ $\frac{1}{2}$.	1.3	44043	$1 \cdot 3$	1.3.
(6)		7	000	0001 0	19	0005	9.1	12.
	π	4	882	882° 2	+-	004°	7.4	·± · ·

The first factors here are given by $(-1)^{k}$ (1123 + 21460k). ... equivalent to 100,000D, can be computed on a 7090 using et instead of the 8 hours required for the application of equatio this value of $1/\pi$ would take about 1 hour. Thus, we can red by (2) by an hour. But unfortunately we lose our overlapp case, this small gain is quite inadequate for the present ques

One could hope for a theoretical approach to this questi theory of the "depth" of numbers—but no such theory now that e is not as "deep" as π, \dagger but try to prove it!

Such a theory would, of course, take years to develop. 1 in 5 to 7 years—such a computer as we suggested above (times as reliable, and with 10 times the memory) will, no d At that time a computation of π to 1,000,000D will not be

[†] We have computed s on a 7090 to 100,265D by the obvious hours instead of the 8-hour run for π by (2).

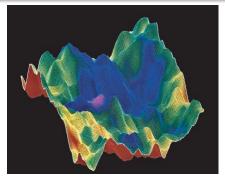


^{*} We have computed $1/\pi$ by (6) to over 5000D in less than a minute.

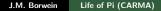
^{*} We have computed $1/\pi$ by (6) to over 5000D in less than a m


Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The First Million Digits of π


A random walk on π (courtesy David and Gregory Chudnovsky)

- See Richard Preston's: "The Mountains of Pi", *New Yorker*, March 2, **1992** (AAAS-Westinghouse Award for Science Journalism);
- A marvellous "Chasing the Unicorn" and 2005 NOVA program.


Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The First Million Digits of π

A random walk on π (courtesy David and Gregory Chudnovsky)

- See Richard Preston's: "The Mountains of Pi", *New Yorker*, March 2, **1992** (AAAS-Westinghouse Award for Science Journalism);
- A marvellous "Chasing the Unicorn" and 2005 NOVA program. CARMAD

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series.

EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU** and Eugene Salamin independently found a reduced complexity algorithm for π .

- It takes $O(\log N)$ operations for N digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa **1800**.
 - Gauss and others missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU** and Eugene Salamin independently found a reduced complexity algorithm for π .

- It takes $O(\log N)$ operations for N digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa **1800**.
 - Gauss and others missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU** and Eugene Salamin independently found a reduced complexity algorithm for π .

- It takes $O(\log N)$ operations for N digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800.
 - Gauss and others missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU** and Eugene Salamin independently found a reduced complexity algorithm for π .

- It takes $O(\log N)$ operations for N digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800.

- Gauss — and others — missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU** and Eugene Salamin independently found a reduced complexity algorithm for π .

– It takes $O(\log N)$ operations for N digits.

 Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800.

- Gauss — and others — missed connection to computing π .

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Adulthood and Age
 Computing Individual Digits of π

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Reduced Complexity Algorithm

Algorithm (Brent-Salamin AGM iteration)

Set $a_0 = 1, b_0 = 1/\sqrt{2}$ and $s_0 = 1/2$. Calculate

$$a_{k} = \frac{a_{k-1} + b_{k-1}}{2} \quad (A) \qquad b_{k} = \sqrt{a_{k-1}b_{k-1}} \quad (G)$$

$$c_{k} = a_{k}^{2} - b_{k}^{2}, \qquad s_{k} = s_{k-1} - 2^{k}c_{k}$$
and compute
$$p_{k} = \frac{2a_{k}^{2}}{s_{k}}. \quad (15)$$

Then p_k converges quadratically to π .

- Each step doubles the correct digits successive steps produce 1,
 - 4, 9, 20, 42, 85, 173, 347 and 697 digits of $\pi.$
 - 25 steps compute π to 45 million digits. But, steps must be carma performed to the desired precision.

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Adulthood and Age
 Computing Individual Digits of π

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Reduced Complexity Algorithm

Algorithm (Brent-Salamin AGM iteration)

Set $a_0 = 1, b_0 = 1/\sqrt{2}$ and $s_0 = 1/2$. Calculate

$$a_{k} = \frac{a_{k-1} + b_{k-1}}{2} \quad (A) \qquad b_{k} = \sqrt{a_{k-1}b_{k-1}} \quad (G)$$

$$c_{k} = a_{k}^{2} - b_{k}^{2}, \qquad s_{k} = s_{k-1} - 2^{k}c_{k}$$
and compute
$$p_{k} = \frac{2a_{k}^{2}}{s_{k}}. \quad (15)$$

Then p_k converges quadratically to π .

- Each step doubles the correct digits successive steps produce 1, 4, 9, 20, 42, 85, 173, 347 and 697 digits of π .
 - 25 steps compute π to 45 million digits. But, steps must be carma performed to the desired precision.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Reduced Complexity Algorithm

Algorithm (Brent-Salamin AGM iteration)

Set $a_0 = 1, b_0 = 1/\sqrt{2}$ and $s_0 = 1/2$. Calculate

$$a_{k} = \frac{a_{k-1} + b_{k-1}}{2} \quad (A) \qquad b_{k} = \sqrt{a_{k-1}b_{k-1}} \quad (G)$$

$$c_{k} = a_{k}^{2} - b_{k}^{2}, \qquad s_{k} = s_{k-1} - 2^{k}c_{k}$$
and compute
$$p_{k} = \frac{2a_{k}^{2}}{s_{k}}. \quad (15)$$

Then p_k converges quadratically to π .

- Each step doubles the correct digits successive steps produce 1,
 - 4, 9, 20, 42, 85, 173, 347 and 697 digits of $\pi.$
 - 25 steps compute π to 45 million digits. But, steps must be carma performed to the desired precision.

J.M. Borwein	Life of Pi (CARMA)
--------------	--------------------

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Four Famous Pi Guys: Salamin, Kanada, Bailey and Gosper in 1987

• To appear in Donald Knuth's book of mathematics pictures.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

And Some Others: Niven, Shanks (1917-96), Brent, Zudilin (O)

J.M. Borwein Life of Pi (CARMA)

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Adulthood and Age
 Computing Individual Digits of π

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The Borwein Brothers

1985. Peter and I discovered algebraic algorithms of all orders:

Algorithm (Cubic Algorithm) Set $a_0 = 1/3$ and $s_0 = (\sqrt{3} - 1)/2$. Iterate $r_{k+1} = \frac{3}{1 + 2(1 - s_k^3)^{1/3}}, \qquad s_{k+1} = \frac{r_{k+1} - 1}{2}$ and $a_{k+1} = r_{k+1}^2 a_k - 3^k (r_{k+1}^2 - 1)$.

Then $1/a_k$ converges cubically to π .

- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The Borwein Brothers

1985. Peter and I discovered algebraic algorithms of all orders:

Algorithm (Cubic Algorithm)

Set $a_0 = 1/3$ and $s_0 = (\sqrt{3} - 1)/2$. Iterate

$$\begin{array}{lll} r_{k+1} &=& \displaystyle \frac{3}{1+2(1-s_k^3)^{1/3}}, \qquad s_{k+1} = \displaystyle \frac{r_{k+1}-1}{2} \\ \\ \text{and} \ a_{k+1} &=& \displaystyle r_{k+1}^2 a_k - 3^k (r_{k+1}^2-1). \end{array}$$

Then $1/a_k$ converges cubically to π .

- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Adulthe Digital Age
 Computing Individual Digits of π

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

CARMA

The Borwein Brothers

. . .

1985. Peter and I discovered algebraic algorithms of all orders:

Algorithm (Cubic Algorithm)

Set $a_0 = 1/3$ and $s_0 = (\sqrt{3} - 1)/2$. Iterate

$$\begin{array}{lll} r_{k+1} &=& \displaystyle \frac{3}{1+2(1-s_k^3)^{1/3}}, \qquad s_{k+1} = \displaystyle \frac{r_{k+1}-1}{2} \\ \\ \text{and} \ a_{k+1} &=& \displaystyle r_{k+1}^2 a_k - 3^k (r_{k+1}^2-1). \end{array}$$

Then $1/a_k$ converges cubically to π .

- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Fourth Order Algorithm

Algorithm (Quartic Algorithm) Set $a_0 = 6 - 4\sqrt{2}$ and $y_0 = \sqrt{2} - 1$. Iterate $y_{k+1} = \frac{1 - (1 - y_k^4)^{1/4}}{1 + (1 - y_k^4)^{1/4}}$ and $a_{k+1} = a_k(1 + y_{k+1})^4 - 2^{2k+3}y_{k+1}(1 + y_{k+1} + y_{k+1}^2)$.

Then $1/a_k$ converges quartically to π

Using 4 × 'plus' 1 ÷ 'plus' 2 1/√ = 19 full precision × per step. So 20 steps costs out at around 400 full precision multiplications.
 (This assumes intermediate storage, Additions are cheap) <

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Fourth Order Algorithm

Algorithm (Quartic Algorithm) Set $a_0 = 6 - 4\sqrt{2}$ and $y_0 = \sqrt{2} - 1$. Iterate $y_{k+1} = \frac{1 - (1 - y_k^4)^{1/4}}{1 + (1 - y_k^4)^{1/4}}$ and $a_{k+1} = a_k(1 + y_{k+1})^4 - 2^{2k+3}y_{k+1}(1 + y_{k+1} + y_{k+1}^2)$. Then $1/a_k$ converges quartically to π

Using 4 × 'plus' 1 ÷ 'plus' 2 1/√ = 19 full precision × per step. So 20 steps costs out at around 400 full precision multiplications.
 (This assumes intermediate storage. Additions are cheap)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

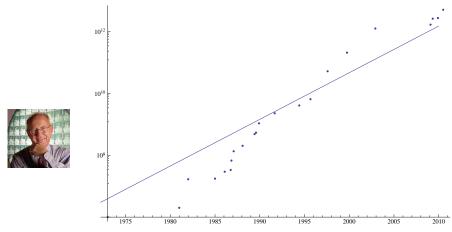
A Fourth Order Algorithm

Algorithm (Quartic Algorithm) Set $a_0 = 6 - 4\sqrt{2}$ and $y_0 = \sqrt{2} - 1$. Iterate $y_{k+1} = \frac{1 - (1 - y_k^4)^{1/4}}{1 + (1 - y_k^4)^{1/4}}$ and $a_{k+1} = a_k(1 + y_{k+1})^4 - 2^{2k+3}y_{k+1}(1 + y_{k+1} + y_{k+1}^2)$. Then $1/a_k$ converges quartically to π

Using 4 × 'plus' 1 ÷ 'plus' 2 1/√ = 19 full precision × per step. So 20 steps costs out at around 400 full precision multiplications.
 (This assumes intermediate storage. Additions are cheap)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Modern Calculation Records: and IBM Blue Gene/L at LBL


Name	Year	Correct Digits
Miyoshi and Kanada	1981	2,000,036
Kanada-Yoshino-Tamura	1982	16,777,206
Gosper	1985	17,526,200
Bailey	Jan. 1986	29,360,111
Kanada and Tamura	Sep. 1986	33,554,414
Kanada and Tamura	Oct. 1986	67,108,839
Kanada et. al	Jan. 1987	134,217,700
Kanada and Tamura	Jan. 1988	201,326,551
Chudnovskys	May 1989	480,000,000
Kanada and Tamura	Jul. 1989	536,870,898
Kanada and Tamura	Nov. 1989	1,073,741,799
Chudnovskys	Aug. 1991	2,260,000,000
Chudnovskys	May 1994	4,044,000,000
Kanada and Takahashi	Oct. 1995	6,442,450,938
Kanada and Takahashi	Jul. 1997	51,539,600,000
Kanada and Takahashi	Sep. 1999	206,158,430,000
Kanada-Ushiro-Kuroda	Dec. 2002	1,241,100,000,000
Takahashi	Jan. 2009	1,649,000,000,000
Takahashi	April. 2009	2,576,980,377,524
Bellard	Dec. 2009	2,699,999,990,000
Kondo and Yee	Aug. 2010	5,000,000,000,000
Kondo and Yee	Oct. 2011	10,000,000,000,000

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms **Modern Calculation Records** A Few Trillion Digits of Pi

Moore's Law Marches On

Computation of π since 1975 plotted vs. Moore's law predicted increase CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

- **1984**. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- **1986**. A **29 million** digit calculation at NASA Ames just after the shuttle disaster uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every *CRAY* before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

1984. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.

- 1986. A 29 million digit calculation at NASA Ames just after the shuttle disaster — uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every *CRAY* before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

- **1984**. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames just after the shuttle disaster — uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every *CRAY* before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

- **1984**. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames just after the shuttle disaster — uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every CRAY before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

- **1984**. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames just after the shuttle disaster — uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every CRAY before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

19. Pi's Childhood
38. Pi's Adolescence
43. Adulthood of Pi
74. Pi in the Digital Age
 $a_0 = 6 - 4 \sqrt[3]{2}$. Computing Individual Digits of π Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi
yo

$$y_{1} = \frac{1 - \sqrt[4]{1 - y_{0}}^{4}}{1 + \sqrt[4]{1 - y_{0}}^{4}}, a_{1} = a_{0} (1 + y_{1})^{4} - 2^{3} y_{1} (1 + y_{1} + y_{1}^{2})$$

$$y_{2} = \frac{1 - \sqrt[4]{1 - y_{1}}^{4}}{1 + \sqrt[4]{1 - y_{1}}^{4}}, a_{2} = a_{1} (1 + y_{2})^{4} - 2^{5} y_{2} (1 + y_{2} + y_{2}^{2})$$

$$y_{3} = \frac{1 - \sqrt[4]{1 - y_{2}}^{4}}{1 + \sqrt[4]{1 - y_{2}}^{4}}, a_{3} = a_{2} (1 + y_{3})^{4} - 2^{7} y_{3} (1 + y_{3} + y_{3}^{2})$$

$$y_{4} = \frac{1 - \sqrt[4]{1 - y_{3}}^{4}}{1 + \sqrt[4]{1 - y_{3}}^{4}}, a_{4} = a_{3} (1 + y_{4})^{4} - 2^{9} y_{4} (1 + y_{4} + y_{4}^{2})$$

$$y_{5} = \frac{1 - \sqrt[4]{1 - y_{4}}^{4}}{1 + \sqrt[4]{1 - y_{4}}^{4}}, a_{5} = a_{4} (1 + y_{5})^{4} - 2^{11} y_{5} (1 + y_{5} + y_{5}^{2})$$

$$y_{6} = \frac{1 - \sqrt[4]{1 - y_{4}}^{4}}{1 + \sqrt[4]{1 - y_{5}}^{4}}, a_{6} = a_{5} (1 + y_{6})^{4} - 2^{13} y_{6} (1 + y_{6} + y_{6}^{2})$$

$$y_{7} = \frac{1 - \sqrt[4]{1 - y_{6}}^{4}}{1 + \sqrt[4]{1 - y_{7}}^{4}}, a_{8} = a_{7} (1 + y_{8})^{4} - 2^{15} y_{7} (1 + y_{7} + y_{7}^{2})$$

$$y_{8} = \frac{1 - \sqrt[4]{1 - y_{7}}^{4}}{1 + \sqrt[4]{1 - y_{7}}^{4}}, a_{8} = a_{7} (1 + y_{8})^{4} - 2^{17} y_{8} (1 + y_{8} + y_{8}^{2})$$

$$y_{9} = \frac{1 - \sqrt[4]{1 - y_{8}}^{4}}{1 + \sqrt[4]{1 - y_{8}}^{4}}, a_{9} = a_{8} (1 + y_{9})^{4} - 2^{19} y_{9} (1 + y_{9} + y_{9}^{2})$$

$$y_{9} = \frac{1 - \sqrt[4]{1 - y_{8}}^{4}}{1 + \sqrt[4]{1 - y_{8}}^{4}}, a_{10} = a_{9} (1 + y_{10})^{4} - 2^{21} y_{10} (1 + y_{10} + y_{10}^{2})$$

CARMA>

43. Adulthood of Pi 74. Pi in the Digital Age $a_0 = 6 - 4 \sqrt[3]{97}$. Computing Individual Digits of π	Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi	<i>y</i> ₀ =
19. Pi's Childhood 38. Pi's Adolescence	Ramanujan-type Series The ENIACalculator	

$$\begin{split} y_1 &= \frac{1 - \frac{4}{\sqrt{1 - y_0^4}}}{1 + \frac{4}{\sqrt{1 - y_0^4}}}, a_1 = a_0 \left(1 + y_1\right)^4 - 2^3 y_1 \left(1 + y_1 + y_1^2\right) \\ y_2 &= \frac{1 - \frac{4}{\sqrt{1 - y_1^4}}}{1 + \frac{4}{\sqrt{1 - y_1^4}}}, a_2 = a_1 \left(1 + y_2\right)^4 - 2^5 y_2 \left(1 + y_2 + y_2^2\right) \\ y_3 &= \frac{1 - \frac{4}{\sqrt{1 - y_2^4}}}{1 + \frac{4}{\sqrt{1 - y_2^4}}}, a_3 = a_2 \left(1 + y_3\right)^4 - 2^7 y_3 \left(1 + y_3 + y_3^2\right) \\ y_4 &= \frac{1 - \frac{4}{\sqrt{1 - y_3^4}}}{1 + \frac{4}{\sqrt{1 - y_3^4}}}, a_4 = a_3 \left(1 + y_4\right)^4 - 2^9 y_4 \left(1 + y_4 + y_4^2\right) \\ y_5 &= \frac{1 - \frac{4}{\sqrt{1 - y_4^4}}}{1 + \frac{4}{\sqrt{1 - y_4^4}}}, a_5 = a_4 \left(1 + y_5\right)^4 - 2^{11} y_5 \left(1 + y_5 + y_5^2\right) \\ y_6 &= \frac{1 - \frac{4}{\sqrt{1 - y_6^4}}}{1 + \frac{4}{\sqrt{1 - y_6^4}}}, a_6 = a_5 \left(1 + y_6\right)^4 - 2^{13} y_6 \left(1 + y_6 + y_6^2\right) \\ y_7 &= \frac{1 - \frac{4}{\sqrt{1 - y_6^4}}}{1 + \frac{4}{\sqrt{1 - y_6^4}}}, a_7 = a_6 \left(1 + y_7\right)^4 - 2^{15} y_7 \left(1 + y_7 + y_7^2\right) \\ y_8 &= \frac{1 - \frac{4}{\sqrt{1 - y_7^4}}}{1 + \frac{4}{\sqrt{1 - y_7^4}}}, a_8 = a_7 \left(1 + y_8\right)^4 - 2^{17} y_8 \left(1 + y_8 + y_8^2\right) \\ y_9 &= \frac{1 - \frac{4}{\sqrt{1 - y_8^4}}}{1 + \frac{4}{\sqrt{1 - y_8^4}}}, a_9 = a_8 \left(1 + y_9\right)^4 - 2^{19} y_9 \left(1 + y_9 + y_9^2\right) \\ y_{10} &= \frac{1 - \frac{4}{\sqrt{1 - y_9^4}}}{1 + \frac{4}{\sqrt{1 - y_9^4}}}, a_{10} = a_9 \left(1 + y_{10}\right)^4 - 2^{21} y_{10} \left(1 + y_{10} + y_{10}^2\right) \end{split}$$

J.M. Borwein Life of Pi (CARMA)

19. Pi's Childhood	Ramanujan-type Series
38. Pi's Adolescence	The ENIACalculator
43. Adulthood of Pi	Reduced Complexity Algorithms
74. Pi in the Digital Age	Modern Calculation Records
polyting Individual Digits of π	A Few Trillion Digits of Pi

107. Computing Individual Digits of
$$\pi$$

$$y_{11} = \frac{1 - \sqrt[4]{1 - y_{10}}^4}{1 + \sqrt[4]{1 - y_{10}}^4}, a_{11} = a_{10} (1 + y_{11})^4 - 2^{23} y_{11} (1 + y_{11} + y_{11}^2)$$

$$y_{12} = \frac{1 - \sqrt[4]{1 - y_{11}}^4}{1 + \sqrt[4]{1 - y_{11}}^4}, a_{12} = a_{11} (1 + y_{12})^4 - 2^{25} y_{12} (1 + y_{12} + y_{12}^2)$$

$$y_{13} = \frac{1 - \sqrt[4]{1 - y_{12}}^4}{1 + \sqrt[4]{1 - y_{12}}^4}, a_{13} = a_{12} (1 + y_{13})^4 - 2^{27} y_{13} (1 + y_{13} + y_{13}^2)$$

$$y_{14} = \frac{1 - \sqrt[4]{1 - y_{13}}^4}{1 + \sqrt[4]{1 - y_{13}}^4}, a_{14} = a_{13} (1 + y_{14})^4 - 2^{29} y_{14} (1 + y_{14} + y_{14}^2)$$

$$y_{15} = \frac{1 - \sqrt[4]{1 - y_{13}}^4}{1 + \sqrt[4]{1 - y_{13}}^4}, a_{15} = a_{14} (1 + y_{15})^4 - 2^{31} y_{15} (1 + y_{15} + y_{15}^2)$$

$$y_{16} = \frac{1 - \sqrt[4]{1 - y_{14}}^4}{1 + \sqrt[4]{1 - y_{15}}^4}, a_{16} = a_{15} (1 + y_{16})^4 - 2^{33} y_{16} (1 + y_{16} + y_{16}^2)$$

$$y_{17} = \frac{1 - \sqrt[4]{1 - y_{16}}^4}{1 + \sqrt[4]{1 - y_{16}}^4}, a_{17} = a_{16} (1 + y_{17})^4 - 2^{35} y_{17} (1 + y_{17} + y_{17}^2)$$

$$y_{18} = \frac{1 - \sqrt[4]{1 - y_{17}}^4}{1 + \sqrt[4]{1 - y_{17}}^4}, a_{18} = a_{17} (1 + y_{18})^4 - 2^{37} y_{18} (1 + y_{18} + y_{18}^2)$$

$$y_{19} = \frac{1 - \sqrt[4]{1 - y_{18}}^4}{1 + \sqrt[4]{1 - y_{17}}^4}, a_{19} = a_{18} (1 + y_{19})^4 - 2^{39} y_{19} (1 + y_{19} + y_{19}^2)$$

J.M. Borwein

CARMA>

19. Pi's Childhood	Ramanujan-type Series
38. Pi's Adolescence	The ENIACalculator
43. Adulthood of Pi	Reduced Complexity Algorithms
74. Pi in the Digital Age	Modern Calculation Records
107. Computing Individual Digits of π	A Few Trillion Digits of Pi

$$\begin{split} y_{11} &= \frac{1 - \frac{4}{\sqrt{1 - y_{10}^4}}}{1 + \frac{4}{\sqrt{1 - y_{10}^4}}}, a_{11} = a_{10} \left(1 + y_{11}\right)^4 - 2^{23} y_{11} \left(1 + y_{11} + y_{11}^2\right) \\ y_{12} &= \frac{1 - \frac{4}{\sqrt{1 - y_{11}^4}}}{1 + \frac{4}{\sqrt{1 - y_{11}^4}}}, a_{12} = a_{11} \left(1 + y_{12}\right)^4 - 2^{25} y_{12} \left(1 + y_{12} + y_{12}^2\right) \\ y_{13} &= \frac{1 - \frac{4}{\sqrt{1 - y_{12}^4}}}{1 + \frac{4}{\sqrt{1 - y_{13}^4}}}, a_{13} = a_{12} \left(1 + y_{13}\right)^4 - 2^{27} y_{13} \left(1 + y_{13} + y_{13}^2\right) \\ y_{14} &= \frac{1 - \frac{4}{\sqrt{1 - y_{13}^4}}}{1 + \frac{4}{\sqrt{1 - y_{13}^4}}}, a_{14} = a_{13} \left(1 + y_{14}\right)^4 - 2^{29} y_{14} \left(1 + y_{14} + y_{14}^2\right) \\ y_{15} &= \frac{1 - \frac{4}{\sqrt{1 - y_{14}^4}}}{1 + \frac{4}{\sqrt{1 - y_{14}^4}}}, a_{15} = a_{14} \left(1 + y_{15}\right)^4 - 2^{31} y_{15} \left(1 + y_{15} + y_{15}^2\right) \\ y_{16} &= \frac{1 - \frac{4}{\sqrt{1 - y_{15}^4}}}{1 + \frac{4}{\sqrt{1 - y_{15}^4}}}, a_{16} = a_{15} \left(1 + y_{16}\right)^4 - 2^{33} y_{16} \left(1 + y_{16} + y_{16}^2\right) \\ y_{17} &= \frac{1 - \frac{4}{\sqrt{1 - y_{16}^4}}}{1 + \frac{4}{\sqrt{1 - y_{16}^4}}}, a_{17} = a_{16} \left(1 + y_{17}\right)^4 - 2^{35} y_{17} \left(1 + y_{17} + y_{17}^2\right) \\ y_{18} &= \frac{1 - \frac{4}{\sqrt{1 - y_{16}^4}}}{1 + \frac{4}{\sqrt{1 - y_{17}^4}}}, a_{18} = a_{17} \left(1 + y_{18}\right)^4 - 2^{37} y_{18} \left(1 + y_{18} + y_{18}^2\right) \\ y_{19} &= \frac{1 - \frac{4}{\sqrt{1 - y_{16}^4}}}{1 + \frac{4}{\sqrt{1 - y_{16}^4}}}, a_{19} = a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19} + y_{19}^2\right) \\ y_{20} &= \frac{1 - \frac{4}{\sqrt{1 - y_{19}^4}}}{1 + \frac{4}{\sqrt{1 - y_{19}^4}}}, a_{20} = a_{19} \left(1 + y_{20}\right)^4 - 2^{41} y_{20} \left(1 + y_{20} + y_{20}^2\right). \end{split}$$

CARMA>

J.M. Borwein Life of Pi (CARMA)

 19. Pi's Childhood
 Ramanuja

 38. Pi's Adolescence
 The ENIA

 43. Adulthood of Pi
 Reduced Q

 74. Pi in the Digital Age
 Modern C

 107. Computing Individual Digits of π A Few Tri

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

 19. Pi's Childhood
 Ramanuja

 38. Pi's Adolescence
 The ENIA

 43. Adulthood of Pi
 Reduced 0

 74. Pi in the Digital Age
 Modern C

 107. Computing Individual Digits of π A Few Tri

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

- 1963. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told LA Times 10^{10²} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

 19. Pi's Childhood
 Ramanuja

 38. Pi's Adolescence
 The ENIA

 43. Adulthood of Pi
 Reduced Q

 74. Pi in the Digital Age
 Modern C

 107. Computing Individual Digits of π A Few Tri

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

 19. Pi's Childhood
 Ramanujan

 38. Pi's Adolescence
 The ENIAC

 43. Adulthood of Pi
 Reduced C

 74. Pi in the Digital Age
 Modern Ca

 107. Computing Individual Digits of π
 A Few Trill

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

 19. Pi's Childhood
 Ramanujan

 38. Pi's Adolescence
 The ENIAC:

 43. Adulthood of Pi
 Reduced Co

 74. Pi in the Digital Age
 Modern Calr

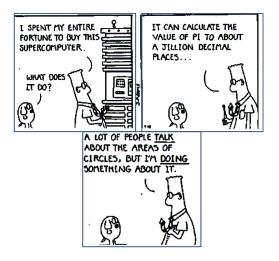
 107. Computing Individual Digits of π
 A Few Trillic

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

 19. Pi's Childhood
 Ramanujan-type Series


 38. Pi's Adolescence
 The ENIACalculator

 43. Adulthood of Pi
 Reduced Complexity Algorithms

 74. Pi in the Digital Age
 Modern Calculation Records

 107. Computing Individual Digits of π A Few Trillion Digits of Pi

Billions and Billions

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Kirk asks:

"Aren't there some mathematical problems that simply can't be solved?"

And Spock 'fries the brains' of a rogue computer by telling it: *"Compute to the last digit the value of ... Pi."*

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

CARMA

Kirk asks:

"Aren't there some mathematical problems that simply can't be solved?"

And Spock 'fries the brains' of a rogue computer by telling it: "Compute to the last digit the value of ... Pi."

 19. Pi's Childhood
 Ramanujan-t

 38. Pi's Adolescence
 The ENIACa

 43. Adulthood of Pi
 Reduced Cor

 74. Pi in the Digital Age
 Modern Calc

 107. Computing Individual Digits of π A Few Trillio

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Pi the Song: from the album Aerial

2005 Influential Singer-songwriter Kate Bush sings "Pi" on Aerial.

Sweet and gentle and sensitive man With an obsessive nature and deep fascination for numbers And a complete infatuation with the calculation of Pi **Chorus:** Oh he love, he love, he love He does love his numbers And they run, they run, they run him In a great big circle In a circle of infinity

"a sentimental ode to a mathematician, audacious in both subject matter and treatment. The chorus is the number sung to many, many decimal places." [150 - wrong after 50] — Observer Review

Back to the Future

2002. Kanada computed π to over **1.24 trillion decimal digits**. His team first computed π in **hex** (base 16) to **1,030,700**, **000,000** places, using good old Machin type relations:

$$\pi = 48 \tan^{-1} \frac{1}{49} + 128 \tan^{-1} \frac{1}{57} - 20 \tan^{-1} \frac{1}{239} + 48 \tan^{-1} \frac{1}{110443}$$
 (Takano, pop-song writer **1982**)

$$\pi = 176 \tan^{-1} \frac{1}{57} + 28 \tan^{-1} \frac{1}{239} - 48 \tan^{-1} \frac{1}{682} + 96 \tan^{-1} \frac{1}{12943}$$
 (Störmer, mathematician, **1896**)

The computations agreed and were converted to decimal.

 19. Pi's Childhood
 Ramanujan-type Series

 38. Pi's Adolescence
 The ENIACalculator

 43. Adulthood of Pi
 Reduced Complexity Algorithms

 74. Pi in the Digital Age
 Modern Calculation Records

 107. Computing Individual Digits of π A Few Trillion Digits of Pi

Back to the Future

2002. Kanada computed π to over **1.24 trillion decimal digits**. His team first computed π in **hex** (base 16) to **1,030,700**, **000,000** places, using good old Machin type relations:

$$\pi = 48 \tan^{-1} \frac{1}{49} + 128 \tan^{-1} \frac{1}{57} - 20 \tan^{-1} \frac{1}{239} + 48 \tan^{-1} \frac{1}{110443}$$
 (Takano, pop-song writer **1982**)

$$\pi = 176 \tan^{-1} \frac{1}{57} + 28 \tan^{-1} \frac{1}{239} - 48 \tan^{-1} \frac{1}{682} + 96 \tan^{-1} \frac{1}{12943}$$
 (Störmer, mathematician, **1896**)

• The computations agreed and were converted to decimal.

 19. Pi's Childhood
 Ramanujan-type Series

 38. Pi's Adolescence
 The ENIACalculator

 43. Adulthood of Pi
 Reduced Complexity Algorithms

 74. Pi in the Digital Age
 Modern Calculation Records

 107. Computing Individual Digits of π A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

 19. Pi's Childhood
 Ramanujan-type Series

 38. Pi's Adolescence
 The ENIACalculator

 43. Adulthood of Pi
 Reduced Complexity Algorithms

 74. Pi in the Digital Age
 Modern Calculation Records

 107. Computing Individual Digits of *m* A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

 19. Pi's Childhood
 Ramanujan-type Series

 38. Pi's Adolescence
 The ENIACalculator

 43. Adulthood of Pi
 Reduced Complexity Algorithms

 74. Pi in the Digital Age
 Modern Calculation Records

 107. Computing Individual Digits of *m* A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

 19. Pi's Childhood
 Ramanujan-type Series

 38. Pi's Adolescence
 The ENIACalculator

 43. Adulthood of Pi
 Reduced Complexity Algorithms

 74. Pi in the Digital Age
 Modern Calculation Records

 107. Computing Individual Digits of *m* A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

 19. Pi's Childhood
 Ramanujan-type Series

 38. Pi's Adolescence
 The ENIACalculator

 43. Adulthood of Pi
 Reduced Complexity Algorithms

 74. Pi in the Digital Age
 Modern Calculation Records

 107. Computing Individual Digits of Pi
 A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

 19. Pi's Childhood
 Ramanujan-type Series

 38. Pi's Adolescence
 The ENIACalculator

 43. Adulthood of Pi
 Reduced Complexity Algorithms

 74. Pi in the Digital Age
 Modern Calculation Records

 107. Computing Individual Digits of π A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Pi's Childhood
 Pi's Childhood
 Ramanujan-type Series
 Pi's Adolescence
 Adulthood of Pi
 Reduced Complexity Algorithms
 Adultho Digital Age
 Modern Calculation Records
 A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Pi's Childhood
 State State

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

A **29.36 million** digit record by Bailey in **1986** had soared to **1.649 trillion** by Takahashi in **January 2009**.

CARMA

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Fabrice Bellard: What Price Certainty?

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi.

- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took **131 days** but he only used a single 4-core workstation with a lot of storage and even more human intelligence!

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Fabrice Bellard: What Price Certainty?

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi.

- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took **131 days** but he only used a single 4-core workstation with a lot of storage and even more human intelligence!

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Fabrice Bellard: What Price Certainty?

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi.

- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took **131 days** but he only used a single 4-core workstation with a lot of storage and even more human intelligence!

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

CARMA

Fabrice Bellard: What Price Certainty?

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi.

- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took **131 days** but he only used a single 4-core workstation with a lot of storage and even more human intelligence!

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

 August 2010. On a home built \$18,000 machine, Kondo (hardware engineer) and Yee (undergrad software) nearly doubled this to 5,000,000,000,000 places. The last 30 are

7497120374 4023826421 9484283852

The Chudnovsky-Ramanujan series took **90 days**: including **64hrs** BBP hex-confirmation and **8 days** for base-conversion. A very fine online account is available at www.numberworld.org/misc_runs/pi-5t/details.html
 October **2011**. Extension to **10 trillion** places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

 August 2010. On a home built \$18,000 machine, Kondo (hardware engineer) and Yee (undergrad software) nearly doubled this to 5,000,000,000,000 places. The last 30 are

7497120374 4023826421 9484283852

The Chudnovsky-Ramanujan series took **90 days**: including **64hrs** BBP hex-confirmation and **8 days** for base-conversion. A very fine online account is available at www.numberworld.org/misc_runs/pi-5t/details.html
 October **2011**. Extension to **10 trillion** places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

• August **2010**. On a home built **\$18,000** machine, Kondo (hardware engineer) and Yee (undergrad software) nearly doubled this to **5,000,000,000,000** places. The last 30 are

7497120374 4023826421 9484283852

The Chudnovsky-Ramanujan series took **90 days**: including **64hrs** BBP hex-confirmation and **8 days** for base-conversion. A very fine online account is available at www.numberworld.org/misc_runs/pi-5t/details.html
 October **2011**. Extension to **10 trillion** places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

CARMA

Shiguro Kendo and Alex Yee: What is the Limit?

• August **2010**. On a home built **\$18,000** machine, Kondo (hardware engineer) and Yee (undergrad software) nearly doubled this to **5,000,000,000,000** places. The last 30 are

7497120374 4023826421 9484283852

• The Chudnovsky-Ramanujan series took **90 days**: including **64hrs** BBP hex-confirmation and **8 days** for base-conversion.

A very fine online account is available at www.numberworld.org/misc_runs/pi-5t/details.html
October 2011. Extension to 10 trillion places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

• August **2010**. On a home built **\$18,000** machine, Kondo (hardware engineer) and Yee (undergrad software) nearly doubled this to **5,000,000,000,000** places. The last 30 are

7497120374 4023826421 9484283852

- The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion. A very fine online account is available at www.numberworld.org/misc_runs/pi-5t/details.html
- October 2011. Extension to 10 trillion places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Two New Pi Guys: Alex Yee and his Elephant

The elephant may have provided extra memory?

J.M. Borwein Life of Pi (CARMA)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Two New Pi Guys: Alex Yee and his Elephant

The elephant may have provided extra memory?

J.M. Borwein Life of Pi (CARMA)

Computing Individual Digits of π

1971. One might think everything of interest about computing π has been discovered. This was Beckmann's view in *A History of* π

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for π : It 'drips' individual digits (of π in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case **BBP series**.

IBM

Computing Individual Digits of π

1971. One might think everything of interest about computing π has been discovered. This was Beckmann's view in *A History of* π

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for π : It 'drips' individual digits (of π in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case **BBP series**.

IBM

Computing Individual Digits of π

1971. One might think everything of interest about computing π has been discovered. This was Beckmann's view in *A History of* π

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for π : It 'drips' individual digits (of π in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case **BBP series**.

IBM

Computing Individual Digits of π

1971. One might think everything of interest about computing π has been discovered. This was Beckmann's view in *A History of* π

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

IBM

CARMA

1990. Rabinowitz and Wagon found a 'spigot' algorithm for π : It 'drips' individual digits (of π in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case **BBP** series.

What BBP Does?

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - **1** is implementable on any modern computer;
 - 2 requires no multiple precision software;
 - 8 requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

What BBP Does?

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - **()** is implementable on any modern computer;
 - 2 requires no multiple precision software;
 - 8 requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

What BBP Does?

- **This is not true**, at least for hex (base 16) or binary (base 2) digits of π. In **1996**, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - **1** is implementable on any modern computer;
 - 2 requires no multiple precision software;
 - I requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

What BBP Does?

- **This is not true**, at least for hex (base 16) or binary (base 2) digits of π. In **1996**, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - **1** is implementable on any modern computer;
 - 2 requires no multiple precision software;
 - 8 requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

What BBP Does?

Prior to **1996**, most folks thought to compute the *d*-th digit of π , you had to generate the (order of) the entire first *d* digits.

- **This is not true**, at least for hex (base 16) or binary (base 2) digits of π. In **1996**, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - **1** is implementable on any modern computer;
 - 2 requires no multiple precision software;
 - **③** requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

CARMA

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
(16)

• The millionth hex digit (four millionth binary digit) of π can be found in under **30** secs on a fairly new computer in Maple (not C++) and the billionth in **10** hrs.

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, **CECM**. It arrived in the coded form:

$$\pi = 4 \,_2 F_1\left(1, \frac{1}{4}; \frac{5}{4}, -\frac{1}{4}\right) + 2 \tan^{-1}\left(\frac{1}{2}\right) - \log 5$$

where ${}_{2}F_{1}(1, 1/4; 5/4, -1/4) = 0.955933837...$ is a Gauss hypergeometric function.

Pi's Childhood
 BBP Digit Algorithms
 Pi's Adolescence
 Mathematical Interlude, III
 Adulthood of Pi
 Hexadecimal Digits
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
(16)

• The millionth hex digit (four millionth binary digit) of π can be found in under **30** secs on a fairly new computer in Maple (not C++) and the billionth in **10** hrs.

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, **CECM**. It arrived in the coded form:

$$\pi = 4 \,_2 F_1\left(1, \frac{1}{4}; \frac{5}{4}, -\frac{1}{4}\right) + 2 \tan^{-1}\left(\frac{1}{2}\right) - \log 5$$

where ${}_2F_1(1, 1/4; 5/4, -1/4) = 0.955933837...$ is a Gauss hypergeometric function.

Pi's Childhood
 BBP Digit Algorithms
 Pi's Adolescence
 Mathematical Interlude, III
 Adulthood of Pi
 Hexadecimal Digits
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
(16)

• The millionth hex digit (four millionth binary digit) of π can be found in under **30** secs on a fairly new computer in Maple (not C++) and the billionth in **10** hrs.

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, **CECM**. It arrived in the coded form:

$$\pi = 4 \,_2 F_1\left(1, \frac{1}{4}; \frac{5}{4}, -\frac{1}{4}\right) + 2 \tan^{-1}\left(\frac{1}{2}\right) - \log 5$$

where ${}_2F_1(1, 1/4; 5/4, -1/4) = 0.955933837...$ is a Gauss hypergeometric function.

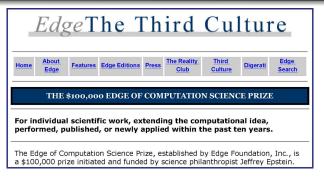
Pi's Childhood
 BBP Digit Algorithms
 Pi's Adolescence
 Mathematical Interlude, III
 Adulthood of Pi
 Hexadecimal Digits
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

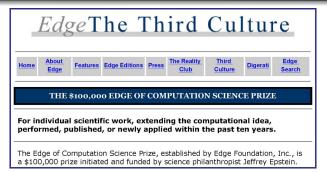
$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
(16)

• The millionth hex digit (four millionth binary digit) of π can be found in under **30** secs on a fairly new computer in Maple (not C++) and the billionth in **10** hrs.

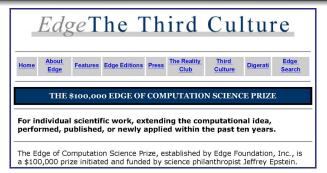

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, **CECM**. It arrived in the coded form:

$$\pi = 4\,{}_2F_1\left(1,\frac{1}{4};\frac{5}{4},-\frac{1}{4}\right) + 2\tan^{-1}\left(\frac{1}{2}\right) - \log 5$$

where $_2F_1(1,1/4;5/4,-1/4)=0.955933837\ldots$ is a Gauss hypergeometric function.

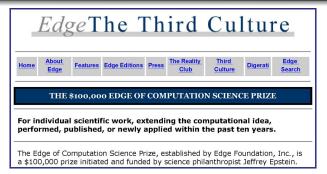


Edge of Computation Prize Finalist


- BBP was the only mathematical finalist (of about 40) for the first **Edge of Computation Science Prize**
 - Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch discoverer of Quantum Computing

Edge of Computation Prize Finalist

- BBP was the only mathematical finalist (of about 40) for the first **Edge of Computation Science Prize**
 - Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch discoverer of Quantum Computing


Edge of Computation Prize Finalist

- BBP was the only mathematical finalist (of about 40) for the first **Edge of Computation Science Prize**
 - Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...

• Won by David Deutsch — discoverer of Quantum Computing

Edge of Computation Prize Finalist

- BBP was the only mathematical finalist (of about 40) for the first **Edge of Computation Science Prize**
 - Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch discoverer of Quantum Computing CARMA

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 T4. Pi in the Digital Age
 BBP Formulas Explained
 BBP form Pi squared — in base 2 and base 3

BBP Formula Database http://carma.newcastle.edu.au/bbp • SKIP

1atthew Tam has built an interactive website
1 tincludes most known BBP formulas.
2 It allows digit computation is searchable.

updatable and more.

BP-type Formula Da × C			
🤞 🐑 😋 🖕	O localhost/entry.php?id=6		ģ 🔿 🔦
			Logia I Home
		Submit at 2011-01-07 13:13:00 EST	
BBP-type Formula	$\frac{1}{4}P(1,16,8,(8,8,4,0,-2,-2,$	Please enter a digit to calculate: 10000 Calculate	
Extended Formula	$\boxed{\frac{1}{4}\sum_{k=0}^{\infty}\frac{1}{16^{k}}\left(\frac{8}{8k+1}+\frac{8}{8k+2}+\frac{8}{8}+\frac{8}{8k+2}+\frac{8}{8}+$	Digits are [68AC8FCFB80]	
Reference	BBP-type Formula paper 3	Calculated in 1.033 seconds.	
Proof	Formal proof		
PSLQ Check	Formula verified		
Submit by	jmborwein		
Submit at	2011-01-07 13:13:00 EST		
Please enter a digit to calculate: 10000 Categate			
Digits are [68AC8FCFB80]			
Calculated in 1.033 seconds.			

BBP Formula Database http://carma.newcastle.edu.au/bbp • skip

Matthew Tam has built an interactive website.

It includes most known BBP formulas.

It allows digit computation, is searchable, updatable and more.

BBP-type Form	BBPtype Formula Da × 41			×	
🔶 🐑 🔶 🖗	() localhost/entry.php?id=6			ģ 🔘	4
				Logia Hlore	. A
		· · ·			
		Submit at	2011-01-07 13:13:00 EST		
BBP-type Formula	$\frac{1}{4}P(1, 16, 8, (8, 8, 4, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2$	Please enter a digit	to calculate: 10000 Calculate		
Extended Formula	$\frac{1}{4}\sum_{k=0}^{\infty}\frac{1}{16^k}\left(\frac{8}{8k+1}+\frac{8}{8k+2}+\right.$	Digits are [68AC8FCFB80]			
Reference	BBP-type Formula paper 3	Calculated in 1.033 seconds.			
Proof	Formal proof				
PSLQ Check	Formula verified				
Submit by	jmborwein				
Submit at	2011-01-07 13:13:00 EST				
Please enter a digit to calculate: [10000 Catication					
Digits are [68AC8FCFB80]					
Calculated in 1.033 seconds.					

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 BBP Formulas Explained
 Computing Individual Digits of π

BBP Formula Database http://carma.newcastle.edu.au/bbp • skip

Matthew Tam has built an interactive website.

- 1 It includes most known BBP formulas.
- It allows digit computation, is searchable, updatable and more.

🕒 BBP-type Formula Da × 👔				
🤃 🕆 🔆	() localhost/entry.php?id=6			ģ 🔘 🔦
				Lonin Home
			-	
		Submit at	2011-01-07 13:13:00 EST	
BBP-type Formula	$\frac{1}{4}P(1, 16, 8, (8, 8, 4, 0, -2, -2,$	Please enter a digit	to calculate: 10000 Calculate	
Extended Formula	$\boxed{\frac{1}{4}\sum_{k=0}^{\infty}\frac{1}{16^k}\left(\frac{8}{8k+1}+\frac{8}{8k+2}+\right.}$	Digits are [68AC8FCFB80]		
Reference	BBP-type Formula paper 3	Calculated in 1.033 seconds.		
Proof	Formal proof			
PSLQ Check	Formula verified			
Submit by	jmborwein			
Submit at 2011-01-07 13:13:00 EST				
Please enter a digit to calculate: 10000 Catestate				
Digits are [68AC8FCFB80]				
Calculated in 1.033 seconds.				

Pi's Childhood
 Pi's Childhood
 BBP Digit Algorithms
 Mathematical Interlude, III
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

Mathematical Interlude: III. (Maple, Mathematica and Human)

Proof of (16). For 0 < k < 8,

$$\int_0^{1/\sqrt{2}} \frac{x^{k-1}}{1-x^8} \, dx \quad = \quad \int_0^{1/\sqrt{2}} \sum_{i=0}^\infty x^{k-1+8i} \, dx = \frac{1}{2^{k/2}} \sum_{i=0}^\infty \frac{1}{16^i(8i+k)}.$$

Thus, one can write

$$\sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
$$= \int_0^{1/\sqrt{2}} \frac{4\sqrt{2} - 8x^3 - 4\sqrt{2}x^4 - 8x^5}{1 - x^8} \, dx,$$

which on substituting $y := \sqrt{2}x$ becomes

$$\int_0^1 \frac{16y - 16}{y^4 - 2y^3 + 4y - 4} \, dy = \int_0^1 \frac{4y}{y^2 - 2} \, dy - \int_0^1 \frac{4y - 8}{y^2 - 2y + 2} \, dy = \pi.$$

Pi's Childhood
 Pi's Childhood
 BBP Digit Algorithms
 Mathematical Interlude, III
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

Mathematical Interlude: III. (Maple, Mathematica and Human)

Proof of (16). For 0 < k < 8,

$$\int_0^{1/\sqrt{2}} \frac{x^{k-1}}{1-x^8} \, dx \quad = \quad \int_0^{1/\sqrt{2}} \sum_{i=0}^\infty x^{k-1+8i} \, dx = \frac{1}{2^{k/2}} \sum_{i=0}^\infty \frac{1}{16^i(8i+k)}.$$

Thus, one can write

$$\sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
$$= \int_0^{1/\sqrt{2}} \frac{4\sqrt{2} - 8x^3 - 4\sqrt{2}x^4 - 8x^5}{1 - x^8} \, dx,$$

which on substituting $y := \sqrt{2}x$ becomes

$$\int_0^1 \frac{16y - 16}{y^4 - 2y^3 + 4y - 4} \, dy = \int_0^1 \frac{4y}{y^2 - 2} \, dy - \int_0^1 \frac{4y - 8}{y^2 - 2y + 2} \, dy = \pi.$$

Pi's Childhood
 Pi's Childhood
 BBP Digit Algorithms
 Mathematical Interlude, III
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

Mathematical Interlude: III. (Maple, Mathematica and Human)

Proof of (16). For 0 < k < 8,

$$\int_0^{1/\sqrt{2}} \frac{x^{k-1}}{1-x^8} \, dx \quad = \quad \int_0^{1/\sqrt{2}} \sum_{i=0}^\infty x^{k-1+8i} \, dx = \frac{1}{2^{k/2}} \sum_{i=0}^\infty \frac{1}{16^i(8i+k)}.$$

Thus, one can write

$$\sum_{i=0}^{\infty} \frac{1}{16^{i}} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
$$= \int_{0}^{1/\sqrt{2}} \frac{4\sqrt{2} - 8x^{3} - 4\sqrt{2}x^{4} - 8x^{5}}{1 - x^{8}} \, dx,$$

which on substituting $y := \sqrt{2}x$ becomes

$$\int_{0}^{1} \frac{16y - 16}{y^4 - 2y^3 + 4y - 4} \, dy = \int_{0}^{1} \frac{4y}{y^2 - 2} \, dy - \int_{0}^{1} \frac{4y - 8}{y^2 - 2y + 2} \, dy = \pi.$$

Tuning BBP Computation

- **1997**. Fabrice Bellard of INRIA computed 152 bits of π starting at the trillionth position;
- in 12 days on 20 workstations working in parallel over the Internet.

Bellard used the following variant of (16):

$\pi = 4\sum_{k=0}^{\infty} \frac{(-1)^k}{4^k(2k+1)} - \frac{1}{64}\sum_{k=0}^{\infty} \frac{(-1)^k}{1024^k} \left(\frac{32}{4k+1} + \frac{8}{4k+2} + \frac{1}{4k+3}\right) (17)$

This frequently-used formula is a little faster than (16).

Colin Percival (L) and Fabrice Bellard (R

J.M. Borwein Life of Pi (CARMA)

Tuning BBP Computation

- **1997**. Fabrice Bellard of INRIA computed 152 bits of π starting at the trillionth position;
- in 12 days on 20 workstations working in parallel over the Internet.

Bellard used the following variant of (16):

$$\pi = 4\sum_{k=0}^{\infty} \frac{(-1)^k}{4^k(2k+1)} - \frac{1}{64}\sum_{k=0}^{\infty} \frac{(-1)^k}{1024^k} \left(\frac{32}{4k+1} + \frac{8}{4k+2} + \frac{1}{4k+3}\right)$$
(17)

This frequently-used formula is a little faster than (16).

Colin Percival (L) and Fabrice Bellard (R)

J.M. Borwein Life of Pi (CARMA)

	19. Pi's Childhood	BBP Digit Algorithms
	38. Pi's Adolescence	Mathematical Interlude, III
	43. Adulthood of Pi	Hexadecimal Digits
	74. Pi in the Digital Age	BBP Formulas Explained
7. Con	puting Individual Digits of π	BBP for Pi squared — in base 2 and base 3

Hexadecimal Digits

1998. Colin Percival, a 17-year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines.2000. He then found the quadrillionth binary digit is 0.

- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before Toy Story Two.

Position	Hex Digits
10^{6}	26C65E52CB4593
10^{7}	17AF5863EFED8D
10^{8}	ECB840E21926EC
10^{9}	85895585A0428B
10^{10}	921C73C6838FB2
10^{11}	9C381872D27596
1.25×10^{12}	07E45733CC790B
2.5×10^{14}	E6216B069CB6C1

19. Pi's Childhood	BBP Digit Algorithms
38. Pi's Adolescence	Mathematical Interlude, III
43. Adulthood of Pi	Hexadecimal Digits
74. Pi in the Digital Age	BBP Formulas Explained
7. Computing Individual Digits of π	BBP for Pi squared — in base 2 and base 3

Hexadecimal Digits

1998. Colin Percival, a 17-year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines.2000. He then found the quadrillionth binary digit is 0.

- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before Toy Story Two.

Position	Hex Digits
10^{6}	26C65E52CB4593
10^{7}	17AF5863EFED8D
10^{8}	ECB840E21926EC
10^{9}	85895585A0428B
10^{10}	921C73C6838FB2
10^{11}	9C381872D27596
1.25×10^{12}	07E45733CC790B
$2.5 imes 10^{14}$	E6216B069CB6C1

19. Pi's Childhood	BBP Digit Algorithms
38. Pi's Adolescence	Mathematical Interlude, III
43. Adulthood of Pi	Hexadecimal Digits
74. Pi in the Digital Age	BBP Formulas Explained
7. Computing Individual Digits of π	BBP for Pi squared — in base 2 and base 3

Hexadecimal Digits

1998. Colin Percival, a 17-year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines.2000. He then found the quadrillionth binary digit is 0.

- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before Toy Story Two.

Position	Hex Digits
10^{6}	26C65E52CB4593
10^{7}	17AF5863EFED8D
10^{8}	ECB840E21926EC
10^9	85895585A0428B
10^{10}	921C73C6838FB2
10^{11}	9C381872D27596
1.25×10^{12}	07E45733CC790B
$2.5 imes 10^{14}$	E6216B069CB6C1

Pi's Childhood
 Pi's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Pi in the Digital Age
 107. Computing Individual Digits of π

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

MA

Everything **Doubles** Eventually

July 2010. Tsz-Wo Sz of Yahoo!/Cloud computing found the two quadrillionth bit. The computation took 23 real days and 503 CPU years; and involved as many as 4000 machines.

Abstract

We present a new record on computing specific bits of π , the mathematical constant, and discuss performing such computations on Apache Hadoop clusters. The new record represented in hexadecimal is 0 E6C1294A ED40403F 56D2D764 026265BC A98511D0 FCFFAA10 F4D28B1B B5392B8

which has **256 bits** ending at the $2,000,000,000,000,000,252^{th}$ bit position. The position of the first bit is 1,999,999,999,999,997 and the value of the two quadrillionth bit is 0.

19. Pi's Childhood
 38. Pi's Adolescence
 43. Adulthood of Pi
 74. Pi in the Digital Age
 107. Computing Individual Digits of π

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

MA

Everything **Doubles** Eventually

July 2010. Tsz-Wo Sz of Yahoo!/Cloud computing found the two quadrillionth bit. The computation took 23 real days and 503 CPU years; and involved as many as 4000 machines.

Abstract

We present a new record on computing specific bits of π , the mathematical constant, and discuss performing such computations on Apache Hadoop clusters. The new record represented in hexadecimal is 0 E6C1294A ED40403F 56D2D764 026265BC A98511D0 FCFFAA10 F4D28B1B B5392B8

which has **256 bits** ending at the $2,000,000,000,000,000,252^{th}$ bit position. The position of the first bit is 1,999,999,999,999,997 and the value of the two quadrillionth bit is 0.

BBP Formulas Explained

Base-b BBP numbers are constants of the form

$$\alpha = \sum_{k=0}^{\infty} \frac{p(k)}{q(k)b^k},$$
(18)

where p(k) and q(k) are integer polynomials and $b = 2, 3, \ldots$

• I illustrate why this works in binary for $\log 2$. We start with:

$$\log 2 = \sum_{k=0}^{\infty} \frac{1}{k2^k}$$
(19)

as discovered by Euler.

- We wish to compute digits *beginning* at position d + 1.
- Equivalently, we need $\{2^d \log 2\}$ $(\{\cdot\}$ is the fractional part).

Pi's Childhood
 BBP Digit Algorithms
 BBP Digit Algorithms
 Mathematical Interlude, III
 Adulthood of Pi
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

BBP Formulas Explained

Base-b BBP numbers are constants of the form

$$\alpha = \sum_{k=0}^{\infty} \frac{p(k)}{q(k)b^k},$$
(18)

where p(k) and q(k) are integer polynomials and $b = 2, 3, \ldots$

• I illustrate why this works in binary for $\log 2$. We start with:

$$\log 2 = \sum_{k=0}^{\infty} \frac{1}{k2^k}$$
 (19)

as discovered by Euler.

- We wish to compute digits *beginning* at position d + 1.
- Equivalently, we need $\{2^d \log 2\}$ ($\{\cdot\}$ is the fractional part).

Pi's Childhood
 BBP Digit Algorithms
 BBP Digit Algorithms
 Mathematical Interlude, III
 Adulthood of Pi
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

BBP Formulas Explained

Base-b BBP numbers are constants of the form

$$\alpha = \sum_{k=0}^{\infty} \frac{p(k)}{q(k)b^k},$$
(18)

where p(k) and q(k) are integer polynomials and $b = 2, 3, \ldots$

• I illustrate why this works in binary for $\log 2$. We start with:

$$\log 2 = \sum_{k=0}^{\infty} \frac{1}{k2^k}$$
 (19)

as discovered by Euler.

- We wish to compute digits *beginning* at position d + 1.
- Equivalently, we need $\{2^d \log 2\}$ ($\{\cdot\}$ is the fractional part).

Pi's Childhood
 BBP Digit Algorithms
 BBP Digit Algorithms
 Mathematical Interlude, III
 Adulthood of Pi
 Adulthood of Pi
 Pi's Adulta Explained
 BBP for Pi squared — in base 2 and base 3

BBP Formula for $\log 2$

We can write

$$\{2^{d}\log 2\} = \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k}}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}$$
$$= \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k} \mod k}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}.$$
(20)

• The key: the numerator in (20), $2^{d-k} \mod k$, can be found rapidly by binary exponentiation, performed modulo k. So,

 $3^{17} = ((((3^2)^2)^2)) \cdot 3$

uses only **5** multiplications, not the usual **16**. Moreover, $3^{17} \mod 10$ is done as $3^2 = 9$; $9^2 = 1$; $1^2 = 1$; $1^2 = 1$; $1 \times 3 = 3$ (CARMA)

Pi's Childhood
 BBP Digit Algorithms
 BBP Digit Algorithms
 Mathematical Interlude, III
 Adulthood of Pi
 Adulthood of Pi
 Pi's Adulta Explained
 BBP for Pi squared — in base 2 and base 3

BBP Formula for $\log 2$

We can write

$$\{2^{d}\log 2\} = \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k}}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}$$
$$= \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k} \mod k}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}.$$
(20)

• The key: the numerator in (20), $2^{d-k} \mod k$, can be found rapidly by binary exponentiation, performed modulo k. So,

 $3^{17} = ((((3^2)^2)^2)^2) \cdot 3$

uses only **5** multiplications, not the usual **16**. Moreover, $3^{17} \mod 10$ is done as $3^2 = 9$; $9^2 = 1$; $1^2 = 1$; $1^2 = 1$; $1 \times 3 = 3$ (CARMA)

Pi's Childhood
 BBP Digit Algorithms
 BBP Digit Algorithms
 Mathematical Interlude, III
 Adulthood of Pi
 Adulthood of Pi
 Pi's Adulta Explained
 BBP For Pi squared — in base 2 and base 3

BBP Formula for $\log 2$

We can write

$$\{2^{d}\log 2\} = \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k}}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}$$
$$= \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k} \mod k}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}.$$
(20)

• The key: the numerator in (20), $2^{d-k} \mod k$, can be found rapidly by binary exponentiation, performed modulo k. So,

 $3^{17} = ((((3^2)^2)^2)^2) \cdot 3$

uses only **5** multiplications, not the usual **16**. Moreover, $3^{17} \mod 10$ is done as $3^2 = 9$; $9^2 = 1$; $1^2 = 1$; $1^2 = 1$; $1 \times 3 = 3$ (CARMA)

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. *G* is calculated to **31.026** billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n} (2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma$.

- An **18** term binary BBP formula for G = 0.9159655941772190... is

CARMA

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. *G* is calculated to **31.026** billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n} (2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma$.

- An **18** term binary BBP formula for G = 0.9159655941772190... is

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. G is calculated to 31.026 billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n} (2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
+ holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2} T(\frac{\pi}{12})$ where $T(\theta) := \int_{0}^{\theta} \log \tan \sigma d\sigma.$

- An **18** term binary BBP formula for G = 0.9159655941772190... is

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. G is calculated to 31.026 billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n}(2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma$.

- An 18 term binary BBP formula for G = 0.9159655941772190... is

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. G is calculated to **31.026** billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n}(2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma$.

— An 18 term binary BBP formula for G = 0.9159655941772190... is:

Pi's Childhood
 BBP Digit Algorithms
 BBP Content and the state of the

A Better Formula for G

A 16 term formula in concise BBP notation is:

$$G = P(2, 4096, 24, \overrightarrow{v})$$
 where

$$\vec{v} := (6144, -6144, -6144, 0, -1536, -3072, -768, 0, -768, -384, 192, 0, -96, 96, 96, 0, 24, 48, 12, 0, 12, 6, -3, 0)$$

It takes almost exactly 8/9th the time of 18 term formula for G.

- This makes for a very cool calculation
- Since we can not prove G is irrational, Who can say what might turn up?

What About Base Ten?

• The first integer logarithm with no known binary BBP formula is $\log 23$ (since $23 \times 89 = 2^{10} - 1$).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the *Machin-type* of (16) for π if base is not a power of **two**.

What About Base Ten?

• The first integer logarithm with no known binary BBP formula is $\log 23$ (since $23 \times 89 = 2^{10} - 1$).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the *Machin-type* of (16) for π if base is not a power of **two**.

What About Base Ten?

• The first integer logarithm with no known binary BBP formula is $\log 23$ (since $23 \times 89 = 2^{10} - 1$).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

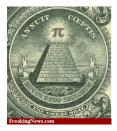
2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the *Machin-type* of (16) for π if base is not a power of **two**.

What About Base Ten?

• The first integer logarithm with no known binary BBP formula is $\log 23$ (since $23 \times 89 = 2^{10} - 1$).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the *Machin-type* of (16) for π if base is not a power of **two**.



CARMA

19. Pi's Childhood B 38. Pi's Adolescence M 43. Adulthood of Pi 74. Pi in the Digital Age B 107. Computing Individual Digits of π B

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Pi Photo-shopped: a 2010 PiDay Contest



"Noli Credere Pictis"

π^2 in Binary and Ternary

Thanks to Dave Broadhurst, a ternary BBP formula exists for π^2 (unlike π):

$$\pi^{2} = \frac{2}{27} \sum_{k=0}^{\infty} \frac{1}{3^{6k}} \times \left\{ \frac{243}{(12k+1)^{2}} - \frac{405}{(12k+2)^{2}} - \frac{81}{(12k+4)^{2}} - \frac{27}{(12k+5)^{2}} - \frac{72}{(12k+6)^{2}} - \frac{9}{(12k+7)^{2}} - \frac{9}{(12k+8)^{2}} - \frac{5}{(12k+10)^{2}} + \frac{1}{(12k+11)^{2}} \right\}$$

π^2 in Binary and Ternary

Thanks to Dave Broadhurst, a ternary BBP formula exists for π^2 (unlike π):

$$\pi^{2} = \frac{2}{27} \sum_{k=0}^{\infty} \frac{1}{3^{6k}} \times \left\{ \frac{243}{(12k+1)^{2}} - \frac{405}{(12k+2)^{2}} - \frac{81}{(12k+4)^{2}} - \frac{27}{(12k+5)^{2}} - \frac{72}{(12k+6)^{2}} - \frac{9}{(12k+7)^{2}} - \frac{9}{(12k+7)^{2}} - \frac{9}{(12k+8)^{2}} - \frac{5}{(12k+10)^{2}} + \frac{1}{(12k+11)^{2}} \right\}$$

A Partner Binary BBP Formula for π^2

$$\pi^2 = \frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6k}} \left\{ \frac{16}{(6k+1)^2} - \frac{24}{(6k+2)^2} - \frac{8}{(6k+3)^2} - \frac{6}{(6k+4)^2} + \frac{1}{(6k+5)^2} \right\}$$

• We do not fully understand why π^2 allows BBP formulas in two distinct bases.

- $4\pi^2$ is the area of a sphere in three-space (L).
- $\frac{1}{2}\pi^2$ is the volume inside a sphere in four-space (R).
 - So in binary we are computing these fundamental physical constants.

Pi's Childhood
 BBP Digit Algorithms
 B's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Adulthood of Pi
 T4. Pi in the Digital Age
 BBP For Pi squared — in base 2 and base 3

A Partner Binary BBP Formula for π^2

$$\pi^2 = \frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6k}} \left\{ \frac{16}{(6k+1)^2} - \frac{24}{(6k+2)^2} - \frac{8}{(6k+3)^2} - \frac{6}{(6k+4)^2} + \frac{1}{(6k+5)^2} \right\}$$

• We do not fully understand why π^2 allows BBP formulas in two distinct bases.

- $4\pi^2$ is the area of a sphere in three-space (L).
- $\frac{1}{2}\pi^2$ is the volume inside a sphere in four-space (R).
 - So in binary we are computing these fundamental physical constants.

Pi's Childhood
 BBP Digit Algorithms
 B's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Adulthood of Pi
 T4. Pi in the Digital Age
 BBP For Pi squared — in base 2 and base 3

A Partner Binary BBP Formula for π^2

$$\pi^2 = \frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6k}} \left\{ \frac{16}{(6k+1)^2} - \frac{24}{(6k+2)^2} - \frac{8}{(6k+3)^2} - \frac{6}{(6k+4)^2} + \frac{1}{(6k+5)^2} \right\}$$

• We do not fully understand why π^2 allows BBP formulas in two distinct bases.

- $4\pi^2$ is the area of a sphere in three-space (L).
- $\frac{1}{2}\pi^2$ is the volume inside a sphere in four-space (R).
 - So in binary we are computing these fundamental physical constants.

19. Pi's Childhood 38. Pi's Adolescence 43. Adulthood of Pi 74. Pi in the Digital Age 107. Computing Individual Digits of *π* BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

IBM's New Record Results

IBM® SYSTEM BLUE GENE®/P SOLUTION Expanding the limits of breakthrough science

MA

Algorithm (What We Did)

Dave Bailey, Andrew Mattingly (L) and Glenn Wightwick (R) of IBM Australia, and I, have obtained and (nearly) confirmed:

- **()** 106 digits of π^2 base 2 at the ten trillionth place base 64
- **2** 94 digits of π^2 base 3 at the ten trillionth place base 729

§ 150 digits of *G* base **2** at the **ten trillion**th place base **4096** on a 4-rack BlueGene/P system at IBM's Benchmarking Centre in Rochester, Minn, USA.

Pi's Childhood
 BBP Digit Algorithms
 Pi's Adolescence
 Mathematical Interlude, III
 Adulthood of Pi
 Hexadecimal Digits
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in **632 CE**.
- The year that Mohammed died, and the Caliphate was established. If it then calculated π nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated π nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated π nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1379 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would be done next year.

Pi's Childhood
 BBP Digit Algorithms
 B's Adolescence
 Adulthood of Pi
 Adulthood of Pi
 Adulthood of Pi
 T4. Pi in the Digital Age
 BBP For Pi squared — in base 2 and base 3

IBM's New Results: π^2 base 2

Algorithm (10 trillionth digits of π^2 in base 64 — in **230** years)

- The calculation took, on average, **253529** seconds per thread. It was broken into 7 "partitions" of **2048** threads each. For a total of $7 \cdot 2048 \cdot 253529 = 3.6 \cdot 10^9$ CPU seconds.
- **O**n a single Blue Gene/P CPU it *would* take **115 years**!

Each rack of BG/P contains 4096 threads (or cores). Thus, we used $\frac{7\cdot2048\cdot253529}{4096\cdot60\cdot60\cdot24}=10.3$ "rack days".

• The verification run took the same time (within a few minutes): **106 base 2 digits** are in agreement.

base-8 digits = 75|60114505303236475724500005743262754530363052416350634|573227604 60114505303236475724500005743262754530363052416350634|22021056612

	19. Pi's Childhood	BBP Digit Algorithms
	38. Pi's Adolescence	Mathematical Interlude, III
	43. Adulthood of Pi	Hexadecimal Digits
	74. Pi in the Digital Age	BBP Formulas Explained
07.	Computing Individual Digits of π	BBP for Pi squared — in base 2 and base 3

IBM's New Results: π^2 base 3

Algorithm (10 trillionth digits of π^2 in base 729 — in **414** years)

- The calculation took, on average, **795773** seconds per thread. It was broken into 4 "partitions" of **2048** threads each. For a total of $4 \cdot 2048 \cdot 795773 = 6.5 \cdot 10^9$ CPU seconds.
- On a single Blue Gene/P CPU it would take 207 years!

Each rack of BG/P contains 4096 threads (or cores). Thus, we used $\frac{4\cdot2048\cdot795773}{4096\cdot60\cdot60\cdot24}=18.4$ "rack days".

• The verification run took the same time (within a few minutes): **94 base 3 digits** are in agreement.

base-9 digits = 001|12264485064548583177111135210162856048323453468|10565567|635862 12264485064548583177111135210162856048323453468|04744867|134524345

Pi's Childhood
 BBP Digit Algorithms
 Pi's Adolescence
 Mathematical Interlude, III
 Adulthood of Pi
 Hexadecimal Digits
 Pi in the Digital Age
 BBP Formulas Explained
 BBP for Pi squared — in base 2 and base 3

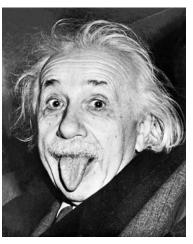
IBM's New Results: G base 2

Algorithm (10 trillionth digits of G in base **4096** — in **735** years)

- The calculation took, on average, **707857** seconds per thread. It was broken into 8 "partitions" of **2048** threads each. For a total of $8 \cdot 2048 \cdot 707857 = 1.2 \cdot 10^{10}$ CPU seconds.
- On a single Blue Gene/P CPU it would take 368 years!

Each rack of BG/P contains 4096 threads (or cores). Thus, we used $\frac{8\cdot2048\cdot707857}{4096\cdot60\cdot60\cdot24}=32.8$ "rack days".

The verification run will take the same time (within a few minutes): xxx base 2 digits will be in agreement.


base-8 digits = 0176|347050537747770511226133716201252573272173245226000177545727

19. Pi's Childhood
 38. Pi's Adolescence
 43. Adulthood of Pi
 74. Pi in the Digital Age
 107. Computing Individual Digits of π

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Thank You, One and All, and Happy Birthday, Albert

Albert Einstein 3.14.1879 – 18.04.1955

J.M. Borwein Life of Pi (CARMA)

131. Links and References

- 1 The Pi Digit site: http://carma.newcastle.edu.au/bbp
- 2 Dave Bailey's Pi Resources: http://crd.lbl.gov/~dhbailey/pi/
- 3 The Life of Pi: http://carma.newcastle.edu.au/jon/pi-2010.pdf.
- 4 Experimental Mathematics: http://www.experimentalmath.info/.
- Dr Pi's brief Bio: http://carma.newcastle.edu.au/jon/bio_short.html.

D.H. Bailey, and J.M. Borwein, Mathematics by Experiment: Plausible Reasoning in the 21st Century, AK Peters Ltd, 2003, ISBN: 1-56881-136-5. See http://www.experimentalmath.info/

J.M. Borwein, "Pi: from Archimedes to ENIAC and beyond," in *Mathematics and Culture*, Einaudi, 2006. Updated 2010: http://carma.newcastle.edu.au/jon/pi-2010.pdf.

J.M. & P.B. Borwein, and D.A. Bailey, "Ramanujan, modular equations and pi or how to compute a billion digits of pi," MAA Monthly, 96 (1989), 201–219. Reprinted in Organic Mathematics, www.cem.sfu.ca/organics, 1996, CMS/AMS Conference Proceedings, 20 (1997), ISSN: 0731-1036.

J.M. Borwein and P.B. Borwein, "Ramanujan and Pi," Scientific American, February 1988, 112–117. Also pp. 187-199 of Ramanujan: Essays and Surveys, Bruce C. Berndt and Robert A. Rankin Eds., AMS-LMS History of Mathematics, vol. 22, 2001.

Jonathan M. Borwein and Peter B. Borwein, Selected Writings on Experimental and Computational Mathematics, PsiPress. October 2010.⁴

6 L. Berggren, J.M. Borwein and P.B. Borwein, *Pi: a Source Book*, Springer-Verlag, (1997), (2000), (2004). Fourth Edition, in Press.

Contains many of the other references and is available as an iBook.