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The identity

If
u =

q

1 +
q5

1 +
q10

1 +
q15

1 +
.. .

and

v =
q

1
5

1 +
q1

1 +
q2

1 +
q3

1 +
. . .

then

v5 = u
1 − 2u + 4u2 − 3u3 + u4

1 + 3u + 4u2 + 2u3 + u4
.
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Preliminaries

Notation: |q| < 1

(a; q)∞ =
∏

n≥0

(1 − aqn),

(a1, a2, · · · , ak ; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak ; q)∞.
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Preliminaries

Notation: |q| < 1

(a; q)∞ =
∏

n≥0

(1 − aqn),

(a1, a2, · · · , ak ; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak ; q)∞.

We start with Jacobi’s triple product identity

(−a−1q,−aq, q; q2)∞ =
∞

∑

−∞

anqn
2
.
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Preliminaries

Notation: |q| < 1

(a; q)∞ =
∏

n≥0

(1 − aqn),

(a1, a2, · · · , ak ; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak ; q)∞.

We start with Jacobi’s triple product identity

(−a−1q,−aq, q; q2)∞ =
∞

∑

−∞

anqn
2
.

Replace q by q
1
2 , replace a by −aq

1
2 , obtain

(1−a−1)(a−1q, aq, q; q)∞ =
∑

k≥0

(−1)k(ak−a−k−1)q(k2+k)/2.
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Preliminaries

Notation: |q| < 1

(a; q)∞ =
∏

n≥0

(1 − aqn),

(a1, a2, · · · , ak ; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak ; q)∞.

We start with Jacobi’s triple product identity

(−a−1q,−aq, q; q2)∞ =
∞

∑

−∞

anqn
2
.

Replace q by q
1
2 , replace a by −aq

1
2 , obtain

(1−a−1)(a−1q, aq, q; q)∞ =
∑

k≥0

(−1)k(ak−a−k−1)q(k2+k)/2.

Divide by (1 − a−1), obtain

(a−1q, aq, q; q)∞ = 1+
∑

k≥1

(−1)k(ak+ak−1+ · · · +a−k)q(k2+k)/2.
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Put a = 1, obtain Jacobi’s identity

(q; q)3∞ =
∑

k≥0

(−1)k(2k + 1)q(k2+k)/2 =

∞
∑

−∞

(4k + 1)q2k2+k .
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Put a = 1, obtain Jacobi’s identity

(q; q)3∞ =
∑

k≥0

(−1)k(2k + 1)q(k2+k)/2 =

∞
∑

−∞

(4k + 1)q2k2+k .

(a−1q, aq, q; q)∞ = 1+
∑

k≥1

(−1)k(ak+ak−1+ · · · +a−k)q(k2+k)/2.

Put a = η, a fifth root of unity other than 1.

ηk + ηk−1 + · · · + η−k =































1 if k ≡ 0 (mod 5),

−(η2 + η−2 if k ≡ 1 (mod 5),

0 if k ≡ 2 (mod 5),

η2 + η−2 if k ≡ 3 (mod 5),

−1 if k ≡ 4 (mod 5).
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(η−1q, ηq, q; q)∞

= (q10, q15, q25; q25)∞ + (η2 + η−2)q(q5, q20, q25; q25)∞.
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Important identity of Ramanujan

Write A = (q10, q15, q25; q25)∞, B = (q5, q20, q25; q25)∞.

(η−1q, ηq, q; q)∞ = A + (η2 + η−2)qB .
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Important identity of Ramanujan

Write A = (q10, q15, q25; q25)∞, B = (q5, q20, q25; q25)∞.

(η−1q, ηq, q; q)∞ = A + (η2 + η−2)qB .

Put η2 for η, obtain

(η−2q, η2q, q; q)∞ = A + (η + η−1)qB .
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Important identity of Ramanujan

Write A = (q10, q15, q25; q25)∞, B = (q5, q20, q25; q25)∞.

(η−1q, ηq, q; q)∞ = A + (η2 + η−2)qB .

Put η2 for η, obtain

(η−2q, η2q, q; q)∞ = A + (η + η−1)qB .

In one or the other order, these are

∏

k≥1

(1 + αqk + q2k)(1 − qk) = A − βqB ,

∏

k≥1

(1 + βqk + q2k)(1 − qk) = A − αqB .

where α = (1 +
√

5)/2, β = (1 −
√

5)/2.
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Multiply these, then divide by (q5; q5)∞, obtain

(q; q)∞

= (q25; q25)∞

×
((

q10, q15

q5, q20 ; q25

)

∞

− q − q2

(

q5, q20

q10, q15; q
25

)

∞

)

.



A “difficult and
deep” identity of

Ramanujan

Michael D.
Hirschhorn

UNSW

The identity

Preliminaries

continued...

Important identity

continued

Down to business

continuing...

continuing...

continuing...

Almost there

continued...

continued...

continued...

The
Rogers–Ramanujan
identities

Down to business

Let η = e
2πi

5 . Then η + η−1 = −β, η2 + η−2 = −α.
We saw

A − βqB =
∏

k≥1

(1 + αqk + q2k)(1 − qk),

A − αqB =
∏

k≥1

(1 + βqk + q2k)(1 − qk).

Set η2q and η−2q for q in the first, multiply, obtain

A2 − qAB + β2q2B2

=
∏

k≥1

(1 + αη2kqk + η4kq2k)(1 + αη−2kqk + η−4kq2k)

×(1 − η2kqk)(1 − η−2kqk).
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Set ηq and η−1q for q in the second, multiply, obtain

A2 − qAB + α2q2B2

=
∏

k≥1

(1 + βηkqk + η2kq2k)(1 + βη−kqk + η−2kq2k)

×(1 − ηkqk)(1 − η−kqk).
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Set ηq and η−1q for q in the second, multiply, obtain

A2 − qAB + α2q2B2

=
∏

k≥1

(1 + βηkqk + η2kq2k)(1 + βη−kqk + η−2kq2k)

×(1 − ηkqk)(1 − η−kqk).

Multiply these last two, obtain

A4 − 2qA3B + 4q2A2B2 − 3q3AB3 + q4B4

=
∏

k≥1

(1 + αη2kqk + η4kq2k)(1 + αη−2kqk + η−4kq2k)

×(1 + βηkqk + η2kq2k)(1 + βη−kqk + η−2kq2k)

×(1 − η2kqk)(1 − η−2kqk)(1 − ηkqk)(1 − η−kqk)
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Set ηq and η−1q for q in the second, multiply, obtain

A2 − qAB + α2q2B2

=
∏

k≥1

(1 + βηkqk + η2kq2k)(1 + βη−kqk + η−2kq2k)

×(1 − ηkqk)(1 − η−kqk).

Multiply these last two, obtain

A4 − 2qA3B + 4q2A2B2 − 3q3AB3 + q4B4

=
∏

k≥1

(1 + αη2kqk + η4kq2k)(1 + αη−2kqk + η−4kq2k)

×(1 + βηkqk + η2kq2k)(1 + βη−kqk + η−2kq2k)

×(1 − η2kqk)(1 − η−2kqk)(1 − ηkqk)(1 − η−kqk)

Consider cases k ≡ 0, k ≡ ±1, k ≡ ±2 mod 5 separately.
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k ≡ 0 (mod 5)

prod =
∏

k≡0 (mod 5)

(1 + αqk + q2k)2(1 + βqk + q2k)2(1 − qk)4

=
∏

k≡0 (mod 5)

(1 + qk + q2k + q3k + q4k)2(1 − qk)4

= (q5; q5)2∞(q25; q25)2∞.
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k ≡ 0 (mod 5)

prod =
∏

k≡0 (mod 5)

(1 + αqk + q2k)2(1 + βqk + q2k)2(1 − qk)4

=
∏

k≡0 (mod 5)

(1 + qk + q2k + q3k + q4k)2(1 − qk)4

= (q5; q5)2∞(q25; q25)2∞.

k ≡ ±1 (mod 5) prod = (q, q4; q5)2∞(q5, q20; q25)2∞

k ≡ ±2 (mod 5) prod =
(q10, q15; q25)3∞
(q2, q3; q5)∞
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k ≡ 0 (mod 5)

prod =
∏

k≡0 (mod 5)

(1 + αqk + q2k)2(1 + βqk + q2k)2(1 − qk)4

=
∏

k≡0 (mod 5)

(1 + qk + q2k + q3k + q4k)2(1 − qk)4

= (q5; q5)2∞(q25; q25)2∞.

k ≡ ±1 (mod 5) prod = (q, q4; q5)2∞(q5, q20; q25)2∞

k ≡ ±2 (mod 5) prod =
(q10, q15; q25)3∞
(q2, q3; q5)∞

A4 − 2qA3B + 4q2 − 3q3AB3 + q4B4

= (q5; q5)4∞
(q, q4; q5)2∞(q10, q15; q25)∞

(q2, q3; q5)∞
.
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We saw

A − βqB =
∏

k≥1

(1 + αqk + q2k)(1 − qk),

A − αqB =
∏

k≥1

(1 + βqk + q2k)(1 − qk).
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We saw

A − βqB =
∏

k≥1

(1 + αqk + q2k)(1 − qk),

A − αqB =
∏

k≥1

(1 + βqk + q2k)(1 − qk).

Set ηq and η−1q for q in the first, multiply, obtain

A2 + β2qAB + β2q2B2 = product

set η2q and η−2q for q in the second, multiply, obtain

A2 + α2qAB + α2q2B2 = product.
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We saw

A − βqB =
∏

k≥1

(1 + αqk + q2k)(1 − qk),

A − αqB =
∏

k≥1

(1 + βqk + q2k)(1 − qk).

Set ηq and η−1q for q in the first, multiply, obtain

A2 + β2qAB + β2q2B2 = product

set η2q and η−2q for q in the second, multiply, obtain

A2 + α2qAB + α2q2B2 = product.

Multiply these, consider cases k ≡ 0, k ≡ ±1, k ≡ ±2
(mod 5), obtain

A4 + 3qA3B + 4q2A2B2 + 2q3AB3 + B4

= (q5; q5)4∞
(q2, q3; q5)2∞(q5, q20; q25)∞

(q, q4; q5)3∞
.i
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Almost there

A4 − 2qA3B + 4q2A2B2 − 3q3AB3 + B4

A4 + 3qA3B + 4q2A2B2 + 2q3AB3 + B4

=
(q, q4; q5)5∞(q10, q15; q25)∞
(q2, q3; q5)5∞(q5, q20; q25)∞

=

(

q, q4

q2, q3; q
5

)5
A

B
.



A “difficult and
deep” identity of

Ramanujan

Michael D.
Hirschhorn

UNSW

The identity

Preliminaries

continued...

Important identity

continued

Down to business

continuing...

continuing...

continuing...

Almost there

continued...

continued...

continued...

The
Rogers–Ramanujan
identities

Almost there

A4 − 2qA3B + 4q2A2B2 − 3q3AB3 + B4

A4 + 3qA3B + 4q2A2B2 + 2q3AB3 + B4

=
(q, q4; q5)5∞(q10, q15; q25)∞
(q2, q3; q5)5∞(q5, q20; q25)∞

=

(

q, q4

q2, q3; q
5

)5
A

B
.

(

q
1
5

(

q, q4

q2, q3; q
5

)

∞

)5

= q
B

A
· 1 − 2qB/A + 4q2B2/A2 − 3q3B3/A3 + q4B4/A4

1 + 3qB/A + 4q2B2/A2 + 2q3B3/A3 + q4B4/A4
.
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Guess what?

v = q
1
5

(

q, q4

q2, q3; q
5

)

∞

, u = q

(

q5 , q20

q10, q15; q
25

)

∞

= q
B

A
,

so we are done ...
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Guess what?

v = q
1
5

(

q, q4

q2, q3; q
5

)

∞

, u = q

(

q5 , q20

q10, q15; q
25

)

∞

= q
B

A
,

so we are done ...
...provided we believe that

1

1 +
q1

1 +
q2

1 +
q3

1 +
.. .

=

(

q, q4

q2, q3; q
5

)

∞

.
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Guess what?

v = q
1
5

(

q, q4

q2, q3; q
5

)

∞

, u = q

(

q5 , q20

q10, q15; q
25

)

∞

= q
B

A
,

so we are done ...
...provided we believe that

1

1 +
q1

1 +
q2

1 +
q3

1 +
.. .

=

(

q, q4

q2, q3; q
5

)

∞

.

Here’s a proof: Let

F (a) =
∑

k≥0

ak
qk2

(q; q)k

where (q; q)0 = 1, (q; q)k = (1 − q) · · · (1 − qk) for k ≥ 1.
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It is easy to show that

F (a) = F (aq) + aqF (aq2).

It follows that

F (aq)

F (a)
=

1

1 +
aq1

(

F (aq)

F (aq2)

)

.

By iteration

F (aq)

F (a)
=

1

1 +
aq1

1 +
aq2

1 +
aq3

1 +
. . .

.
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Put a = 1.

1

1 +
q1

1 +
q2

1 +
q3

1 +
. . .

=
F (q)

F (1)

=

∑

k≥0

qk2+k

(q; q)k

∑

k≥0

qk
2

(q; q)k

.



A “difficult and
deep” identity of

Ramanujan

Michael D.
Hirschhorn

UNSW

The identity

Preliminaries

continued...

Important identity

continued

Down to business

continuing...

continuing...

continuing...

Almost there

continued...

continued...

continued...

The
Rogers–Ramanujan
identities

Put a = 1.

1

1 +
q1

1 +
q2

1 +
q3

1 +
. . .

=
F (q)

F (1)

=

∑

k≥0

qk2+k

(q; q)k

∑

k≥0

qk
2

(q; q)k

.

Now all we need is the Rogers–Ramanujan identities:

∑

k≥0

qk2+k

(q; q)k
=

1

(q2, q3; q5)∞
,

∑

k≥0

qk2

(q; q)k
=

1

(q, q4; q5)∞
.
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1 +
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=
F (q)

F (1)

=

∑

k≥0

qk2+k

(q; q)k

∑

k≥0

qk
2

(q; q)k

.

Now all we need is the Rogers–Ramanujan identities:

∑

k≥0

qk2+k

(q; q)k
=

1

(q2, q3; q5)∞
,

∑

k≥0

qk2

(q; q)k
=

1

(q, q4; q5)∞
.

the “deep” bit?
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are the special cases a = 1 and a = q of the one identity,

(aq; q)∞
∑

n≥0

∑

k≥0

ak
qk2

(q; q)k

= 1 +
∑

k≥1

(−1)ka2kq(5k2−k)/2(1 − aq2k)
(aq; q)k−1

(q; q)k
.
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are the special cases a = 1 and a = q of the one identity,

(aq; q)∞
∑

n≥0

∑

k≥0

ak
qk2

(q; q)k

= 1 +
∑

k≥1

(−1)ka2kq(5k2−k)/2(1 − aq2k)
(aq; q)k−1

(q; q)k
.

For a proof of this identity, see Ramanujan’s Collected
works, or Chapter 15 in my (forthcoming) book.
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The Rogers–Ramanujan identities

are the special cases a = 1 and a = q of the one identity,

(aq; q)∞
∑

n≥0

∑

k≥0

ak
qk2

(q; q)k

= 1 +
∑

k≥1

(−1)ka2kq(5k2−k)/2(1 − aq2k)
(aq; q)k−1

(q; q)k
.

For a proof of this identity, see Ramanujan’s Collected
works, or Chapter 15 in my (forthcoming) book.
Thank you!
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