
How to simulate rare events and why it is
important

Z. Botev

University of New South Wales

Nov 2015



Introduction to Gender Pay Gap

◮ What is the cause of the gender wage gap? Is it the result of
some malevolent discrimination in hiring, or perhaps mostly
the result of the antagonism between work and family
commitments?

◮ We revisit the famous University of Michigan Panel Study of

Income Dynamics from 1975, the height of the women’s
movement in the USA.

◮ The sample consists of m = 753 married white women
between the ages of 30 and 60, 428 of whom worked for a
wage outside the home; 325 of the women worked zero hours.

◮ The dependent variable y represents the wife’s annual hours
of work. For the women who worked positive hours, the range
is fairly broad, extending from 12 to 4950.



Wife’s Annual Wage Data

The d − 1 = 7 explanatory variables x1, . . . , x7 include 1:

1. number of kids less than 6 years in the family

2. number of kids between 6 and 18 years old.

3. woman’s age

4. woman’s education in years

5. actual labor market experience in years

6. the non-wife income (household income minus wife’s income)

7. actual labor market experience in years squared (will look for a
nonlinear effect)

1T. A. Mroz, Econometrica: Journal of the Econometric Society, Vol. 55,
No. 4 (Jul., 1987), pp. 765-799



Tobit (Bayesian) Model

◮ Assuming that the response is normal is problematic as some
women work zero hours.

◮ To account for the zero working hours, the model for the
response y includes censoring:

Yi =

{
Wi , if ui <Wi

bi , if Wi ≤ bi
, W ∼ N(Xβ, σ2I )

where X is the matrix with 7 predictors and bi = 0.

◮ We need to infer the model parameters (β, σ) from the data.



Bayesian posterior

Given for the data y and with uninformative priors, say p(β) ∝ 1
and p(σ) ∝ σ−2, the posterior is then of the form:

f (β, σ) =

∝ exp


−

∑

i :yi>0

(
(yi − x⊤

i β)
2

2σ2
+ lnσ

)
+
∑

i :yi=0

ln Φ((ui − x⊤

i β)/σ)


× σ−2

It is not clear how we can simulate from this monstrosity in order to
perform inference for (β, σ).



Posterior simplificaton

◮ Let y and y be vectors that collect all yi > 0 and yi = 0,
respectively.

◮ Denote the corresponding matrix with predictors via X and X,
respectively.

◮ Using a latent variable wi for each yi = 0, we can write
f (β, σ,w) ∝

exp

(
−‖y −Xβ‖2

2σ2
− ‖w −Xβ‖2

2σ2
− (m + 2) lnσ

)
I{w ≤ 0}

so that the marginal of (β, σ) has the desired posterior pdf.

◮ Note that, conditional on (σ,w), the distribution of β is

N(C(X
⊤
y +X⊤w), σ2C),

where C−1 = X
⊤
X+X⊤X.



Bayesian posterior

◮ Thus, to simulate from the posterior, it suffices to simulate
from the marginal of (σ,w), which is of the form:

f (σ,w) ∝

exp

(
−‖w‖2

2σ2
+

(X
⊤

y +X⊤w)⊤C(X
⊤

y +X⊤w)

2σ2
− ‖y‖2

2σ2

)
× σd−m−2,

on the set of values satisfying w ≤ 0, where w ∈ R
325.

◮ Without the truncation condition W ≤ 0, simulating perfect
(W , σ) from f (σ,w) is feasible.

◮ Unfortunately, satisfying the condition W ≤ 0 by sampling from f

will happen with probability

P(W ≤ 0) = (2.17 . . .)× 10−172, W ∼ f (σ,w)



Posterior Simulation Challenges

◮ Naive Monte Carlo simulation faces an intractable rare-event
simulation problem.

◮ Is approximate Markov chain Monte Carlo sampling the
answer?

◮ Not really, we can do the perfect simulation provided we
tackle the rare-event simulation problem.

◮ The idea is to apply a carefully crafted exponential twisting to
f (σ,w) so that the event W ≤ 0 is not rare.

◮ In our case, under the exponentially twisted measure we obtain

P̃(W ≤ 0) = 0.40 . . .

◮ This allows us to simulate from the Bayesian posterior using
an acceptance-rejection scheme with success probability of at
least 40%.



Perfect simulation for the first time
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What’s wrong with applying MCMC?

◮ This Tobit model has been previously dealt with MCMC. How
is this approach better?

◮ MCMC is a heuristic solution, which seems to work
empirically, but which has not been so far proven/shown to
work in the mathematical sense for this class of problems.

◮ With MCMC, we can never be sure we sampled from the
posterior accurately.

◮ With perfect rare-event simulation, we have a mathematical
proof that the simulation from the posterior is exact.

◮ In summary, our perfect simulation approach is qualitatively
different.
The difference is between having or not having a
certificate/guarantee that the algorithm has provided the
correct answer.



Rare-events and high-dimensional integration

◮ Does rare-event simulation apply only to special Bayesian
models?

◮ More generally, we may wish to integrate numerically a
nonnegative function f (x):

∫

Rd

f (x)dx =

∫ ∞

0
P(f (X )/p(X ) > t)dt

where P is a measure with density p which dominates f .

◮ Thus any integration problem can be recast into the
rare-event framework.

◮ The curse of dimensionality here is expressed in that typically

P(f (X )/p(X ) > t) ↓ 0, d ↑ ∞



Some technical details

The posterior which we wish to sample from can be rewritten as

f (σ,w) ∝ exp
(
− (w−ŵ)⊤(I−XCX

⊤)(w−ŵ)
2σ2 − s2

2σ2 − (m − d + 2) lnσ
)
,

where w ≤ 0 and

ŵ
def
= X(X

⊤
X)−1X

⊤
y

s2
def
= y⊤(I−X(X

⊤
X)−1X

⊤
)y



Multivariate Student Distribution

It follows that the transformation

r = s/σ

z = L−1(ŵ − w)/σ

where LL⊤ = I+X(X
⊤
X)−1X⊤ is the Cholesky decomposition

ν
def
= m − d − dim(y) + 1

l
def
=

√
νŵ/s

reveals that simulating from the posterior is equivalent to
simulating form

f (z , r) =
exp

(
−‖z‖2

2 − r2

2 + (ν − 1) ln r
)
I{√ν Lz ≥ r l}

ℓ



Sequential decomposition

Due to the lower triangular structure of L, the region

R = {(r , z) : r l ≤
√
νLz ≤ r u}, u = ∞

can be decomposed into

l̃1(r)
def
=

r l1√
ν
/L11 ≤z1 ≤

r u1√
ν
/L11

def
= ũ1(r)

l̃2(r , z1)
def
=

r l2ν
−1/2 − L21z1

L22
≤z2 ≤

r u2ν
−1/2 − L21z1

L22

def
= ũ2(r , z1)

...

r ld√
ν
−∑d−1

i=1 Ldizi

Ldd︸ ︷︷ ︸
l̃d (r ,z1,...,zd−1)

≤zd ≤
r ud√

ν
−∑d−1

i=1 Ldizi

Ldd︸ ︷︷ ︸
ũd (r ,z1,...,zd−1)



Sequential Importance Sampling

◮ Let φ(z ;µ,Σ) denote the density of the N(µ,Σ) distribution.

◮ Then, the decomposition above suggests the sequential
importance sampling estimator

ℓ̂ =
fν(R)φ(Z ; 0, Id)

g(R ,Z )

◮ with (R ,Z ) distributed according to the importance sampling
density on R

g(r , z) = g(r)g(z | r) = g(r)g1(z1 | r) · · · gd(zd | r , z1, . . . , zd−1).

◮ and R follows the χν distribution with density

fν(r) =
exp(−r2/2 + (ν − 1) log r)

2ν/2−1Γ(ν/2)
, r > 0



Importance Sampling density

◮

g(r) =
φ(r ; η, 1)

Φ(η)
, r > 0

gk(zk | r , z1, . . . , zk−1) =
φ(zk ;µk , 1)I{l̃k ≤ zk ≤ ũk}
Φ(ũk − µk)− Φ(l̃k − µk)

, k = 1, 2, . . .

◮ In other words, if TN(a,b)(µ, σ
2) denotes the N(µ, σ2)

distribution, truncated to the interval (a, b), then

R ∼ TN(0,∞)(η, 1)

Zk |R ,Z1, . . . ,Zk−1 ∼ TN(l̃k ,ũk )
(µk , 1), k = 1, . . . , d

◮ Let ψ(r , z ; η,µ) = ln ℓ̂ denote the log-likelihood ratio.



Minimax Tilting

◮ All that remains is to choose the parameters η,µ so that the
estimator ℓ̂ = exp(ψ(R ,Z ; η,µ)) has a well-behaved relative
error.

◮ A simple way of selecting (η,µ) in our setting is to minimize
the worst possible behavior of the likelihood ratio
exp(ψ(r , z ; η,µ)).

◮ In other words, we solve the optimization program

inf
η,µ

sup
(r ,z)∈R

ψ(r , z ; η,µ)



Saddle-point optimization

◮ Note

Var(ℓ̂) ≤ exp(2 inf
η,µ

sup
(r ,z)∈R

ψ(r , z ; η,µ))− ℓ2

◮ Theorem (Parameter Selection)

For ν ≥ 1 the saddle-point program

inf
η,µ

sup
(r ,z)∈R

ψ(r , z ; η,µ)

has a unique solution, denoted (r∗, x∗; η∗,µ∗), which coincides

with the solution of the convex optimization program:

max
r ,z ,η,µ

ψ(r , z ; η,µ)

subject to: ∂ψ/∂η = 0, ∂ψ/∂µ = 0, (r , z) ∈ R .



Drawing one (β, σ) from posterior

Require: vectors l , lower triangular L, and optimal (r∗, z∗; η∗,µ∗).
repeat

2: Simulate R ∼ TN(0,∞)(η
∗, 1)

for k = 1, . . . , d do

4: Simulate Zk ∼ TN(l̃k ,∞)(µ
∗
k , 1)

Simulate E ∼ Exp(1), independently.
6: until E ≥ ψ(r∗, z∗; η∗,µ∗)− ψ(R ,Z ; η∗,µ∗)

Transform (Z ,R) back into (W , σ)
8: Given (W , σ), simulate

β ∼ N(C(X
⊤
y +X⊤W ), σ2C),

where C−1 = X
⊤
X+X⊤X.

return regression coefficients β



Conclusions

◮ Rare-event simulation is not only important for modeling
failures of electronic components or collapse of banks.

◮ It is a computational method that may tackle seemingly
intractable high-dimensional integrals unrelated to rare-event
phenomena, but common in statistical applications.

◮ Based on a limited data analysis we can proffer the following
speculative prescription:

To close the gender pay gap, women have to find husbands
who are willing to share the burdens of child rearing.


