Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

University of Wollongong

November, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Presentation Outline

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives o the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

1 Introduction

Objectives of the research

work done so far

- Model equations
- The required feed temperature for 90 % conversion in R1

Steady-state solutions

4 Conclusion

5 Thanks

Motivation

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

The world is currently facing critical challenges:

- Future energy requirements.
- Greenhouse emissions.
- Rising oil prices and "peak" oil resources

Possible solutions:

• natural gas \rightarrow syngas \rightarrow liquid fuels/ H_2 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusior

Thanks

The world is currently facing critical challenges:

- Future energy requirements.
- Greenhouse emissions.
- Rising oil prices and "peak" oil resources

Possible solutions:

• natural gas \rightarrow syngas \rightarrow liquid fuels/ H_2 .

Aim: develop mathematical models for autothermal processes to maximize product concentration.

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Models based on CSTR. Advantages are:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Models based on CSTR. Advantages are:

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Operated continuously.

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Models based on CSTR. Advantages are:

- Operated continuously.
- Reduces running costs.

Manal Moftah Saleh

Introduction

Objectives of the research

work done sc far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Models based on CSTR. Advantages are:

- Operated continuously.
- Reduces running costs.
- Relatively easy to maintain temperature control.

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Models based on CSTR. Advantages are:

- Operated continuously.
- Reduces running costs.
- Relatively easy to maintain temperature control.
- Control of the equipment and grade of final product is simplified.

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Models based on CSTR. Advantages are:

- Operated continuously.
- Reduces running costs.
- Relatively easy to maintain temperature control.
- Control of the equipment and grade of final product is simplified.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Single or cascade.

Autothermal reactor

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

What is an autothermal reactor?

Presentation Outline

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

1 Introduction

2 Objectives of the research

work done so far

- Model equations
- The required feed temperature for 90 % conversion in R1

Steady-state solutions

Conclusion

5 Thanks

Objectives of the research

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Investigate the chemical mechanism

$$\mathbf{A} \xrightarrow[k_1]{Q_1 < 0} \mathbf{B} \xrightarrow[k_2]{Q_2 > 0} \mathbf{C} \cdot$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

where
$$k_i = a_i \exp\left[\frac{-E_i}{RT_i}\right]$$
 $i = 1, 2$.

■ Maximize the product concentration (*C*).

Presentation Outline

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives o the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

1 Introduction

Objectives of the research

3 work done so far

- Model equations
- The required feed temperature for 90 % conversion in R1

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Steady-state solutions

4 Conclusion

5 Thanks

Diabatic **CSTR**

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

A diabatic process is a process that occurs with the transfer of heat between a system and its surroundings.

イロト 不得 トイヨト イヨト

3

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Characteristic Temperature T_c

Normally reaction terms written as

$$a \exp\left[\frac{E}{RT}\right].$$

The pre-exponential factor in the studied model is written as

$$a = \frac{E\alpha}{RT_c^2} \exp\left[\frac{E}{RT_c}\right].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Dimensional model equations: Reactor one

Process Intensification for Autothermal Reaction

Introduction

Objectives o the research

work done so far

Model equations

The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusior

Thanks

Concentration of reactant A

$$V_1 \frac{dA_1}{dt} = q(A_0 - A_1) - V_1 a_1 \exp\left[\frac{-E_1}{RT_1}\right] A_1.$$
 (1)

Concentration of intermediate B

$$V_1 \frac{dB_1}{dt} = q(B_0 - B_1) + V_1 a_1 \exp\left[\frac{-E_1}{RT_1}\right] A_1.$$
 (2)

Concentration of product C

$$V_1 \frac{dC_1}{dt} = q(C_0 - C_1) + 0.$$
 (3)

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

Model equations

The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusior

Thanks

Temperature inside the reactor

$$c_{pg}\rho_{g}V_{1}\frac{dT_{1}}{dt} = qc_{pg}\rho_{g}(T_{0} - T_{1}) - Q_{1}V_{1}a_{1}\exp\left[\frac{-E_{1}}{RT_{1}}\right]A_{1} - J_{1}\chi_{1}S_{1}(T_{1} - T_{a,1}).$$
(4)

The pre-exponential factor

$$a_1 = \frac{E_1 \alpha}{R T_{c1}^2} \exp\left[\frac{E_1}{R T_{c1}}\right].$$
 (5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reactor two:

Process Intensification for Autothermal Reaction

Saleh

Introduction

Objectives of the research

work done so far

Model equations

The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

Concentration of reactant A

$$V_2 \frac{dA_2}{dt} = q(A_1 - A_2) + 0.$$
 (6)

Concentration of reactant B

$$V_2 \frac{dB_2}{dt} = q(B_1 - B_2) - V_2 a_2 \exp\left[\frac{-E_2}{RT_2}\right] B_2.$$
(7)

Concentration of reactant C

$$V_2 \frac{dC_2}{dt} = q(C_1 - C_2) + V_2 a_2 \exp\left[\frac{-E_2}{RT_2}\right] B_2.$$
 (8)

Manal Moftah Saleh

Introduction

Objectives of the research

work done so far

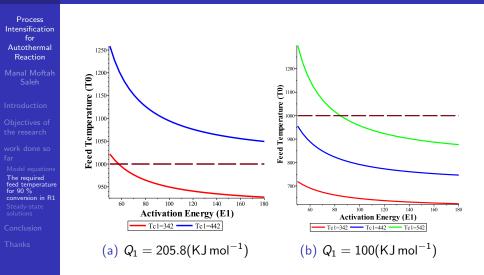
Model equations

The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusior

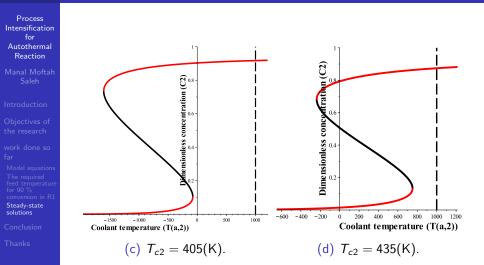
Thanks

Temperature inside the reactor

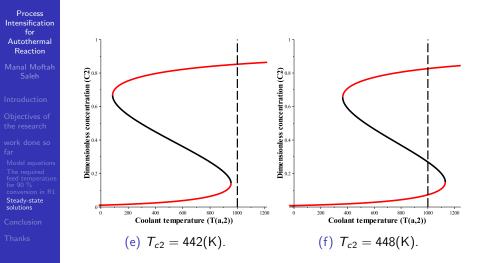

$$c_{pg}\rho_{g}V_{2}\frac{dT_{2}}{dt} = qc_{pg}\rho_{g}(T_{1} - T_{2}) + Q_{2}V_{2}a_{2}\exp\left[\frac{-E_{2}}{RT_{2}}\right]B_{2}$$
$$-J_{2}\chi_{2}S_{2}(T_{2} - T_{a,2}).$$
(9)

The pre-exponential factor

$$a_2 = \frac{E_2 \alpha}{R T_{c2}^2} \exp\left[\frac{E_2}{R T_{c2}}\right].$$
 (10)

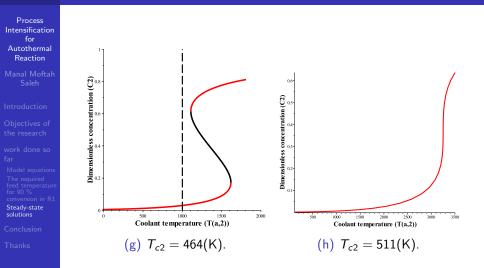

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $A_1^* = 0.1$

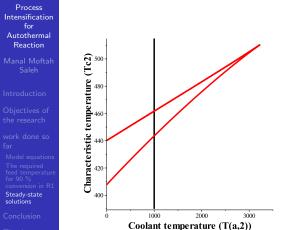


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Steady-state diagrams $(A_1^* = 0.1)$

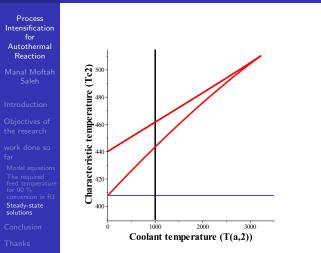


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

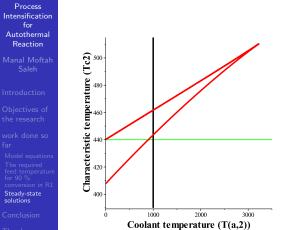


《曰》《曰》《言》《言》 [] []

200

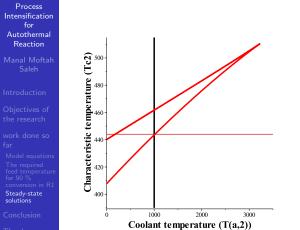


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



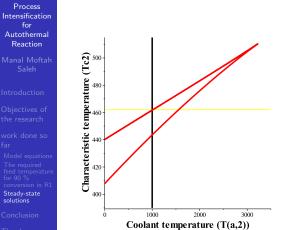
・ロト ・聞ト ・ヨト ・ヨト

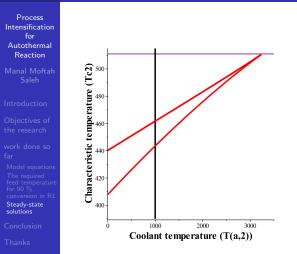
æ


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

・ロト ・聞ト ・ヨト ・ヨト

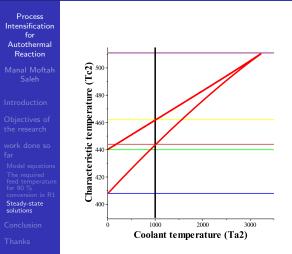
æ


Thanks


・ロト ・聞ト ・ヨト ・ヨト

æ

Thanks



・ロト ・聞ト ・ヨト ・ヨト æ

・ロト ・四ト ・ヨト ・ヨト

æ

Manal Moftah Saleh

Introduction

Objectives o the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state

Steady-state solutions

Conclusion

Thanks

The key idea

- 90 % conversion ($C_2^* = 0.9$).
- *A*^{*}₁ < 0.1.
- Six steady-state diagrams.

- *LP_{ig}* < 298(K)
- LP unfolding diagram.

Presentation Outline

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives o the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

1 Introduction

2 Objectives of the research

work done so far

- Model equations
- The required feed temperature for 90 % conversion in R1

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Steady-state solutions

4 Conclusion

5 Thanks

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives o the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

 Reaction occurring in two reactors: endothermic in R1 and exothermic in R2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Process Intensification for Autothermal Reaction
- Manal Moftah Saleh
- Introduction
- Objectives of the research
- work done so far
- Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions
- Conclusion
- Thanks

 Reaction occurring in two reactors: endothermic in R1 and exothermic in R2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

■ high conversion in **R1** (low endothermicity).

- Process Intensification for Autothermal Reaction
- Manal Moftah Saleh
- Introduction
- Objectives of the research
- work done so far
- Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions
- Conclusion
- Thanks

 Reaction occurring in two reactors: endothermic in R1 and exothermic in R2.

- high conversion in **R1** (low endothermicity).
- Steady-state solutions.

- Process Intensification for Autothermal Reaction
- Manal Moftah Saleh
- Introduction
- Objectives of the research
- work done so far
- Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions
- Conclusion
- Thanks

 Reaction occurring in two reactors: endothermic in R1 and exothermic in R2.

- high conversion in R1 (low endothermicity).
- Steady-state solutions.
- Interesting results.

Presentation Outline

Process Intensification for Autothermal Reaction

Manal Moftah Saleh

Introduction

Objectives o the research

work done so far

Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions

Conclusion

Thanks

1 Introduction

2 Objectives of the research

work done so far

- Model equations
- The required feed temperature for 90 % conversion in R1

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Steady-state solutions

Conclusion

5 Thanks

Acknowledgment

- Process Intensification for Autothermal Reaction
- Manal Moftah Saleh
- Introduction
- Objectives o the research
- work done so far
- Model equations The required feed temperature for 90 % conversion in R1 Steady-state solutions
- Conclusion
- Thanks

- Libyan government through the awarding of a PhD scholarship.
- Assoc Prof. Mark I Nelson and co-supervisors.
- My family (husband) for preceding help and suitable environment.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• The organiser of NSW ANZIAM meeting.