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The theme

High dimensional problems are important, but hard.

Some interesting problems can now be tackled successfully.

What’s new? What’s new is that we now know how to design high

dimensional integration rules that are good for particular

problems.

These are Quasi-Monte Carlo (or QMC) rules
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· · ·
∫ 1

0

F (y1, . . . , y300)dy1 · · · dy300.
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Where might integrals with hundreds of dimensions occur?

finance

statistics

flow through a porous medium

other stochastic pde – e.g. climate change done properly



How?

We cannot use a product rule! Even a 2-point Gauss rule in each of

100 dimensions would need 2100 function evaluations!
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How?

We cannot use a product rule! Even a 2-point Gauss rule in each of

100 dimensions would need 2100 function evaluations!

In general we want to approximate (with maybe large s)

Is(F ) :=

∫ 1

0

. . .

∫ 1

0

F (y1, . . . , ys)dy1 . . . dys

=

∫

[0,1]s
F (y)dy.

In practice this usually means that some transformation to the unit cube has already

been carried out.

To design a good integration rule we need to be guided by

applications .



PDE with random coefficients

PDE with random coefficients are now attracting great interest.

Example: flow through a porous medium

Darcy’s law is ~q(x) = −a(x)∇p(x),

where

p(x) is pressure of the fluid

~q(x) is velocity of the fluid

a(x) is “permeability” of the medium



PDE with random coefficients

PDE with random coefficients are now attracting great interest.

Example: flow through a porous medium

Darcy’s law is ~q(x) = −a(x)∇p(x),

where

p(x) is pressure of the fluid

~q(x) is velocity of the fluid

a(x) is “permeability” of the medium

Incompressibility: ∇ · ~q = 0

Together these give a second order elliptic PDE:

∇ · (a(x)∇p(x)) = 0



Modelling the permeability

Describing in all the microscopic pores and channels in a real material

is commonly considered much too hard. So it is common engineering

practice to model the permeability as a random field:



A model problem – the “uniform” case

−∇ · (a(x, y)∇u(x, y)) = f(x) in D ,

u(x, y) = 0 on ∂D, y ∈ U := [0, 1]N,

with D a bounded Lipschitz domain in R
d,
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A model problem – the “uniform” case

−∇ · (a(x, y)∇u(x, y)) = f(x) in D ,

u(x, y) = 0 on ∂D, y ∈ U := [0, 1]N,

with D a bounded Lipschitz domain in R
d, and

a(x, y) = a+
s
∑

j=1

(yj − 1
2
)ψj(x), x ∈ D, y ∈ U ,

where y1, y2, . . . are independent random variables uniformly

distributed on [0, 1]; with a,ψj such that
∑

j ‖ψj‖∞ < ∞, and

amax ≥ a(x, y) ≥ amin > 0,

making the PDE strongly elliptic for every y.

In practice truncate the sum after s terms.



Example

Take d = 1,

a(x, y) = a+
∞
∑

j=1

(yj − 1
2
)ψj(x), x ∈ [0, π], y ∈ U ,

and

ψj(x) :=
sin(jx)

jα
, for some α > 1.

The bigger is α, the smoother the field a(·, y).



The lognormal case

In the lognormal case

a(x, y) = a(x) + exp





∞
∑

j=1

yj
√
µjξj(x)



 , x ∈ D,

yj are i.i.d. standard normal random numbers

µj , ξj are the eigenvalues and normalized eigenfunctions of the covariance

operator for the Gaussian random field in the exponent
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The mean pressure at a particular point or over a particular small region

The effective permeability

The mean “breakthrough time”
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What might we want to compute?

The mean pressure at a particular point or over a particular small region

The effective permeability

The mean “breakthrough time”

. . .

All are expected values – and expected values are integrals.

If there are many random variables, then the expected values are

high-dimensional integrals.
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F (y) := G(u(·, y))

for some linear functional G of the solution u of the PDE.

The expected value is in principle an infinite-dimensional integral , where

the meaning is:

I[F ] :=

∫

[0,1]N
F (y)dy

:= lim
s→∞

∫

[0,1]s
F (y1, . . . , ys,

1
2
, 1
2
, . . .)dy1 . . . dys.

Note that replacing ys+1, ys+2, . . . by 1
2

is equivalent to replacing a(x, y) by

as(x, y) := a+
∑s

j=1(yj − 1
2
)ψj(x).
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Many approaches:

polynomial chaos,

generalized polynomial chaos,

stochastic Galerkin,

stochastic collocation

Monte Carlo

multilevel Monte Carlo

Quasi-Monte Carlo (QMC)

multilevel Quasi-Monte Carlo

All methods face serious challenges when the effective

dimensionality is high. And when all else fails, people turn to Monte

Carlo methods. QMC aims to beat Monte Carlo.



Many contributors:

Norbert Wiener, "The Homogeneous Chaos", 1938

Babuska/Nobile/Tempone, Babuska/Tempone/Zouraris, Barth/Schwab/Zollinger,

Charrier, Charrier/Scheichl/Teckentrup, Cliffe, Giles/Scheichl/Teckentrup, Cliffe,

Graham/Scheichl/Stals, Cohen/ Chkifa/Schwab, Cohen/De Vore/Schwab,

Graham/Scheichl/Ullmann, Hansen/Schwab, Harbrecht/Peters/Siebenmorgen,

Hoang/Schwab, Karniadakis/ Xiu, Kunoth/Schwab, Nobile/Tempone/Webster,

Schwab/Todor, Schillings/Schwab, Teckentrup/Scheichl/Giles/Ullmann, Webster



And for QMC applied to PDE with random coefficients:

Graham/Kuo/Nuyens/Scheichl/Sloan 2011 (lognormal case, no error analysis, circulant

embedding), Kuo/Schwab/Sloan (uniform case with error analysis), Kuo/Schwab/Sloan

(multi-level for the uniform case), Schwab (uniform case, general operator equations), Le

Gia (uniform case for sphere), Graham/Kuo/Nichols/Scheichl/Schwab/Sloan (lognormal

case, analysis and numerics), Graham/Kuo/Scheichl/Schwab/Sloan/Ullmann),

(multi-level lognormal case), Harbrecht/Peters/Siebenmorgen



Monte Carlo (MC)

QMC
N,s(F ) :=

1

N

N
∑

k=1

F (tk),

with t1, . . . , tN chosen randomly and independently from a uniform

distribution on [0, 1]s.



Quasi-Monte Carlo

For QMC we take

Is(F ) ≈ QN,s(F ) :=
1

N
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F (tk) ,

with t1, . . . , tN deterministic (and cleverly chosen).



Quasi-Monte Carlo

For QMC we take

Is(F ) ≈ QN,s(F ) :=
1

N

N
∑

k=1

F (tk) ,

with t1, . . . , tN deterministic (and cleverly chosen).

How to choose t1, . . . , tN?



MC and QMC points for 2 dimensions

The points:

Is(F ) ≈ 1

N

N
∑

k=1

F (tk), tk ∈ [0, 1]s
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A lattice rule
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We consider only the simplest kind of lattice rule, given by

QN,s(z;F ) =
1

N

N−1
∑

k=0

F

({

k
z

N

})

,

where z ∈ {1, . . . , N − 1}s, and the braces mean that each

component of the s-vector in the braces is to be replaced by its

fractional part.



Example of lattice rule

N = 34, z = (1, 21)
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The QMC approach to PDE with random coefficients

We approximate the s-dimensional integral by an N -point QMC

rule,

for each QMC point yk, k = 1, . . . , N compute the field

as(x, yk), and then find an approximate solution of the flow

problem by the finite-element method;

then compute any desired physical quantity by averaging the N

values so obtained.

What would we like to achieve?

Fast convergence (or at at least better than the MC rate O(N−1/2));

And integration errors that are independent of s.
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Recall: the lattice rule for the integral over [0, 1]s is
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So we need to choose z. But there is no known formula for a

“good” z, beyond s = 2.



If we are to use a lattice rule how to choose z?

Recall: the lattice rule for the integral over [0, 1]s is

QN,s(z;F ) =
1

N

N−1
∑

k=0

F

({

k
z

N

})

.

So we need to choose z. But there is no known formula for a

“good” z, beyond s = 2.

Can we construct a good z? Yes, it’s possible!
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The idea

The idea: Assume that F belongs to a convenient function space H ,

one that depends on lots of parameters. Specifically, . . .

And choose those weight parameters to minimise a certain bound on

the error for the s-dimensional integral. (What bound? Later!)

And choose z to minimise the “worst-case error ” in H .



Worst-case error

Definition : The worst case error in the space H of a QMC rule

QN,s(P ; ·) using the point set P = {t0, t1, · · · , tN−1} is

eN,s(P ;H) := sup
‖F‖H≤1

|Is(F )−QN,s(P ;F )| ,

i.e. it is the largest error of QN,s(P ;F ) for F in the unit ball of H .



Worst-case error

Definition : The worst case error in the space H of a QMC rule

QN,s(P ; ·) using the point set P = {t0, t1, · · · , tN−1} is

eN,s(P ;H) := sup
‖F‖H≤1

|Is(F )−QN,s(P ;F )| ,

i.e. it is the largest error of QN,s(P ;F ) for F in the unit ball of H .

The following Hilbert space of functions has the big advantage that the

worst case error is computable .



A good choice of H

A good choice for the norm squared of F in H is

‖F‖2
s,γγγ :=

∑

u⊆{1,...,s}

1

γu
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∣

∣
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∣

∣

∣

∣
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A good choice for the norm squared of F in H is

‖F‖2
s,γγγ :=

∑

u⊆{1,...,s}

1

γu

∫

[0,1]|u|

∣

∣

∣

∣

∣

∂|u|F

∂yu

(yu;
111
222
)

∣

∣

∣

∣

∣

2

dyu,

where

(yu;
111
222
)j =











yj if j ∈ u,

1

2
if j /∈ u.

The norm squared is the SUM OVER ALL SUBSETS u OF {1, . . . , s}.

For example, for u = {1, 3} the corresponding term is

1

γ{1,3}

∫ 1

0

∫ 1

0

∣

∣

∣

∣

∂2F

∂y1∂y3
(y1,

1
2
, y3,

1
2
, 1
2
, . . .)

∣

∣

∣

∣

2

dy1dy3



Weights

‖F‖2
s,γγγ :=

∑

u⊆{1,...,s}

1

γu

∫

[0,1]|u|

∣

∣

∣

∣

∣

∂|u|F

∂yu

(yu;
111
222
)

∣

∣

∣

∣

∣

2

dyu,

The norm squared is the SUM OVER ALL SUBSETS u OF {1, . . . , s}.

The term for subset u is divided by the weight γu. So there are 2s weights!

The weight γu is a positive number that measures the importance of

the subset u. A small weight forces the corresponding derivative to be small.

We denote by H = Hs,γγγ the space with weights {γu}.



What’s so good about this H?

It’s a reproducing kernel Hilbert space with a very simple kernel:

K(y, y′) =
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u⊆{1,...,s}

γu
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η(yj , y
′
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
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if y, y′ > 1
2
,

1
2
− max(y, y′) if y, y′ < 1

2
,

0 otherwise.
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What’s so good about this H?

It’s a reproducing kernel Hilbert space with a very simple kernel:

K(y, y′) =
∑

u⊆{1,...,s}

γu
∏

j∈u

η(yj , y
′
j) , with

η(y, y′) =



















min(y, y′) − 1
2

if y, y′ > 1
2
,

1
2
− max(y, y′) if y, y′ < 1

2
,

0 otherwise.

What does this mean? It means

K(y, ·) ∈ H, and

〈f(·),K(y, ·)〉H = f(y) ∀y ∈ [0, 1]s ∀f ∈ H.

The great thing about a RKHS with kernel is that there is a simple

formula for the worst-case error:



The worst case error in a RKHS

For the QMC rule with points P = {t0, . . . , tN−1} the squared WCE

is:

e2N,s(P ;H) =

∫

[0,1]s

∫

[0,1]s
K(y, y′) dy dy′

−

2

N

N−1
∑

i=0

∫

[0,1]s
K(ti, y) dy +

1

N2

N−1
∑

i=0

N−1
∑

k=0

K(ti, tk),

Thus in a RKHS with a known kernel the WCE can be computed



The worst case error in a RKHS

For the QMC rule with points P = {t0, . . . , tN−1} the squared WCE

is:

e2N,s(P ;H) =

∫

[0,1]s

∫

[0,1]s
K(y, y′) dy dy′

−

2

N

N−1
∑

i=0

∫

[0,1]s
K(ti, y) dy +

1

N2

N−1
∑

i=0

N−1
∑

k=0

K(ti, tk),

Thus in a RKHS with a known kernel the WCE can be computed

except for the little fact that 2s terms are needed for eachK(y, y′)! .



The case of product weights

Originally we considered only product weights (IHS and H Wozniakowski,

98),

γu =
∏

j∈u

αj .

In this case the WCE is easily computed:





1

N

N−1
∑

k=0

s
∏

j=1

(

1 + αj

[

B2

(

{kzj

N
}
)

+ 1
12

])

−
s
∏

j=1

(

1 +
αj

12

)





1/2

,

where B2(x) := x2 − x+ 1/6.



The case of product weights

Originally we considered only product weights (IHS and H Wozniakowski,

98),

γu =
∏

j∈u

αj .

In this case the WCE is easily computed:





1

N

N−1
∑

k=0

s
∏

j=1

(

1 + αj

[

B2

(

{kzj

N
}
)

+ 1
12

])

−
s
∏

j=1

(

1 +
αj

12

)





1/2

,

where B2(x) := x2 − x+ 1/6.

Actually, this is the worst case error in an appropriate root mean square sense for a

randomly shifted lattice rule.
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How to minimise the worst case error?

Since z is an integer vector of length s, with values between 1 and

N − 1, in principle we could evaluate the WCE for all possible

values of z.

But that would be exponentially costly.

Fortunately, we can provably get close to the best WCE by the

component-by-component (CBC) algorithm :



CBC

The CBC algorithm: Korobov, IHS, Reztsov, Kuo, Joe

With CBC, a good generator z = (z1, . . . , zs) is constructed one

component at a time:

choose z1 = 1

choose z2 to minimise WCE for s = 2, then

choose z3 to minimise WCE for s = 3, then

. . .

so that at each step there are only (at most) N − 1 choices.

A naive implementation costs O(s2N2) operations.



Fast CBC

In 2006 Cools and Nuyens developed Fast CBC – it uses FFT ideas,

and requires a time of order only O(s N logN).
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The Nuyens and Cools implementation allows the CBC algorithm for

product weights to be run with s in the thousands, N in the millions.
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eN,s,γγγ(t1, . . . , tN) := sup
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|Is(F ) −Qs,N(F )| .



Now to fix the weights. This is what’s new!

Recall the worst case error for integration over [0, 1]s:

eN,s,γγγ(t1, . . . , tN) := sup
‖F‖s,γγγ≤1

|Is(F ) −Qs,N(F )| .

Given F , we can use the resulting error bound:

|Is(F )−Qs,N(F )| ≤ eN,s,γγγ(t1, . . . , tN) × ‖F‖s,γγγ

and choose weights that minimize the right-hand side

or some upper bound on the right-hand side.



Skipping details, for the PDE problem

Error ≤ C

N (1/2λ)
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Minimising the product yields:

γγγu =

(

Bu

Au

)1/(1+λ)

= (|u|!)
2

1+λ
∏

j∈u

αj , αj = . . .

The γγγu are “POD” (for product and order dependent) weights.



For the PDE application assuming exact PDE solution

Convergence theorem. (Kuo/Schwab/IHS 2012) If z is chosen by CBC,

using the minimising weights, then with F (y) = G(u(y)),

Cubature error for approximating F ≤ Cδ

N1−δ
. for all δ > 0.

And generalizations ....
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Cubature error for approximating F ≤ Cδ
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And generalizations ....

The error is independent of s provided
∑∞

j=1 ‖ψj‖2/3
∞ < ∞

Thus the convergence is provably faster than the Monte Carlo rate

N−1/2 – and the CURSE OF DIMENSIONALITY has disappeared!



What else is new?

Similar analysis of the lognormal case.

Analysis of a multilevel method for both uniform and lognormal

cases:

[Kuo, Schwab, Sloan (to appear)]

I(G(u)) ≈ QL
∗ (G(u)) =

L
∑

ℓ=0

Qsℓ,nℓ

(

G(usℓ

hℓ
− u

sℓ−1

hℓ−1
)
)

cost = O
(

L
∑

ℓ=0

sℓnℓhℓ
−d

)



What’s newer still?

We know how to construct higher order QMC rules, with e.g.

O(N−2), and even how to apply them the above PDE problem.

(Dick, Kuo, Le Gia, Nuyens and Schwab 2015 for the uniform case)

[The best convergence rate achievable with a lattice rule is (close to) O(N−1).]

Lattice rules are now replaced by interlaced polynomial lattice rules , and POD

weights by SPOD weights (standing for “smoothness-driven product and

order-dependent weights”)

Now randomisation is not needed, and the rate of convergence is

better: the theoretical convergence rate is O(N−1/p),

instead of O(N−1/p+1/2) for lattice rules with 2
3
< p ≤ 1.

But higher order QMC is still very new, and there are few calculations.
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Summarising the PDE+QMC story

we truncate the ∞-dimensional problem at a high enough s;

we use a theoretical bound on the norm of the quantity of interest

to deduce good (POD) weights γγγu.

using those good weights, we compute good a lattice parameter z

by the fast CBC algorithm;

using the corresponding lattice points yk, k = 1, . . . , N we

compute the field a(x, yk), then find the approximate solution of

the PDE and compute the quantity of interest (QOI), and then

average the QOI over all N realisations;

and so obtain rigorously and constructively a convergence rate

better than MC, and an error bound independent of s.



But some cautions

The constants may be very large.

The numerical evidence is so far not completely convincing. We

always do better than MC, but often no better than with an off-the-shelf QMC rule.

For other high-dimensional applications the present theory cannot

be applied at all (option pricing), or is way in the future (weather

and climate).



Nevertheless, high-dimensional problems will not go away, and we are

perhaps making some progress.

In the world of high dimensions, we live in interesting times!



Some reading

I H Sloan, What’s new in high dimensional integration? –

designing quasi-Monte Carlo for applications, Proceedings of

ICIAM 2015, Beijing, China, Higher Education Press, 2015. pp.

365–386.

J. Dick, F.Y. Kuo, & I.H. Sloan, Numerical integration in high

dimensions – the Quasi Monte Carlo way, Acta Numerica 2013.

F.Y. Kuo and D Nuyens, Application of quasi-Monte Carlo

methods to PDEs with random coefficients – survey of analysis

and implementation, in preparation.
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