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Locally compact groups

G locally compact topological group with Haar measure µ

Examples

1. G = (Rn,+) with Lebesgue measure

2. G = SL(2,R) =

{(
a b
c d

)∣∣∣∣ a, b, c , d ∈ R, ad − bc = 1

}



Lattices

G locally compact, Haar measure µ

A subgroup Γ < G is a lattice if

I Γ is discrete

I µ(Γ\G ) <∞ (finite covolume)

A lattice Γ < G is

I uniform (or cocompact) if Γ\G is compact

I otherwise, nonuniform (or noncocompact)

Examples

1. Zn is a uniform lattice in Rn

2. SL(2,Z) is a nonuniform lattice in SL(2,R)



Automorphism groups of trees

T locally finite tree e.g. T3 the 3–regular tree

G = Aut(T ), with compact-open topology, is a totally
disconnected locally compact group.

G nondiscrete ⇐⇒ ∃ {gn} ⊂ G\{1} s.t. gn fixes Ball(n).

Example

G = Aut(T3) nondiscrete.



Motivation

I Study real Lie groups via action on symmetric space
e.g. upper half-plane is symmetric space for SL(2,R)

I Study “p–adic Lie groups” via action on building
e.g. Tq+1 is building for SL(2,Fq((t)))



Lattices in Aut(T )

T locally finite tree, G = Aut(T )

Γ < G is discrete ⇐⇒ Γ acts with finite stabilisers

Theorem (Serre)

Can normalise Haar measure µ on G so that ∀ discrete Γ < G

µ(Γ\G ) =
∑

v∈Vert(Γ\T )

1

|StabΓ(v)|
≤ ∞

and Γ cocompact ⇐⇒ Γ\T compact.



Examples of tree lattices

Cocompact lattice in G = Aut(T3)

Γ = π1(graph of groups) ∼= C3 ∗ C3

C3 C3
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Examples of tree lattices
Non-cocompact lattice in G = Aut(T3)

Γ = π1(graph of groups) ∼= C3 ∗ (· · · )
µ(Γ\G ) = 1
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Polygonal complexes

X locally finite, simply-connected polygonal complex

G = Aut(X ) is locally compact group

Lattices Γ ≤ G characterised in same way as tree lattices:

µ(Γ\G ) =
∑

v∈Vert(Γ\X )

1

|StabΓ(v)|
≤ ∞

and Γ cocompact ⇐⇒ Γ\X compact.



Links and (k , L)–complexes

The link of a vertex v in X is the graph L = Lk(v ,X ) with

I Vert(L): edges of X incident at v

I Edge(L): faces of X incident at v

I Vertices adjacent in L ⇐⇒ corresp. edges of X share a face

Given k ≥ 3 and a graph L, a (k, L)–complex is a polygonal
complex X such that each face is a regular k–gon, and the link of
each vertex is L.



Examples of simply-connected (k , L)–complexes

1. k = 3
I L a hexagon: tessellation of E2 by equilateral triangles
I L a generalised 3–gon: an Ã2 building

2. k = 4
I L = K2,2: tessellation of E2 by squares
I L = Kq,q: product of q-valent trees

3. k ≥ 5
I L = K2,2: tessellation of H2 by right-angled k-gons
I L = Kq,q: right-angled hyperbolic building

4. k even and L any simplicial graph: could be the Davis
complex for Coxeter system

W = 〈S = Vert(L) | s2 = 1, (st)k/2 = 1 ⇐⇒ s and t adjacent〉

Is Aut(X ) nondiscrete?

I these (k ,Kq,q)–complexes have nondiscrete Aut(X ) for q ≥ 3.

I Davis complex has nondiscrete Aut(X ) for L flexible
(Haglund–Paulin, White)



Connection with δ–hyperbolic and CAT(0) square
complexes

For k ≥ 4, a (k , L)–complex X can be subdivided into a square
complex, which is

I CAT(0) provided girth(L) ≥ 4

I δ–hyperbolic provided girth(L) ≥ 5

A uniform lattice Γ in G = Aut(X ) is then a CAT(0) or
word-hyperbolic group, respectively. In the latter case, by Agol’s
Theorem, Γ is virtually special hence linear.



Platonic complexes

A Platonic complex is a polygonal complex X such that Aut(X )
acts transitively on flags (vertex, edge, face).

=⇒ X is a (k , L)–complex with L an arc-transitive graph i.e.
Aut(L) acts transitively on oriented edges of L.



Action on s–arcs
An s–arc in L is a tuple of vertices (v0, . . . , vs) s.t. vi and vi+1 are
adjacent and vi−1 6= vi+1. The graph L is s–arc transitive if Aut(L)
acts transitively on the set of s–arcs, and s–arc regular if Aut(L)
acts simply transitively on the set of s–arcs.

Theorem (Tutte 1947)

If L is a finite, connected, cubic and arc-transitive graph, then L is
s–arc regular with s ≤ 5.

Example

Petersen graph is 3–arc regular



Trivalent Platonic complexes

Theorem (Świ ↪atkowski 1999)

Let k ≥ 4 and L be a finite, connected, arc-transitive cubic graph.
If L is s–arc regular for s ≥ 3 then ∃ a unique simply-connected
(k , L)–complex X . Moreover X is Platonic and Aut(X ) is
nondiscrete.

Proof uses work of Djokovič–Miller, who classified finite,
connected, arc-transitive cubic graphs L into 7 classes: L is s–arc
regular for exactly one s ∈ {1, 2′, 2′′, 3, 4′, 4′′, 5}.



Platonic lattices

Let X = X (k, L) be a trivalent Platonic complex as in
Świ ↪atkowski’s result.

Question
Does G = Aut(X ) admit a flag-transitive lattice?
Equivalently, does G admit a subgroup which acts flag-transitively
with finite stabilisers?

We call a flag-transitive lattice Γ < G a Platonic lattice.

If Γ is a Platonic lattice, then its vertex stabilisers are finite and
the induced action on the link of each vertex of X is that of an
arc-transitive subgroup H = HΓ of Aut(L). Thus H is t–arc regular
for some t ≤ s.

Conder–Nedela refined the classification of Djokovič–Miller to
include the values of t < s such that Aut(L) admits a t–arc regular
subgroup.



Results to date

Theorem (Capdeboscq–Giudici–T 2012)

Let k ≥ 4 and L be a finite, connected, arc-transitive cubic graph
which is s–arc regular for s ≥ 3. Let X be the unique
simply-connected (k , L)–complex and let G = Aut(X ).

1. Consider H a t–arc regular subgroup of Aut(L).

1.1 If t ∈ {1, 2′}, then for all k, the group G admits a Platonic
lattice Γ with vertex stabilisers ∼= H.

1.2 If t ∈ {2′′, 4′, 4′′, 5} then G admits a Platonic lattice Γ with
vertex stabilisers ∼= H if and only if k is even.

1.3 If t = 3 then G admits a Platonic lattice Γ with vertex
stabilisers ∼= H if and only if k is divisible by 2 or by 3.

2. If k is odd, there is no Platonic lattice Γ < G such that the
induced action on the link of each vertex is that of a 2′′–arc
regular subgroup of Aut(L).



Triangle of groups induced by action of Platonic lattice
Suppose Γ is a Platonic lattice. Then Γ acts on X with quotient a
triangle in the barycentric subdivision of X , to which we may
attach finite stabilisers

V2

V0

V1
E12

E02
E01

F

so that:
Link L′ at V0: for some N ≤ F with N C V0, and some t–arc
transitive H ≤ Aut(L),

V0/N ∼= H, E01/N ∼= StabH(v), E02/N ∼= StabH(e), F/N ∼= FixH(e)

Link K2,3 at V1: |V1 : E01| = 2, |V1 : E12| = 3 and E01 ∩ E12 = F

Link 2k–gon at V2: V2/F ∼= D2k generated by E12/F ∼= C2 and
E02/F ∼= C2



Triangles of groups

The theory of triangles of groups is due to Gersten and Stallings.

Graphs of groups ←→ group actions on trees
Triangles of groups ←→ group actions on triangle complexes
Complexes of groups ←→ group actions on simplicial complexes,

polyhedral complexes, scwols, . . .

Proposition

There exists a Platonic lattice Γ < Aut(X ) if and only if there
exists a triangle of finite groups as on the previous slide.

Γ is the fundamental group and X is the universal cover of the
triangle of groups.



Triangles of groups

A triangle of groups is developable if it is induced by a group
action on a simply-connected triangle complex.
Not all triangles of groups are developable!

Theorem (Gersten–Stallings)

A nonpositively curved triangle of groups is developable.

Proposition

There exists a Platonic lattice Γ < Aut(X ) if and only if there is a
triangle of finite groups as above.

Proof.
Such a triangle of groups is developable since nonpositively curved,
and the universal cover is the unique simply-connected
(k , L)–complex X by Świ ↪atkowski’s theorem.



Example: 3–arc regular vertex stabilisers, k even
Suppose H is 3–arc regular e.g. H = Aut(L) ∼= S5 for L the
Petersen graph.

Then

I FixH(e) = C2 × C2 = 〈c〉 × 〈d〉
I StabH(e) = D8 = (〈c〉 × 〈d〉) o 〈a〉
I StabH(v) = S3 × C2 = S3 × 〈d〉

For k even, a triangle of groups for a Platonic lattice Γ is:

FixH(e) o D2k

H

S3 × 〈d〉 × 〈b〉
FixH(e)× 〈b〉

FixH(e) o 〈a〉
S3 × 〈d〉

FixH(e)



Example where Γ with vertex stabilisers ∼= H does not exist

Suppose k ≥ 5 is odd and H is t–arc regular for t ∈ {2′′, 4′, 4′′, 5}.
Assume ∃ a Platonic lattice Γ with vertex stabilisers ∼= H. Then Γ
induces

V2

H

V1
E12

StabH(e)
StabH(v)

FixH(e)

with FixH(e) a 2–group.
Since k is odd, Sylow’s theorems imply E12

∼= StabH(e) are Sylow
2–subgroups of V2.
Now |V1 : E12| = 3 so V1 is a group of order 3|StabH(e)| with
Sylow 2–subgroups isomorphic to StabH(e), and V1 has an index 2
subgroup StabH(v). But in each case no such group V1 exists.
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