Platonic lattices for trivalent Platonic polygonal complexes

Inna Capdeboscq¹ Michael Giudici² Anne Thomas³

¹Mathematics Institute, University of Warwick

²School of Mathematics and Statistics, University of Western Australia

³School of Mathematics and Statistics, University of Sydney

Special Session on Group Actions AustMS 2012

Outline

- 1. Locally compact groups and lattices
- 2. Tree lattices
- 3. Platonic complexes and their lattices

 ${\it G}$ locally compact topological group with Haar measure μ Examples

1.
$$G = (\mathbb{R}^n, +)$$
 with Lebesgue measure
2. $G = SL(2, \mathbb{R}) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \middle| a, b, c, d \in \mathbb{R}, ad - bc = 1 \right\}$

Lattices

G locally compact, Haar measure μ

A subgroup $\Gamma < G$ is a lattice if

- Γ is discrete
- $\mu(\Gamma \setminus G) < \infty$ (finite covolume)
- A lattice $\Gamma < G$ is
 - uniform (or cocompact) if $\Gamma \setminus G$ is compact
 - otherwise, nonuniform (or noncocompact)

Examples

- 1. \mathbb{Z}^n is a uniform lattice in \mathbb{R}^n
- 2. SL(2, \mathbb{Z}) is a nonuniform lattice in SL(2, \mathbb{R})

Automorphism groups of trees

T locally finite tree e.g. T_3 the 3-regular tree

G = Aut(T), with compact-open topology, is a totally disconnected locally compact group.

G nondiscrete $\iff \exists \{g_n\} \subset G \setminus \{1\}$ s.t. g_n fixes Ball(n). Example

 $G = Aut(T_3)$ nondiscrete.

Motivation

- ► Study real Lie groups via action on symmetric space e.g. upper half-plane is symmetric space for SL(2, ℝ)
- Study "p−adic Lie groups" via action on building e.g. T_{q+1} is building for SL(2, F_q((t)))

Lattices in Aut(T)

T locally finite tree, G = Aut(T)

 $\Gamma < G$ is discrete $\iff \Gamma$ acts with finite stabilisers

Theorem (Serre)

Can normalise Haar measure μ on G so that \forall discrete $\Gamma < G$

$$\mu(\Gamma \setminus G) = \sum_{v \in Vert(\Gamma \setminus T)} \frac{1}{|Stab_{\Gamma}(v)|} \leq \infty$$

and Γ cocompact $\iff \Gamma \backslash T$ compact.

Examples of tree lattices

Cocompact lattice in $G = \operatorname{Aut}(T_3)$ $\Gamma = \pi_1(\operatorname{graph} \operatorname{of} \operatorname{groups}) \cong C_3 * C_3$

Examples of tree lattices

Non-cocompact lattice in $G = Aut(T_3)$

$$\Gamma = \pi_1(\text{graph of groups}) \cong C_3 * (\cdots)$$
$$\mu(\Gamma \backslash G) = \frac{1}{3} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = \frac{4}{3}$$

Polygonal complexes

X locally finite, simply-connected polygonal complex

G = Aut(X) is locally compact group

Lattices $\Gamma \leq G$ characterised in same way as tree lattices:

$$\mu(\Gamma \backslash G) = \sum_{\nu \in \mathsf{Vert}(\Gamma \backslash X)} \frac{1}{|\mathsf{Stab}_{\Gamma}(\nu)|} \leq \infty$$

and Γ cocompact $\iff \Gamma \setminus X$ compact.

Links and (k, L)-complexes

The link of a vertex v in X is the graph L = Lk(v, X) with

- Vert(L): edges of X incident at v
- Edge(L): faces of X incident at v
- Vertices adjacent in $L \iff$ corresp. edges of X share a face

Given $k \ge 3$ and a graph *L*, a (k, L)-complex is a polygonal complex *X* such that each face is a regular *k*-gon, and the link of each vertex is *L*.

Examples of simply-connected (k, L)-complexes

- 1. k = 3
 - L a hexagon: tessellation of \mathbb{E}^2 by equilateral triangles
 - L a generalised 3–gon: an \tilde{A}_2 building
- 2. *k* = 4
 - $L = K_{2,2}$: tessellation of \mathbb{E}^2 by squares
 - $L = K_{q,q}$: product of q-valent trees
- 3. $k \ge 5$
 - $L = K_{2,2}$: tessellation of \mathbb{H}^2 by right-angled k-gons
 - $L = K_{q,q}$: right-angled hyperbolic building
- 4. k even and L any simplicial graph: could be the Davis complex for Coxeter system

 $\mathcal{W} = \langle S = \mathsf{Vert}(L) \mid s^2 = 1, (st)^{k/2} = 1 \iff s \text{ and } t \text{ adjacent}
angle$

- Is Aut(X) nondiscrete?
 - these $(k, K_{q,q})$ -complexes have nondiscrete Aut(X) for $q \ge 3$.
 - Davis complex has nondiscrete Aut(X) for L flexible (Haglund–Paulin, White)

Connection with δ -hyperbolic and CAT(0) square complexes

For $k \ge 4$, a (k, L)-complex X can be subdivided into a square complex, which is

- CAT(0) provided girth(L) ≥ 4
- δ -hyperbolic provided girth(L) \geq 5

A uniform lattice Γ in $G = \operatorname{Aut}(X)$ is then a CAT(0) or word-hyperbolic group, respectively. In the latter case, by Agol's Theorem, Γ is virtually special hence linear. A Platonic complex is a polygonal complex X such that Aut(X) acts transitively on flags (vertex, edge, face).

 \implies X is a (k, L)-complex with L an arc-transitive graph i.e. Aut(L) acts transitively on oriented edges of L.

Action on s-arcs

An *s*-arc in *L* is a tuple of vertices (v_0, \ldots, v_s) s.t. v_i and v_{i+1} are adjacent and $v_{i-1} \neq v_{i+1}$. The graph *L* is *s*-arc transitive if Aut(*L*) acts transitively on the set of *s*-arcs, and *s*-arc regular if Aut(*L*) acts simply transitively on the set of *s*-arcs.

Theorem (Tutte 1947)

If L is a finite, connected, cubic and arc-transitive graph, then L is s-arc regular with $s \le 5$.

Example

Petersen graph is 3-arc regular

Trivalent Platonic complexes

Theorem (Świątkowski 1999)

Let $k \ge 4$ and L be a finite, connected, arc-transitive cubic graph. If L is s-arc regular for $s \ge 3$ then \exists a unique simply-connected (k, L)-complex X. Moreover X is Platonic and Aut(X) is nondiscrete.

Proof uses work of Djokovič–Miller, who classified finite, connected, arc-transitive cubic graphs *L* into 7 classes: *L* is *s*-arc regular for exactly one $s \in \{1, 2', 2'', 3, 4', 4'', 5\}$.

Platonic lattices

Let X = X(k, L) be a trivalent Platonic complex as in Świątkowski's result.

Question

Does G = Aut(X) admit a flag-transitive lattice? Equivalently, does G admit a subgroup which acts flag-transitively with finite stabilisers?

We call a flag-transitive lattice $\Gamma < G$ a Platonic lattice.

If Γ is a Platonic lattice, then its vertex stabilisers are finite and the induced action on the link of each vertex of X is that of an arc-transitive subgroup $H = H_{\Gamma}$ of Aut(L). Thus H is t-arc regular for some $t \leq s$.

Conder–Nedela refined the classification of Djokovič–Miller to include the values of t < s such that Aut(L) admits a *t*–arc regular subgroup.

Results to date

Theorem (Capdeboscq–Giudici–T 2012)

Let $k \ge 4$ and L be a finite, connected, arc-transitive cubic graph which is s-arc regular for $s \ge 3$. Let X be the unique simply-connected (k, L)-complex and let G = Aut(X).

- 1. Consider H a t-arc regular subgroup of Aut(L).
 - 1.1 If $t \in \{1, 2'\}$, then for all k, the group G admits a Platonic lattice Γ with vertex stabilisers $\cong H$.
 - 1.2 If $t \in \{2'', 4', 4'', 5\}$ then G admits a Platonic lattice Γ with vertex stabilisers $\cong H$ if and only if k is even.
 - 1.3 If t = 3 then G admits a Platonic lattice Γ with vertex stabilisers $\cong H$ if and only if k is divisible by 2 or by 3.
- If k is odd, there is no Platonic lattice Γ < G such that the induced action on the link of each vertex is that of a 2"-arc regular subgroup of Aut(L).

Triangle of groups induced by action of Platonic lattice Suppose Γ is a Platonic lattice. Then Γ acts on X with quotient a triangle in the barycentric subdivision of X, to which we may attach finite stabilisers

so that:

Link L' at V_0 : for some $N \leq F$ with $N \triangleleft V_0$, and some t-arc transitive $H \leq \operatorname{Aut}(L)$,

 $V_0/N \cong H$, $E_{01}/N \cong \operatorname{Stab}_H(v)$, $E_{02}/N \cong \operatorname{Stab}_H(e)$, $F/N \cong \operatorname{Fix}_H(e)$ Link $K_{2,3}$ at V_1 : $|V_1 : E_{01}| = 2$, $|V_1 : E_{12}| = 3$ and $E_{01} \cap E_{12} = F$ Link 2k-gon at V_2 : $V_2/F \cong D_{2k}$ generated by $E_{12}/F \cong C_2$ and $E_{02}/F \cong C_2$

Triangles of groups

The theory of triangles of groups is due to Gersten and Stallings.

Graphs of groups Triangles of groups Complexes of groups

- \longleftrightarrow group actions on trees
- $\begin{array}{rcl} \mbox{Complexes of groups} & \longleftrightarrow & \mbox{group actions on simplicial complexes,} \\ & \mbox{polyhedral complexes, scwols, } \ldots \end{array}$

Proposition

There exists a Platonic lattice $\Gamma < Aut(X)$ if and only if there exists a triangle of finite groups as on the previous slide.

 Γ is the fundamental group and X is the universal cover of the triangle of groups.

Triangles of groups

A triangle of groups is developable if it is induced by a group action on a simply-connected triangle complex. Not all triangles of groups are developable!

Theorem (Gersten-Stallings)

A nonpositively curved triangle of groups is developable.

Proposition

There exists a Platonic lattice $\Gamma < Aut(X)$ if and only if there is a triangle of finite groups as above.

Proof.

Such a triangle of groups is developable since nonpositively curved, and the universal cover is the unique simply-connected (k, L)-complex X by Świątkowski's theorem.

Example: 3-arc regular vertex stabilisers, k even

Suppose *H* is 3-arc regular e.g. $H = Aut(L) \cong S_5$ for *L* the Petersen graph.

Then

For k even, a triangle of groups for a Platonic lattice Γ is:

Example where Γ with vertex stabilisers $\cong H$ does not exist

Suppose $k \ge 5$ is odd and H is *t*-arc regular for $t \in \{2'', 4', 4'', 5\}$. Assume \exists a Platonic lattice Γ with vertex stabilisers $\cong H$. Then Γ induces

with $Fix_H(e)$ a 2-group.

Since k is odd, Sylow's theorems imply $E_{12} \cong \text{Stab}_H(e)$ are Sylow 2-subgroups of V_2 .

Now $|V_1 : E_{12}| = 3$ so V_1 is a group of order $3|\text{Stab}_H(e)|$ with Sylow 2-subgroups isomorphic to $\text{Stab}_H(e)$, and V_1 has an index 2 subgroup $\text{Stab}_H(v)$. But in each case no such group V_1 exists.