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The basic example

Example

Let
G = FZ = {(fn) | fn ∈ F} ,

where F is a finite group and define the shift

α : G→ G by α(f )n = fn+1.

Then G is a compact totally disconnected group and α is an
automorphism of G.

All (G, α), where G is a compact totally disconnected group and
α is an automorphism that acts ergodically, are built up from
these shift examples.
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‘α acts ergodically’

Ergodicity is measure theoretic version of transitivity.

Definition
The measure preserving bijection τ : X → X , where (X ,M, µ)
is a measure space, is ergodic if any measurable subset E ⊆ X
with τ(E) = E has either µ(E) = 0 or µ(X \ E) = 0.

In the above example, α : FZ → FZ (µ the Haar measure) is
ergodic because it is topologically transitive, that is, is
continuous and has a dense orbit.
To see this, note that

⋃
n∈N F n is countable and form f ∈ FZ

such that every element of
⋃

n∈N F n appears as a subsequence
of f . Then the orbit {αn(f ) | n ∈ Z} is dense in FZ.
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G locally compact, the nub of α

Definition
Let G be a t.d.l.c. group and α be an automorphism of G. The
nub of α is

nub(α) =
⋂
{U | U is tidy for α} .

Theorem (Jaworski [3], W. [8])
The nub of α is a compact α-stable subgroup of G on which α
acts ergodically, and is the largest such subgroup.

nub(α) is thus characterized independently of tidiness.
Every compact, open subgroup of G tidy for α contains nub(α).
In fact, U is tidy below for α if and only if U ≥ nub(α).
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Groups with ergodic automorphisms

In his book Lectures on Ergodic Theory , Paul Halmos [2]
conjectured that any locally compact group for which there is an
ergodic automorphism must be compact. This conjecture was:

• proved for connected groups in the 1960’s using
approximation by Lie groups (Hilbert’s 5th problem).

• proved in the 1980’s for totally disconnected groups by a
topological dynamics argument [1]. A short proof using the
scale and tidy subgroups is given in [6].

• already implicit in the claim that the nub of α is compact
and is the maximal subgroup on which α is ergodic.
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Automorphisms of p-adic linear groups

Let G = SL(2,Qp). Let x =

(
p 0
0 p−1

)
and α be the inner

automorphism α : y 7→ xyx−1.

Then nub(α) = {1}.
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Automorphisms of automorphism groups of trees

Let T be a regular tree and G = Aut(T ). Let x ∈ G be
translation along the axis ` and let α be the inner automorphism
α : y 7→ xyx−1.
Then subgroups tidy for α have the form stabG(vm) ∩ stabG(vn)
for vm and vn distinct vertices on `. Hence nub(α) = fix(`).

Note that
fix(`) ∼= Aut(Rn)

Z,

where Rn is the rooted subtree with root vn on `.
Since Aut(Rn) ∼= lim←−Aut(R[k ]

n ), where R[k ]
n is the truncation of

R[k ]
n at level k , is a profinite group, we have

fix(`) ∼= lim←−Aut(R[k ]
n )Z
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Finite depth/expansive automorphisms

Definition
Let G be a compact totally disconnected group and α be an
automorphism of G. Then (G, α) is finite depth if there is an
open neighbourhood U ⊃ 1 such that⋂

n∈Z
αn(U) = {1}.

Such an automorphism α is called expansive in [4,5,7].

Theorem
Let G be a compact totally disconnected group and α be an
automorphism of G. Then there is a directed system
{(Gι, αι)}ι∈I of finite depth pairs such that

(G, α) ∼= lim←−(Gι, αι).
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Structure of finite depth pairs

Theorem (‘Jordan-Holder’ for finite depth pairs)
Let G be a compact group and α be an automorphism of G
such that (G, α) has finite depth. Then nub(α) is an open (and
hence finite index) subgroup of G that has a composition series

{1} = G0 /G1 / · · · /Gr−1 /Gr = nub(α)

of closed, α-stable subgroups such that, for i ∈ {1,2, . . . , r},

Gi/Gi−1
∼= FZ

i and α̃i is the shift,

where Fi is a finite simple group and α̃i is the automorphism
induced by α.
The composition factors FZ

i are unique up to permutation.
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