Group actions on C^* -correspondences

David Robertson

University of Wollongong

AustMS – 27th September 2012

2 [Group actions](#page-8-0)

2 [Group actions](#page-8-0)

A Hilbert C^* -module is essentially a Hilbert space with the usual scalars (the complex numbers) replaced by an arbitrary C^* -algebra.

Definition

Let A be a C^{*}-algebra. A right Hilbert A-module is a Banach space X with pairing $\langle \cdot, \cdot \rangle : X \times X \rightarrow A$ (inner-product) and a right action $X \times A \rightarrow X$ (scalar multiplication) satisfying

 \bullet $\langle \cdot, \cdot \rangle$ C-linear in the second variable

$$
\bullet \ \langle x, y \cdot a \rangle = \langle x, y \rangle a
$$

$$
\bullet \ \langle y,x\rangle = \langle x,y\rangle^*
$$

•
$$
\langle x, x \rangle \ge 0
$$
 and $\sqrt{\|\langle x, x \rangle\|_A} = \|x\|_X$

for all $x, y \in X$ and $a \in A$.

Let X, Y be right Hilbert A-modules.

Definition

We say a linear operator T : $X \rightarrow Y$ is adjointable if there exists an operator $T^* : Y \to X$ such that

$$
\langle Tx, y \rangle = \langle x, T^*y \rangle
$$

for all $x \in X, y \in Y$.

We write $\mathcal{L}(X, Y)$ for the collection of all adjointable operators $T \cdot X \rightarrow Y$

 $\mathcal{L}(X) := \mathcal{L}(X,X)$ is a C^* -algebra.

For $x \in X, y \in Y$, define $\theta_{v,x}: X \to Y$ to be the operator satisfying $\theta_{v,x}(z) = v \cdot \langle x, z \rangle$.

for all $z \in X$.

This is an adjointable operator with $(\theta_{y,x})^* = \theta_{x,y}$. We call

$$
\mathcal{K}(X,Y)=\overline{\text{span}}\{\theta_{y,x}:x\in X,y\in Y\}
$$

the *compact* operators.

Then $\mathcal{K}(X) := \mathcal{K}(X, X)$ is a closed two-sided ideal in $\mathcal{L}(X)$ and $\mathcal{L}(X) = M(\mathcal{K}(X)).$

Definition

A C[∗] -correspondence is a right Hilbert A module X with a left action of A on X by adjointable operators, implemented by a homomorphism

 $\varphi_X : A \to \mathcal{L}(X).$

We will write C^* -correspondences as pairs (X, A) .

We write $a \cdot x$ for $\varphi_X(a)(x)$

Examples

Let D be a C^* -algebra. Then (D, D) is a C^* -correspondence with left and right actions given by multiplication and inner-product

$$
\langle a,b\rangle=a^*b
$$

Let $\alpha\in \mathrm{Aut}(D).$ There is a \mathcal{C}^* -correspondence (D_α,D) with $D_\alpha=D,$ right action and inner-product as above, and left action

$$
a\cdot b=\alpha(a)b.
$$

There are also examples arising from directed graphs and self-similar group actions.

2 [Group actions](#page-8-0)

Let (X, A) and (Y, B) be C^* -correspondences.

Definition

A morphism from (X, A) to (Y, B) is a pair of maps (ψ, π) where $\psi: X \to Y$ is linear and $\pi: A \to B$ is a C*-homomorphism satisfying

\n- \n
$$
\pi(\langle x, y \rangle) = \langle \psi(x), \psi(y) \rangle
$$
\n
\n- \n $\pi(a) \cdot \psi(x) = \psi(a \cdot x)$ and $\psi(x) \cdot \pi(a) = \psi(x \cdot a)$ \n
\n- \n $\varphi_Y(\pi(a)) = \psi^{(1)}(\varphi_X(a))$ whenever $a \in \varphi_X^{-1}(\mathcal{K}(X)) \cap \ker(\varphi_X)^\perp$, where $\psi^{(1)} : \mathcal{K}(X) \to \mathcal{K}(Y)$ satisfies\n
\n

$$
\psi^{(1)}(\theta_{x,y})=\theta_{\psi(x),\psi(y)}
$$

Let G be a locally compact group.

Definition

An action of G on a C * -correspondence (X,A) is a pair (γ,α) where

- $\bullet \ \alpha : G \to \text{Aut}(A)$ is a continuous action of G on A
- $\bullet \gamma : G \to \text{Aut}(X)$ is a continuous action of G on X; i.e. for any $s \in G$, $x \in X$ the map $s \mapsto \gamma_s(x)$ is continuous

• for each $s \in G$, the pair

$$
(\gamma_s,\alpha_s):(X,A)\to (X,A)
$$

is a C[∗] -correspondence morphism.

Crossed product C^{*}-algebras

Let G be a locally compact group and let

 α : $G \rightarrow Aut(A)$

be a continuous action of G on A. We can define ∗-algebra structure on $C_c(G, A)$ as

$$
(f * g)(s) = \int_G f(t) \alpha_t(g(t^{-1}s)) d\mu(t)
$$

$$
f^*(s)=\Delta_G(s^{-1})\alpha_s(f(s^{-1})^*)
$$

The (full) crossed product $A\rtimes_\alpha G$ is a C^* -completion of $\mathcal{C}_c(G,A)$.

Crossed products are closely related to semi-direct products of groups: if a locally compact group H acts by automorphisms on another locally compact group N, then there is an induced action on the group C^* -algebra $C^*(N)$ and

$$
C^*(N) \rtimes H \cong C^*(N \rtimes H).
$$

Given $((X, A), G, (\gamma, \alpha))$ we can form the crossed product C^* -correspondence $(X\rtimes_{\gamma}G, A\rtimes_{\alpha}G)$ as follows:

Fix $f, g \in C_c(G, X)$, $a \in C_c(G, A)$ and $s \in G$.

\n
$$
\text{Inner-product:} \quad \langle f, g \rangle(s) = \int_G \alpha_{t^{-1}} \langle f(t), g(ts) \rangle \, d\mu(t)
$$
\n

\n\n $\text{Right action:} \quad (f \cdot a)(s) = \int_G f(t) \alpha_t(a(t^{-1}s)) \, d\mu(t)$ \n

\n\n $\text{Left action:} \quad (a \cdot f)(s) = \int_G a(t) \gamma_t(f(t^{-1}s)) \, d\mu(t)$ \n

Define $X \rtimes_{\gamma} G$ to be the completion of $C_c(G, X)$ with respect to the norm $||f|| = \sqrt{||\langle f, f \rangle||}.$

2 [Group actions](#page-8-0)

Definition

A representation of a C * -correspondence (X,A) on a C * -algebra D is a morphism $(\psi, \pi) : (X, A) \rightarrow (D, D)$.

Definition (Pimsner, 1997, Katsura, 2004)

The Cuntz-Pimsner algebra \mathcal{O}_X is the universal C^{*}-algebra generated by a representation of (X, A) . We denote the universal representation by $(k_X, k_A) : (X, A) \rightarrow \mathcal{O}_X$.

Example: $\mathcal{O}_{A_{\alpha}} = A \rtimes_{\alpha} \mathbb{Z}$

The Cuntz-Pimsner construction is functorial in the sense that given a morphism $(\psi, \pi): (X, A) \to (Y, B)$ there is an induced C^* -homomorphism $\Psi: \mathcal{O}_X \to \mathcal{O}_Y$.

Therefore an action (γ, α) of G on (X, A) induces an action β of G on \mathcal{O}_X .

Theorem (Hao-Ng, 2008, Kaliszewski-Quigg-R, 2012)

Suppose G is amenable. Then there is an isomorphism

 $\mathcal{O}_{X\rtimes_{\gamma}G}\cong \mathcal{O}_X\rtimes_{\beta}G.$

References

- M. V. Pimsner, A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\mathbb Z$ Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI (1997) pp. 189-212.
- T. Katsura, On C^* -algebras associated with C^* -correspondences, J. Funct. Anal. 217 (2004) no. 2, 366-401.
- S. Echterhoff, S. Kaliszewski, J. Quigg, I. Raeburn, A Categorical Approach to Imprimitivity Theorems for C^{*}-Dynamical Systems, vol. 180, Mem. Amer. Math. Soc., no. 850, American Mathematical Society, Providence, RI (2006).
- J. Quigg, S. Kaliszewski, D. Robertson, Functoriality of Cuntz-Pimsner correspondence maps (2012) arXiv:1204.5820.
- • J. Quigg, S. Kaliszewski, D. Robertson, *Coactions on Cuntz-Pimsner* algebras (2012) 1204.5822.