Group actions on C^* -correspondences

David Robertson

University of Wollongong

AustMS – 27th September 2012

2 Group actions

2 Group actions

A Hilbert C^* -module is essentially a Hilbert space with the usual scalars (the complex numbers) replaced by an arbitrary C^* -algebra.

Definition

Let A be a C*-algebra. A right Hilbert A-module is a Banach space X with pairing $\langle \cdot, \cdot \rangle : X \times X \to A$ (inner-product) and a right action $X \times A \to X$ (scalar multiplication) satisfying

• $\langle \cdot, \cdot \rangle \mathbb{C}$ -linear in the second variable

•
$$\langle x, y \cdot a \rangle = \langle x, y \rangle a$$

•
$$\langle y, x \rangle = \langle x, y \rangle^*$$

•
$$\langle x, x \rangle \ge 0$$
 and $\sqrt{\|\langle x, x \rangle\|_A} = \|x\|_X$

for all $x, y \in X$ and $a \in A$.

Let X, Y be right Hilbert A-modules.

Definition

We say a linear operator $T : X \to Y$ is adjointable if there exists an operator $T^* : Y \to X$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

for all $x \in X, y \in Y$.

We write $\mathcal{L}(X, Y)$ for the collection of all adjointable operators $T: X \to Y$.

$$\mathcal{L}(X) := \mathcal{L}(X, X)$$
 is a C^* -algebra.

For $x \in X, y \in Y$, define $\theta_{y,x} : X \to Y$ to be the operator satisfying $\theta_{y,x}(z) = y \cdot \langle x, z \rangle.$

for all $z \in X$.

This is an adjointable operator with $(\theta_{y,x})^* = \theta_{x,y}$. We call

$$\mathcal{K}(X,Y) = \overline{\operatorname{span}}\{\theta_{y,x} : x \in X, y \in Y\}$$

the compact operators.

Then $\mathcal{K}(X) := \mathcal{K}(X, X)$ is a closed two-sided ideal in $\mathcal{L}(X)$ and $\mathcal{L}(X) = M(\mathcal{K}(X))$.

Definition

A C^* -correspondence is a right Hilbert A module X with a left action of A on X by adjointable operators, implemented by a homomorphism

 $\varphi_X : A \to \mathcal{L}(X).$

We will write C^* -correspondences as pairs (X, A).

We write $a \cdot x$ for $\varphi_X(a)(x)$

Examples

Let D be a C^* -algebra. Then (D, D) is a C^* -correspondence with left and right actions given by multiplication and inner-product

$$\langle a,b\rangle = a^*b$$

Let $\alpha \in Aut(D)$. There is a C*-correspondence (D_{α}, D) with $D_{\alpha} = D$, right action and inner-product as above, and left action

$$a \cdot b = \alpha(a)b.$$

There are also examples arising from directed graphs and self-similar group actions.

2 Group actions

Let (X, A) and (Y, B) be C^* -correspondences.

Definition

A morphism from (X, A) to (Y, B) is a pair of maps (ψ, π) where $\psi : X \to Y$ is linear and $\pi : A \to B$ is a C^{*}-homomorphism satisfying

$$\psi^{(1)}(\theta_{x,y}) = \theta_{\psi(x),\psi(y)}$$

Let G be a locally compact group.

Definition

An action of G on a C^{*}-correspondence (X, A) is a pair (γ, α) where

- $\alpha : G \to \operatorname{Aut}(A)$ is a continuous action of G on A
- $\gamma : G \to Aut(X)$ is a continuous action of G on X; i.e. for any $s \in G, x \in X$ the map $s \mapsto \gamma_s(x)$ is continuous

• for each $s \in G$, the pair

$$(\gamma_s, \alpha_s) : (X, A) \to (X, A)$$

is a C*-correspondence morphism.

Crossed product C^* -algebras

Let G be a locally compact group and let

 $\alpha: \mathbf{G} \to \mathrm{Aut}(\mathbf{A})$

be a continuous action of G on A. We can define *-algebra structure on $C_c(G, A)$ as

$$(f * g)(s) = \int_G f(t) \alpha_t(g(t^{-1}s)) d\mu(t)$$

$$f^*(s) = \Delta_G(s^{-1})\alpha_s(f(s^{-1})^*)$$

The (full) crossed product $A \rtimes_{\alpha} G$ is a C^* -completion of $C_c(G, A)$.

Crossed products are closely related to semi-direct products of groups: if a locally compact group H acts by automorphisms on another locally compact group N, then there is an induced action on the group C^* -algebra $C^*(N)$ and

$$C^*(N) \rtimes H \cong C^*(N \rtimes H).$$

Crossed product correspondence

Given $((X, A), G, (\gamma, \alpha))$ we can form the *crossed product* C^* -correspondence $(X \rtimes_{\gamma} G, A \rtimes_{\alpha} G)$ as follows:

Fix $f,g \in C_c(G,X)$, $a \in C_c(G,A)$ and $s \in G$.

Inner-product :
$$\langle f, g \rangle(s) = \int_{G} \alpha_{t^{-1}} \langle f(t), g(ts) \rangle d\mu(t)$$

Right action : $(f \cdot a)(s) = \int_{G} f(t) \alpha_{t}(a(t^{-1}s)) d\mu(t)$
Left action : $(a \cdot f)(s) = \int_{G} a(t) \gamma_{t}(f(t^{-1}s)) d\mu(t)$

Define $X \rtimes_{\gamma} G$ to be the completion of $C_c(G, X)$ with respect to the norm $||f|| = \sqrt{||\langle f, f \rangle||}$.

2 Group actions

Definition

A representation of a C*-correspondence (X, A) on a C*-algebra D is a morphism $(\psi, \pi) : (X, A) \rightarrow (D, D)$.

Definition (Pimsner, 1997, Katsura, 2004)

The Cuntz-Pimsner algebra \mathcal{O}_X is the universal C*-algebra generated by a representation of (X, A). We denote the universal representation by $(k_X, k_A) : (X, A) \to \mathcal{O}_X$.

Example: $\mathcal{O}_{A_{\alpha}} = A \rtimes_{\alpha} \mathbb{Z}$

The Cuntz-Pimsner construction is functorial in the sense that given a morphism $(\psi, \pi) : (X, A) \to (Y, B)$ there is an induced C*-homomorphism $\Psi : \mathcal{O}_X \to \mathcal{O}_Y$.

Therefore an action (γ, α) of G on (X, A) induces an action β of G on \mathcal{O}_X .

Theorem (Hao-Ng, 2008, Kaliszewski-Quigg-R, 2012)

Suppose G is amenable. Then there is an isomorphism

 $\mathcal{O}_{X\rtimes_{\gamma}G}\cong \mathcal{O}_X\rtimes_{\beta} G.$

- M. V. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI (1997) pp. 189-212.
- T. Katsura, On C*-algebras associated with C*-correspondences, J. Funct. Anal. 217 (2004) no. 2, 366-401.
- S. Echterhoff, S. Kaliszewski, J. Quigg, I. Raeburn, A Categorical Approach to Imprimitivity Theorems for C*-Dynamical Systems, vol. 180, Mem. Amer. Math. Soc., no. 850, American Mathematical Society, Providence, RI (2006).
- J. Quigg, S. Kaliszewski, D. Robertson, *Functoriality of Cuntz-Pimsner correspondence maps* (2012) arXiv:1204.5820.
- J. Quigg, S. Kaliszewski, D. Robertson, *Coactions on Cuntz-Pimsner algebras* (2012) 1204.5822.