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Groupoids

A groupoid is a small category G with inverses: for each γ ∈ G
there exists γ−1 ∈ G such that γγ−1 = r(γ) and γ−1γ = s(γ).

It’s a group with an identity crisis. The set of identity elements
(“unit space”) is denoted G (0).

In a topological group, G is given a locally compact Hausdorff
topology.

I Composition is continuous from G ∗ G ⊆ G × G to G .

I Inversion is continuous from G to G .

G is étale if r , s : G → G (0) are local homeomorphisms. This forces
G (0) open in G .



 

Examples

1. Groups: these are groupoids with one object. Étale means
discrete.

2. An R ⊆ X × X is a groupoid: define r(x , y) = x , s(x , y) = y ,
(x , y)−1 = (y , x) and (x , y)(y , z) = (x , z).

3. If a group G acts on a space X , then G × X is a groupoid with
r(g , x) = g · x , s(g , x) = x , (g , x)−1 = (g−1, g · x) and
(g , h · x)(h, x) = (gh, x); it’s étale if G is discrete.

By analogy with the last example, we think of groupoids as “acting”
on their unit spaces.

Say G is topologically principal if {u ∈ G (0) : uGu = {u}} is dense
in G (0). Like a topologically free action.



 

Bisections

A bisection of G is a subset U ⊆ G such that r and s restrict to
homeomorphisms on U.

Every étale groupoid has a basis consisting of precompact open
bisections.

An étale groupoid is effective if Int{g ∈ G : r(g) = s(g)} = G (0).
Like an effective group action.

Theorem (Renault)

Let G be an étale locally compact Hausdorff groupoid. If G is
topologically principal then it is effective. If G is second countable
then the converse holds.



 

C ∗-algebras

A C ∗-algebra is a complete (complex) normed ∗-algebra satisfying
the C ∗-identity ‖a∗a‖ = ‖a‖2.

Gelfand-Naimark: every C ∗-algebra is isomorphic to a closed
C ∗-subalgebra of B(H).

Key example: if G is a locally compact Hausdorff group, then
Cc(G ) has a universal C ∗-completion C ∗(G ). If G is amenable, then
this is the only completion.

C ∗(G ) is universal for continuous unitary representations of G .

A C ∗-algebra A is simple if every nonzero homomorphism of A is
injective. C ∗(G ) is only simple if G = {e} (consider the
1-dimensional representation of G ).



 

Groupoid C ∗-algebras

To construct the groupoid C ∗-algebra, consider Cc(G ). Operations:

f ∗ g(γ) =
∑
αβ=γ

f (α)g(β) f ∗(γ) = f (γ−1)

There is a universal C ∗-completion C ∗(G ) which is essentially
unique if G is suitably amenable; Renault’s Disintegration Theorem
says that representations of C ∗(G ) correspond precisely to
representations (in the appropriate sense) of G .

Question: when is C ∗(G ) simple?



 

Simplicity

A groupoid G is minimal if r(Gu) = G (0) for every u ∈ G (0). Think
of a minimal action: every orbit is dense.

Renault proved (early ’80’s): if G is amenable, topologically principal
and minimal, then C ∗(G ) is simple; further, minimality is necessary.

The full converse was unknown. Proved in various special cases by:
Deaconu-Renault, Kumjian-Pask-Raeburn, Archbold-Spielberg,
Exel-Vershik, Robertson-S.

Theorem (Brown-Clark-Farthing-S)

Suppose that G is étale, second-countable and amenable. Then
C ∗(G ) is simple if and only if G is topologically principal and
minimal.



 

Other results

Also obtain nice C ∗-algebraic characterisations of when G is
(individually) minimal and topologically principal.

There is also a class of abstract algebras, called Steinberg algebras
associated to étale groupoids with totally disconnected unit space.
We obtain a characterisation of simplicity for Steinberg algebras.

Theorem
Suppose that G is étale with totally disconnected unit space. Then
A(G ) is simple if and only if G is both effective and minimal.

In this case, “effective” is a strictly weaker hypothesis than
“topologically principal.”


