Simplicity of groupoid C*-algebras 56th Meeting of the AustMS, University of Ballarat

Aidan Sims (joint work with J. Brown, L.O. Clark and C. Farthing)

University of Wollongong

25 September 2012

MODEL / ANALYSE / FORMULATE / ILLUMINATE <u>CONNECT:IMIA</u>

Outline

- $1. \ Groupoids$
- 2. Groupoid C^* -algebras
- 3. Simplicity

Groupoids

A groupoid is a small category G with inverses: for each $\gamma \in G$ there exists $\gamma^{-1} \in G$ such that $\gamma \gamma^{-1} = r(\gamma)$ and $\gamma^{-1} \gamma = s(\gamma)$.

It's a group with an identity crisis. The set of identity elements ("unit space") is denoted $G^{(0)}$.

In a *topological group*, G is given a locally compact Hausdorff topology.

- Composition is continuous from $G * G \subseteq G \times G$ to G.
- ▶ Inversion is continuous from *G* to *G*.

G is *étale* if $r, s : G \to G^{(0)}$ are local homeomorphisms. This forces $G^{(0)}$ open in *G*.

Examples

- 1. Groups: these are groupoids with one object. Étale means discrete.
- 2. An $R \subseteq X \times X$ is a groupoid: define r(x, y) = x, s(x, y) = y, $(x, y)^{-1} = (y, x)$ and (x, y)(y, z) = (x, z).
- 3. If a group G acts on a space X, then $G \times X$ is a groupoid with $r(g,x) = g \cdot x$, s(g,x) = x, $(g,x)^{-1} = (g^{-1}, g \cdot x)$ and $(g, h \cdot x)(h, x) = (gh, x)$; it's étale if G is discrete.

By analogy with the last example, we think of groupoids as "acting" on their unit spaces.

Say *G* is topologically principal if $\{u \in G^{(0)} : uGu = \{u\}\}$ is dense in $G^{(0)}$. Like a topologically free action.

Bisections

A *bisection* of G is a subset $U \subseteq G$ such that r and s restrict to homeomorphisms on U.

Every étale groupoid has a basis consisting of precompact open bisections.

An étale groupoid is *effective* if $Int\{g \in G : r(g) = s(g)\} = G^{(0)}$. Like an effective group action.

Theorem (Renault)

Let G be an étale locally compact Hausdorff groupoid. If G is topologically principal then it is effective. If G is second countable then the converse holds.

C^* -algebras

A C*-algebra is a complete (complex) normed *-algebra satisfying the C*-identity $||a^*a|| = ||a||^2$.

Gelfand-Naimark: every C^* -algebra is isomorphic to a closed C^* -subalgebra of $\mathcal{B}(\mathcal{H})$.

Key example: if G is a locally compact Hausdorff group, then $C_c(G)$ has a universal C^{*}-completion C^{*}(G). If G is amenable, then this is the only completion.

 $C^*(G)$ is universal for continuous unitary representations of G.

A C^* -algebra A is simple if every nonzero homomorphism of A is injective. $C^*(G)$ is only simple if $G = \{e\}$ (consider the 1-dimensional representation of G).

Groupoid C^* -algebras

To construct the groupoid C^* -algebra, consider $C_c(G)$. Operations:

$$f * g(\gamma) = \sum_{lpha eta = \gamma} f(lpha) g(eta) \qquad f^*(\gamma) = \overline{f(\gamma^{-1})}$$

There is a universal C^* -completion $C^*(G)$ which is essentially unique if G is suitably amenable; Renault's Disintegration Theorem says that representations of $C^*(G)$ correspond precisely to representations (in the appropriate sense) of G.

ATICS &

SQA

Question: when is $C^*(G)$ simple?

Simplicity

A groupoid G is minimal if $\overline{r(Gu)} = G^{(0)}$ for every $u \in G^{(0)}$. Think of a minimal action: every orbit is dense.

Renault proved (early '80's): if G is amenable, topologically principal and minimal, then $C^*(G)$ is simple; further, minimality is necessary.

The full converse was unknown. Proved in various special cases by: Deaconu-Renault, Kumjian-Pask-Raeburn, Archbold-Spielberg, Exel-Vershik, Robertson-S.

Theorem (Brown-Clark-Farthing-S)

Suppose that G is étale, second-countable and amenable. Then $C^*(G)$ is simple if and only if G is topologically principal and minimal.

ATICS &

3

SQA

Other results

Also obtain nice C^* -algebraic characterisations of when G is (individually) minimal and topologically principal.

There is also a class of abstract algebras, called *Steinberg algebras* associated to étale groupoids with totally disconnected unit space. We obtain a characterisation of simplicity for Steinberg algebras.

Theorem

Suppose that G is étale with totally disconnected unit space. Then $\mathcal{A}(G)$ is simple if and only if G is both effective and minimal. In this case, "effective" is a strictly weaker hypothesis than "topologically principal."

