Ergodic Plünnecke inequalities

Alexander Fish

University of Sydney

AMS meeting, Ballarat, 25 September, 2012.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

Theorem (Szemeredi)

Let $A \subset \mathbb{Z}$ be a set of positive upper Banach density. Then A contains arbitrary long AP's.

.⊒...>

Theorem (Szemeredi)

Let $A \subset \mathbb{Z}$ be a set of positive upper Banach density. Then A contains arbitrary long AP's.

Theorem (Furstenberg)

Let (X, \mathbb{B}, μ, T) be an ergodic \mathbb{Z} -system. Then for every $A \in \Sigma$ with $\mu(A) > 0$, and every $k \ge 1$, there exists $n \in \mathbb{N}$ such that $\mu(A \cap T^{-n}A \cap \ldots \cap T^{-(k-1)n}A) > 0.$

< 글 > < 글 >

Theorem (Szemeredi)

Let $A \subset \mathbb{Z}$ be a set of positive upper Banach density. Then A contains arbitrary long AP's.

Theorem (Furstenberg)

Let (X, \mathbb{B}, μ, T) be an ergodic \mathbb{Z} -system. Then for every $A \in \Sigma$ with $\mu(A) > 0$, and every $k \ge 1$, there exists $n \in \mathbb{N}$ such that $\mu(A \cap T^{-n}A \cap \ldots \cap T^{-(k-1)n}A) > 0.$

Furstenberg Correspondence principle

Let $A \subset \mathbb{Z}$ be a set with $d^*(A) > 0$. Then there exists an ergodic \mathbb{Z} -system (X, \mathbb{B}, μ, T) and a set $\tilde{A} \in \Sigma$ such that for every $k \ge 1$, every $n_1, \ldots, n_k \in \mathbb{Z}$ we have

$$d^*((A-n_1)\cap\ldots\cap(A-n_k))\geq \mu(T^{-n_1}\tilde{A}\cap\ldots\cap T^{-n_k}\tilde{A}).$$

→ Ξ → → Ξ →

Setting

$$\label{eq:abelian group} \begin{split} & \Gamma \text{ countable abelian group} \\ & A, B \text{ sets in } \Gamma \\ & A+B = \{a+b \,|\, a \in A, b \in B\} \end{split}$$

Folner sequences

A sequence of **finite** sets $F_n \subset \Gamma$ is Folner if for every $\gamma \in \Gamma$ we have

$$rac{|(\gamma+{\sf F}_n)\cap{\sf F}_n|}{|{\sf F}_n|}
ightarrow 1$$
 as $n
ightarrow\infty.$

글 🕨 🖌 글 🕨

Setting

$$\label{eq:contable abelian group} \begin{split} \mathsf{\Gamma} \mbox{ countable abelian group} \\ A,B \mbox{ sets in } \mathsf{\Gamma} \\ A+B = \{a+b \, | \, a \in A, b \in B\} \end{split}$$

Folner sequences

A sequence of **finite** sets $F_n \subset \Gamma$ is Folner if for every $\gamma \in \Gamma$ we have

$$\frac{|(\gamma+F_n)\cap F_n|}{|F_n|}\to 1 \text{ as } n\to\infty.$$

Upper Banach density of $A \subset \Gamma$:

$$d^*(A) = \sup_{(F_n) \text{ Folner}} \limsup \frac{|A \cap F_n|}{|F_n|}.$$

< ∃ > < ∃ >

Examples

$$d^*(2\mathbb{Z}) = \frac{1}{2}, \ d^*(\cup_n[n!, n! + n] \cap \mathbb{Z}) = 1, \ d^*(\Box) = 0.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Examples

$$d^*(2\mathbb{Z}) = \frac{1}{2}, \ d^*(\bigcup_n [n!, n! + n] \cap \mathbb{Z}) = 1, \ d^*(\Box) = 0.$$

Furstenberg correspondence principle for sumsets

 $A \subset \Gamma$ with $d^*(A) > 0$. \exists an ergodic Γ -system (X, Σ, μ, T) and $A \in \Sigma$ s.t. $\forall B \subset \Gamma$: $d^*(A+B) \ge \mu(\cup_{\gamma \in B} T_{\gamma}A),$

$$d^*(A) = \mu(A).$$

□▶★注▶★注▶ 注 のへで

quasi-ergodic set

 $B \subset \Gamma$ is **quasi-ergodic** if for every ergodic Γ -system (X, Σ, μ, T) and every $A \in \Sigma$ with $\mu(A) > 0$ we have $\mu(\cup_{\gamma \in B} T_{\gamma}A) = 1$.

quasi-ergodic set

 $B \subset \Gamma$ is **quasi-ergodic** if for every ergodic Γ -system (X, Σ, μ, T) and every $A \in \Sigma$ with $\mu(A) > 0$ we have $\mu(\cup_{\gamma \in B} T_{\gamma}A) = 1$.

Examples

1) every $B \subset \Gamma$ with $d^*(B) = 1$ is quasi-ergodic. 2) (Boshernitzan, Kolesnik, Quas, Wierdl) \Rightarrow

 $B = \{ \lfloor n^{\alpha} \rfloor | n \in \mathbb{N} \}, \alpha \notin \mathbb{Q}$

is quasi-ergodic.

quasi-ergodic set

 $B \subset \Gamma$ is **quasi-ergodic** if for every ergodic Γ -system (X, Σ, μ, T) and every $A \in \Sigma$ with $\mu(A) > 0$ we have $\mu(\cup_{\gamma \in B} T_{\gamma}A) = 1$.

Examples

1) every $B \subset \Gamma$ with $d^*(B) = 1$ is quasi-ergodic. 2) (Boshernitzan, Kolesnik, Quas, Wierdl) \Rightarrow

 $B = \{ \lfloor n^{\alpha} \rfloor | n \in \mathbb{N} \}, \alpha \notin \mathbb{Q}$

is quasi-ergodic.

k quasi-ergodic set

Let $k \ge 1$. A set $B \subset \Gamma$ is k **quasi-ergodic** if the set kB is quasi-ergodic.

Examples

- 1) Vinogradov theorem \Rightarrow Primes is 4-quasi-ergodic.
- 2) Laplace theorem $\Rightarrow \Box$ is 4-quasi-ergodic.

Björklund, F.

 $B \subset \Gamma$ is k-quasi-ergodic. Then for every ergodic Γ -system (X, Σ, μ, T) and every $A \in \Sigma$ we have

 $\mu(\cup_{\gamma\in B}T_{\gamma}A)\geq \mu(A)^{1-\frac{1}{k}}.$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

Main results

Björklund, F.

 $B \subset \Gamma$ is k-quasi-ergodic. Then for every ergodic Γ -system (X, Σ, μ, T) and every $A \in \Sigma$ we have

$$\mu(\cup_{\gamma\in B}T_{\gamma}A)\geq \mu(A)^{1-\frac{1}{k}}$$

Corollary

Let $B \subset \Gamma$ be k-quasi-ergodic set. Then for every $A \subset \Gamma$ we have:

$$d^*(A+B) \ge d^*(A)^{1-\frac{1}{k}}.$$

.⊒...>

Main results

Björklund, F.

 $B \subset \Gamma$ is k-quasi-ergodic. Then for every ergodic Γ -system (X, Σ, μ, T) and every $A \in \Sigma$ we have

$$\mu(\cup_{\gamma\in B}T_{\gamma}A)\geq \mu(A)^{1-\frac{1}{k}}$$

Corollary

Let $B \subset \Gamma$ be k-quasi-ergodic set. Then for every $A \subset \Gamma$ we have:

$$d^*(A+B) \ge d^*(A)^{1-\frac{1}{k}}.$$

Proof

$$d^*(A+B) \ge \mu(\cup_{\gamma \in B} T_{\gamma}A) \ge \mu(A)^{1-\frac{1}{k}} = d^*(A)^{1-\frac{1}{k}}.$$

프 🕨 🖉

Main results

Björklund, F.

 $B \subset \Gamma$ is k-quasi-ergodic. Then for every ergodic Γ -system (X, Σ, μ, T) and every $A \in \Sigma$ we have

$$\mu(\cup_{\gamma\in B}T_{\gamma}A)\geq \mu(A)^{1-\frac{1}{k}}$$

Corollary

Let $B \subset \Gamma$ be k-quasi-ergodic set. Then for every $A \subset \Gamma$ we have:

$$d^*(A+B) \ge d^*(A)^{1-\frac{1}{k}}.$$

Proof

$$d^*(A+B) \ge \mu(\cup_{\gamma \in B} T_{\gamma}A) \ge \mu(A)^{1-\frac{1}{k}} = d^*(A)^{1-\frac{1}{k}}.$$

Renling Jin

 $A, B \subset I\!N$, $d^*(kB) = 1$, then

$$d^*(A+B) \ge (d^*(A))^{1-\frac{1}{k}}.$$

For $A, B \subset \Gamma$ finite sets:

$$\mu_k = \inf_{\emptyset \neq A' \subset A} \frac{|A' + kB|}{|A'|}, \, k \geq 1,$$

for $\delta > 0$

$$\mu_{k,\delta} = \inf_{A' \subset A, |A'| \ge \delta |A|} \frac{|A' + kB|}{|A'|}, \, k \ge 1$$

4 ∃ > < ∃ >

For $A, B \subset \Gamma$ finite sets:

$$\mu_k = \inf_{\emptyset \neq A' \subset A} \frac{|A' + kB|}{|A'|}, \, k \geq 1,$$

for $\delta > 0$

$$\mu_{k,\delta} = \inf_{A' \subset A, |A'| \ge \delta |A|} \frac{|A' + kB|}{|A'|}, \, k \ge 1$$

4 ∃ > < ∃ >

For $A, B \subset \Gamma$ finite sets:

$$\mu_k = \inf_{\emptyset \neq A' \subset A} \frac{|A' + kB|}{|A'|}, \, k \ge 1,$$

for $\delta > 0$

$$\mu_{k,\delta} = \inf_{A' \subset A, |A'| \ge \delta |A|} \frac{|A' + kB|}{|A'|}, \, k \ge 1$$

Plünnecke thm

 $\mu_k^{\frac{1}{k}}$ is a decreasing sequence

★ Ξ ► ★ Ξ ►

For $A, B \subset \Gamma$ finite sets:

$$\mu_k = \inf_{\emptyset \neq A' \subset A} \frac{|A' + kB|}{|A'|}, \, k \ge 1,$$

for $\delta > 0$

$$\mu_{k,\delta} = \inf_{A' \subset A, \, |A'| \ge \delta |A|} \frac{|A' + kB|}{|A'|}, \, k \ge 1$$

Plünnecke thm

 $\mu_k^{\frac{1}{k}}$ is a decreasing sequence

Corollary (Plünnecke)

There exist $c_{k,\delta} > 0$, $c_{k,\delta} \to 1$ as $\delta \to 0$ such that

$$\mu_1 \ge c_{2,\delta} \mu_2^{\frac{1}{2}} \ge c_{3,\delta} \mu_3^{\frac{1}{3}} \ge \ldots \ge c_{k,\delta} \mu_k^{\frac{1}{k}}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Let (X, Σ, μ, T) - be measure preserving Γ -system, $B \subset \Gamma$, $A \in \Sigma$, $\mu(A) > 0$.

Let (X, Σ, μ, T) - be measure preserving Γ -system, $B \subset \Gamma$, $A \in \Sigma$, $\mu(A) > 0$.

Magnification ratios

$$\mu_{k} = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\cup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')}$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Let (X, Σ, μ, T) - be measure preserving Γ -system, $B \subset \Gamma$, $A \in \Sigma$, $\mu(A) > 0$.

Magnification ratios

$$\mu_k = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\cup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')}$$

Let $\delta > 0$

$$\mu_{k,\delta} = \inf_{A' \subset A, \mu(A') \ge \delta \mu(A)} \frac{\mu(\bigcup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')}$$

E > < E >

Let (X, Σ, μ, T) - be measure preserving Γ -system, $B \subset \Gamma$, $A \in \Sigma$, $\mu(A) > 0$.

Magnification ratios

$$\mu_{k} = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\cup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')}$$

Let $\delta > 0$

$$\mu_{k,\delta} = \inf_{A' \subset A, \mu(A') \ge \delta \mu(A)} \frac{\mu(\bigcup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')}$$

Question

Is it true that $\mu_k^{\frac{1}{k}}$ is a decreasing sequence?

< 注) < 注)

Let (X, Σ, μ, T) - be measure preserving Γ -system, $B \subset \Gamma$, $A \in \Sigma$, $\mu(A) > 0$.

Magnification ratios

$$\mu_{k} = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\cup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')}$$

Let $\delta > 0$

$$\mu_{k,\delta} = \inf_{A' \subset A, \mu(A') \ge \delta \mu(A)} \frac{\mu(\bigcup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')}$$

Question

Is it true that $\mu_k^{\frac{1}{k}}$ is a decreasing sequence?

Björklund, F.

If $B \subset \Gamma$ is finite then $\mu_k^{\frac{1}{k}}$ is a decreasing sequence.

4 ∃ > < ∃ >

< 注) < 注)

 $B \subset \Gamma$ s.t. kB is quasi-ergodic: $\mu(\cup_{\gamma \in kB} \overline{T_{\gamma}A}) = 1, \ \forall A : \mu(A) > 0$

$$\mu_1^k \ge \mu_k = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\cup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')} = \frac{1}{\mu(A')}$$

 $B \subset \Gamma$ s.t. kB is quasi-ergodic: $\mu(\cup_{\gamma \in kB} \overline{T_{\gamma}A}) = 1, \ \forall A : \mu(A) > 0$

$$\mu_1^k \ge \mu_k = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\bigcup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')} = \frac{1}{\mu(A)}$$
$$\mu_1 = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\bigcup_{\gamma \in B} T_{\gamma} A')}{\mu(A')} \le \frac{\mu(\bigcup_{\gamma \in B} T_{\gamma} A)}{\mu(A)}.$$

▶ ▲ 문 ▶ ▲ 문 ▶ ...

Э

 \Rightarrow

 $B \subset \Gamma$ s.t. kB is quasi-ergodic: $\mu(\cup_{\gamma \in kB} \overline{T_{\gamma}A}) = 1, \ \forall A : \mu(A) > 0$

$$\mu_{1}^{k} \geq \mu_{k} = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\bigcup_{\gamma \in kB} T_{\gamma} A')}{\mu(A')} = \frac{1}{\mu(A)}$$
$$\mu_{1} = \inf_{A' \subset A, \mu(A') > 0} \frac{\mu(\bigcup_{\gamma \in B} T_{\gamma} A')}{\mu(A')} \leq \frac{\mu(\bigcup_{\gamma \in B} T_{\gamma} A)}{\mu(A)}.$$
$$\mu(\bigcup_{\gamma \in B} T_{\gamma} A) \geq \mu(A)^{1 - \frac{1}{k}}$$

▶ ▲ 문 ▶ ▲ 문 ▶ ...

3

Ergodic Theoretic Results

Björklund, Fish

$$\begin{split} &B \subset \Gamma \text{ finite. Then} \\ &\bullet \ \mu_k^{\frac{1}{k}} \downarrow. \\ &\bullet \ \mu_{1,\delta} \geq c_{2,\delta} \mu_{2,\delta}^{\frac{1}{2}} \geq c_{3,\delta} \mu_{3,\delta}^{\frac{1}{3}} \geq \ldots \geq c_{k,\delta} \mu_{k,\delta}^{\frac{1}{k}}, \text{ where } c_{k,\delta} \to 1 \text{ as } \delta \to 0. \end{split}$$

ヘロト 人間 とくほとう ほとう

ヨー つへで

Ergodic Theoretic Results

Björklund, Fish

$$\begin{split} B &\subset \Gamma \text{ finite. Then} \\ \bullet \ \mu_k^{\frac{1}{k}} \downarrow. \\ \bullet \ \mu_{1,\delta} &\geq c_{2,\delta} \mu_{2,\delta}^{\frac{1}{2}} \geq c_{3,\delta} \mu_{3,\delta}^{\frac{1}{3}} \geq \ldots \geq c_{k,\delta} \mu_{k,\delta}^{\frac{1}{k}}, \text{ where } c_{k,\delta} \to 1 \text{ as } \delta \to 0. \end{split}$$

Björklund, Fish

 $B \subset \Gamma$ s.t. B is quasi-ergodic, $\delta > 0$. Then

$$\sup_{\substack{B'\subset B, |B'|<\infty}} \inf_{A'\subset A, \, \mu(A')\geq \delta\mu(A)} \frac{\mu(\cup_{\gamma\in B'}T_{\gamma}A')}{\mu(A')}\geq \frac{1}{\mu(A)}.$$

< ∃ > < ∃ >

Ergodic Theoretic Results

Björklund, Fish

 $B \subset \Gamma \text{ finite. Then}$ • $\mu_k^{\frac{1}{k}} \downarrow$. • $\mu_{1,\delta} \ge c_{2,\delta} \mu_{2,\delta}^{\frac{1}{2}} \ge c_{3,\delta} \mu_{3,\delta}^{\frac{1}{3}} \ge \ldots \ge c_{k,\delta} \mu_{k,\delta}^{\frac{1}{k}}$, where $c_{k,\delta} \to 1$ as $\delta \to 0$.

Björklund, Fish

 $B \subset \Gamma$ s.t. B is quasi-ergodic, $\delta > 0$. Then

$$\sup_{B' \subset B, |B'| < \infty} \inf_{A' \subset A, \, \mu(A') \geq \delta \mu(A)} \frac{\mu(\cup_{\gamma \in B'} T_{\gamma} A')}{\mu(A')} \geq \frac{1}{\mu(A)}.$$

Corollary

Let $B \subset \Gamma$ be k-quasi-ergodic. Then for every ergodic Γ -system (X, Σ, μ, T) and every $A \in \Sigma$ we have

$$\mu(\cup_{\gamma\in B}T_{\gamma}A)\geq \mu(A)^{1-\frac{1}{k}}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Sketch of proofs for $\Gamma=\mathbb{Z}$

Theorem 1

$$\begin{split} &B \subset \mathbb{Z} \text{ finite. Then} \\ &\bullet \ \mu_k^{\frac{1}{k}} \downarrow. \\ &\bullet \ \mu_1 \geq c_{2,\delta} \mu_2^{\frac{1}{2}} \geq c_{3,\delta} \mu_3^{\frac{1}{3}} \geq \ldots \geq c_{k,\delta} \mu_k^{\frac{1}{k}}, \text{ where } c_{k,\delta} \to 1 \text{ as } \delta \to 0. \end{split}$$

ヘロト 人間 とくほと くほとう

Sketch of proofs for $\Gamma=\mathbb{Z}$

Theorem 1

$$\begin{split} & B \subset \mathbb{Z} \text{ finite. Then} \\ & \bullet \ \mu_k^{\frac{1}{k}} \downarrow. \\ & \bullet \ \mu_1 \geq c_{2,\delta} \mu_2^{\frac{1}{2}} \geq c_{3,\delta} \mu_3^{\frac{1}{3}} \geq \ldots \geq c_{k,\delta} \mu_k^{\frac{1}{k}}, \text{ where } c_{k,\delta} \to 1 \text{ as } \delta \to 0. \end{split}$$

• Ergodicity
$$\Rightarrow$$
 Fix = $\cup_{n \in \mathbb{Z}} \{ x \in X \mid T^n x = x \}$

 $\mu(\textit{Fix}) \in \{0,1\}.$

ヘロト 人間 ト 人 ヨト 人 ヨトー

₹ 9Q@

Sketch of proofs for $\Gamma=\mathbb{Z}$

Theorem 1

$$\begin{split} & \mathcal{B} \subset \mathbb{Z} \text{ finite. Then} \\ & \bullet \ \mu_k^{\frac{1}{k}} \downarrow. \\ & \bullet \ \mu_1 \geq c_{2,\delta} \mu_2^{\frac{1}{2}} \geq c_{3,\delta} \mu_3^{\frac{1}{3}} \geq \ldots \geq c_{k,\delta} \mu_k^{\frac{1}{k}}, \text{ where } c_{k,\delta} \to 1 \text{ as } \delta \to 0. \end{split}$$

• Ergodicity
$$\Rightarrow$$
 Fix = $\cup_{n \in \mathbb{Z}} \{ x \in X \mid T^n x = x \}$

 $\mu(Fix) \in \{0,1\}.$

• Periodic case $(\mu(Fix) = 1)$ follows from Plünnecke inequalities.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Theorem 1

$$\begin{split} & \mathcal{B} \subset \mathbb{Z} \text{ finite. Then} \\ & \bullet \ \mu_k^{\frac{1}{k}} \downarrow. \\ & \bullet \ \mu_1 \geq c_{2,\delta} \mu_2^{\frac{1}{2}} \geq c_{3,\delta} \mu_3^{\frac{1}{3}} \geq \ldots \geq c_{k,\delta} \mu_k^{\frac{1}{k}}, \text{ where } c_{k,\delta} \to 1 \text{ as } \delta \to 0. \end{split}$$

• Ergodicity
$$\Rightarrow$$
 Fix = $\cup_{n \in \mathbb{Z}} \{ x \in X \mid T^n x = x \}$

 $\mu(\mathit{Fix}) \in \{0,1\}.$

- Periodic case $(\mu(Fix) = 1)$ follows from Plünnecke inequalities.
- Aperiodic case $(\mu(Fix) = 0)$:
 - $\bullet\,$ Prove inequalities for a special aperiodic ergodic $\mathbb{Z}\mbox{-system}$

글 🕨 🖌 글 🕨

Theorem 1

$$\begin{array}{l} \mathcal{B} \subset \mathbb{Z} \text{ finite. Then} \\ \bullet \ \mu_k^{\frac{1}{k}} \downarrow. \\ \bullet \ \mu_1 \geq c_{2,\delta} \mu_2^{\frac{1}{2}} \geq c_{3,\delta} \mu_3^{\frac{1}{3}} \geq \ldots \geq c_{k,\delta} \mu_k^{\frac{1}{k}}, \text{ where } c_{k,\delta} \to 1 \text{ as } \delta \to 0. \end{array}$$

• Ergodicity
$$\Rightarrow$$
 Fix = $\cup_{n \in \mathbb{Z}} \{ x \in X \mid T^n x = x \}$

 $\mu(Fix) \in \{0,1\}.$

- Periodic case $(\mu(Fix) = 1)$ follows from Plünnecke inequalities.
- Aperiodic case $(\mu(Fix) = 0)$:
 - Prove inequalities for a special aperiodic ergodic Z-system
 - $\bullet\,$ Use conjugacy lemma of Halmos to prove inequalities for a general aperiodic $\mathbb{Z}\text{-system}.$

< 글 > < 글 >

Take 2-odometer: \mathbb{Z}_2 are 2-adic integers,

< ∃⇒

Take 2-odometer: \mathbb{Z}_2 are 2-adic integers,

 $(\mathbb{Z}_2,+)$ compact abelian monothetic group generated by the element 1.

Take 2-odometer: \mathbb{Z}_2 are 2-adic integers,

 $(\mathbb{Z}_2,+)$ compact abelian monothetic group generated by the element 1.

 $T: \mathbb{Z}_2 \to \mathbb{Z}_2$ by T(x) = x+1.

< ∃ →

Take 2-odometer: \mathbb{Z}_2 are 2-adic integers,

 $(\mathbb{Z}_2,+)$ compact abelian monothetic group generated by the element 1.

 $T: \mathbb{Z}_2 \to \mathbb{Z}_2$ by T(x) = x+1.

The system $(\mathbb{Z}_2, \mathbb{B}, m_{\mathbb{Z}_2}, T)$ is an ergodic aperiodic \mathbb{Z} -system.

< ∃ > < ∃ >

Take 2-odometer: \mathbb{Z}_2 are 2-adic integers,

 $(\mathbb{Z}_2,+)$ compact abelian monothetic group generated by the element 1.

 $T: \mathbb{Z}_2 \to \mathbb{Z}_2$ by T(x) = x+1.

The system $(\mathbb{Z}_2, \mathbb{B}, m_{\mathbb{Z}_2}, T)$ is an ergodic aperiodic \mathbb{Z} -system.

Periodic partitions of $(\mathbb{Z}_2, \mathbb{B}, m_{\mathbb{Z}_2}, T)$

For every *n*, there exists a partition $P_n = \{C_0, TC_0, \dots, T^{2^n-1}C_0\}$ of \mathbb{Z}_2 .

通 ト イ ヨ ト イ ヨ ト

Take 2-odometer: \mathbb{Z}_2 are 2-adic integers,

 $(\mathbb{Z}_2,+)$ compact abelian monothetic group generated by the element 1.

 $T: \mathbb{Z}_2 \to \mathbb{Z}_2$ by T(x) = x+1.

The system $(\mathbb{Z}_2, \mathbb{B}, m_{\mathbb{Z}_2}, T)$ is an ergodic aperiodic \mathbb{Z} -system.

Periodic partitions of $(\mathbb{Z}_2, \mathbb{B}, m_{\mathbb{Z}_2}, T)$

For every *n*, there exists a partition $P_n = \{C_0, TC_0, \dots, T^{2^n-1}C_0\}$ of \mathbb{Z}_2 .

Elements of P_n 's generate σ -algebra \mathbb{B} .

A 医 A 医 A

Take 2-odometer: \mathbb{Z}_2 are 2-adic integers,

 $(\mathbb{Z}_2,+)$ compact abelian monothetic group generated by the element 1.

 $T: \mathbb{Z}_2 \to \mathbb{Z}_2$ by T(x) = x+1.

The system $(\mathbb{Z}_2, \mathbb{B}, m_{\mathbb{Z}_2}, T)$ is an ergodic aperiodic \mathbb{Z} -system.

Periodic partitions of $(\mathbb{Z}_2, \mathbb{B}, m_{\mathbb{Z}_2}, T)$

For every *n*, there exists a partition $P_n = \{C_0, TC_0, \dots, T^{2^n-1}C_0\}$ of \mathbb{Z}_2 .

Elements of P_n 's generate σ -algebra \mathbb{B} .

Use the approximation by elements of partition P_n and Plünnecke inequalities in \mathbb{Z} to prove that for the system $(\mathbb{Z}_2, \mathbb{B}, m_{\mathbb{Z}_2}, T)$ and a finite $B \subset \mathbb{Z}$ ergodic Plünnecke inequalities hold true.

・ 戸 ト ・ ヨ ト ・ ヨ ト

 (X, Σ, μ) is a standard measure space.

 $APER = \{S : X \rightarrow X, S\mu = \mu, S \text{ is aperiodic}\}.$

Then for any $T \in APER$, the conjugacy class of T

$$conj(T) = \{\sigma T \sigma^{-1} | \sigma \in Aut(X, \mu)\}$$

is dense in uniform topology,

.⊒...>

 (X, Σ, μ) is a standard measure space.

 $APER = \{S : X \rightarrow X, S\mu = \mu, S \text{ is aperiodic}\}.$

Then for any $T \in APER$, the conjugacy class of T

$$conj(T) = \{\sigma T \sigma^{-1} | \sigma \in Aut(X, \mu)\}$$

is dense in uniform topology,

 $\forall S \in APER, \forall \varepsilon > 0, \exists \sigma \in Aut(X, \mu) \forall A \in \Sigma:$

 $\mu(S(A) \bigtriangleup \sigma T \sigma^{-1}(A)) < \varepsilon.$

< ∃ →

Theorem 2

$B\subset \mathbb{Z}$ s.t. B is quasi-ergodic, $\delta>0.$ Then

$$\sup_{B' \subset B, |B'| < \infty} \inf_{A' \subset A, \, \mu(A') \ge \delta \mu(A)} \frac{\mu(\cup_{n \in B'} T^n A')}{\mu(A')} \ge \frac{1}{\mu(A)}.$$

< 注) < 注)

æ

Theorem 2

 $B \subset \mathbb{Z}$ s.t. B is quasi-ergodic, $\delta > 0$. Then

$$\sup_{B' \subset B, |B'| < \infty} \inf_{A' \subset A, \, \mu(A') \ge \delta \mu(A)} \frac{\mu(\cup_{n \in B'} T^n A')}{\mu(A')} \ge \frac{1}{\mu(A)}.$$

Special case

Let $\delta > 0$. Then

$$\sup_{N} \inf_{A' \subset A, \, \mu(A') \ge \delta \mu(A)} \frac{\mu(\cup_{n \le N} T^n A')}{\mu(A')} \ge \frac{1}{\mu(A)}.$$

E > < E >

Special case

Let $\delta > {\rm 0.}~{\rm Then}$

$$\sup_{\substack{N \ A' \subset A, \ \mu(A') \ge \delta\mu(A)}} \frac{\mu(\cup_{n \le N} T^n A')}{\mu(A')} \ge \frac{1}{\mu(A)}.$$

Proof

Periodic case is trivial.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Ξ.

Special case

Let $\delta > 0$. Then

$$\sup_{N} \inf_{A' \subset A, \, \mu(A') \ge \delta \mu(A)} \frac{\mu(\cup_{n \le N} T^n A')}{\mu(A')} \ge \frac{1}{\mu(A)}.$$

Proof

Periodic case is trivial.

Aperiodic case: Uses Rokhlin's lemma and poitnwise ergodic theorem.

(4) 国 ト (4) 国 ト

Thank you!!!

・

æ.