Purely infinite C^* -algebras arising from group actions on the Cantor set

joint work with Mikael Rørdam

Adam Sierakowski asierako@uow.edu.au

University of Wollongong

Ballarat, September 25, 2012

Theorem (Banach-Tarski Paradox, 24')

The unit ball $B \subseteq \mathbb{R}^3$ may be decomposed into 17 disjoint pieces $A_1 \cup \cdots \cup A_{17}$ for which there exist $g_1, \ldots, g_{17} \in Isom(\mathbb{R}^3)$ such that the sets $g_i A_i$ are disjoint and their union is two copies of B.

Theorem (Tarski, 49')

Let G be a discrete group. Then G is either amenable or G-paradoxical.

- G amenable = there exist a finitely additive G-invariant probability measure (also called a mean) μ: P(G) → [0, 1].
- *G*-paradoxical = there exist a finite number of disjoint subsets of *G* that can be translated to cover *G* two times.

- The group $G = \langle a, b : a^2 = e, b^3 = e \rangle$
- Elements: $e, a, b, b^2, ab, ab^2, \ldots$
- Multiplication: $(aba)(ab^2a) = e$

 $ab \bullet ab^2$ $a\bullet$ $b^2 \bullet b$

Theorem

Let G be countable group acting on a compact space X. Then $(i) \Rightarrow (ii) \Rightarrow (iii)$:

(i) X is (G, τ_X) -paradoxical.

(ii) $C(X) \rtimes_r G$ is properly infinite $(1 = uu^* = vv^*, u^*u \perp v^*v)$.

(iii) X admits no G-invariant Borel probability measure.

- τ_X = open subsets of X
- $E \subseteq X$ is (G, \mathbb{E}) -paradoxical = there exist disjoint subsets $V_1, V_2, \ldots, V_{n+m} \in \mathbb{E}$ of E and $t_1, t_2, \ldots, t_{n+m} \in G$ st

$$\bigcup_{j=1}^{n} t_i \cdot V_j = \bigcup_{j=n+1}^{n+m} t_j \cdot V_j = E$$

• (iii)
$$\Rightarrow$$
 (i)???

Theorem (Becker, Kechris, 96')

Let G be a countable group acting on a standard Borel space X. Then either there exist a G-invariant Borel probability measure on X or X is countably $(G, \mathbb{B}(X))$ -paradoxical.

Theorem

Let G be countable group acting on $X = \beta G$. TFAE

- (i) X is (G, τ_X) -paradoxical.
- (ii) $C(X) \rtimes_r G$ is properly infinite $(1 = uu^* = vv^*, u^*u \perp v^*v)$.
- (iii) X admits no G-invariant Borel probability measure.

Theorem (Kirchberg, Phillips, 94')

Unital Kirchberg algebras in UCT are classifiable by $(K_0, K_1, [1])$.

Theorem

Let G be a countable group acting on the Cantor set X. TFAE

- $C(X) \rtimes_r G$ is a Kirchberg algebra in UCT
- action is
 - topologically free
 - amenable
 - minimal

and nonzero projections in C(X) are properly infinite in $C(X) \rtimes_r G$

- The group $G = \langle a, b : a^2 = e, b^3 = e \rangle$
- The space X = infinite word space for G
- Action of G on X: $(aba)(ab^2ab^2ab^2...) = b^2ab^2...$

Words beginning with b^2

Words beginning with b^2

- The group ${\it G}=\langle a,b:a^2=e,b^3=e
 angle$
- The space X = infinite word space for G
- Action of G on X: $(b)(b^2ab^2ab^2...) = ab^2ab^2...$

Theorem (Archbold, Kumjian, Spielberg, 91')

There is an action of $\mathbb{Z}_2 * \mathbb{Z}_3$ on the Cantor set X st

 $C(X) \rtimes_r \mathbb{Z}_2 * \mathbb{Z}_3 \cong \mathcal{O}_2.$

We show here the following:

Theorem

Let G be a countable group. Then G admits a free action on the Cantor set X such that $C(X) \rtimes_r G$ is a Kirchberg algebra in UCT if and only if G is exact and non-amenable.

Theorem

Let G be a countable group acting on the Cantor set X. TFAE

- $C(X) \rtimes_r G$ is a Kirchberg algebra in UCT
- action is
 - topologically free
 - amenable
 - minimal

and nonzero projections in C(X) are properly infinite in $C(X) \rtimes_r G$

Theorem

Let G be a countable discrete group acting on a set X (eg. X could be G itself). The following are equivalent for every $E \subseteq X$: (i) E is (G, P(X))-paradoxical. (ii) $1_E \in \ell^{\infty}(X) \cong C(\beta X)$ is properly infinite in $C(\beta X) \rtimes_r G$. (iii) The n-fold direct sum $1_E \oplus \cdots \oplus 1_E$ is properly infinite in $C(\beta X) \rtimes_r G$ for some n.

Corollary

Suppose that G is non-amenable. Then every projection in $C(\beta G)$ which is G-full (not contained in a proper G-invariant ideal of $C(\beta G)$), is properly infinite in $C(\beta G) \rtimes_r G$.

Proof

- Choose any separable G-invariant sub-C*-algebra A ⊆ C(βG) such that:
 - G acts freely and amenably on A
 - Every projection in A that is properly infinite in C(βG) ⋊_r G is also properly infinite in A ⋊_r G.
 - A is generated by projections.
- Choose any maximal *G*-invariant ideal *I* in *A*.
- With A/I = C(X): X is the Cantor set, and the action on X is free, amenable, minimal.
- It suffices to check that every non-zero projection in C(X) is properly infinite in C(X) ⋊_r G

$$\begin{array}{c} A \rtimes_r G \longrightarrow C(\beta G) \rtimes_r G \\ \downarrow^{\pi} \\ C(X) \rtimes_r G \end{array}$$

Theorem

Let G be a discrete group acting on the Cantor set X. TFAE

- action is free (hence topologically free)
- each $e \neq t \in G$ there exists a finite partition $\{p_{i,t}\}_{i \in F}$ of 1, st $p_{i,t} \perp t.p_{i,t}$.

Theorem

Let G be a discrete group. The action of G on β G is free.

Corollary

Let G be a countable group. There is a countable subset M of $C(\beta G)$ such that if A := C(X) is any G-invariant sub-C^{*}-algebra of $C(\beta G)$ containing M, then the action of G on X is free.

Theorem

Let G be a discrete group acting on a compact Hausdorff space X. TFAE

- the action is amenable
- for each $i \in \mathbb{N}$ there exists a family $\{m_{i,t}\}_{t \in G}$ in $C(X)_+$ st $\sum_{t \in G} m_{i,t} = 1$ and $\lim_i (\sup_{x \in X} \sum_{t \in G} ||m_{i,st}(x) - s.m_{i,t}||) = 0$

Theorem (Ozawa, Anantharman-Delaroche, 06')

Let G be a discrete exact group. Then action of G on $\beta {\rm G}$ is amenable

Corollary

Let G be a countable exact group. There is a countable subset M' of $C(\beta G)$ such that if A := C(X) is any G-invariant sub-C*-algebra of $C(\beta G)$ containing M, then the action of G on X is amenable.

Thank you for your attention