Group actions on graphs and their C^* -algebras

David Pask

School of Mathematics and Applied Statistics Wollongong University AUSTRALIA

27th. September, 2012

Crossed products

An *action* of G on a C^* -algebra A is a homomorphism $\alpha: G \to \operatorname{Aut}(A)$ and gives rise to a C^* -dynamical system (A, α, G) .

Let B be a C*-algebra, a covariant representation of (A, α, G) in B is a pair (ψ, π) of maps $\psi: A \to M(B)$, $\pi: G \to UM(B)$ such that

$$\psi(\alpha_g(a)) = \pi(g)\psi(a)\pi(g)^*$$

The crossed product $A \times_{\alpha} G$ is generated by a universal covariant representation of (A, α, G) .

 $\begin{array}{c} \mbox{Nonabelian duality}\\ \mbox{Directed graphs and group actions}\\ \mbox{Graph } C^*-\mbox{algebras} \end{array}$

Coactions

When G is abelian, the crossed product $A \times_{\alpha} G$, carries a natural action $\widehat{\alpha}$ of \widehat{G} . When G is nonabelian, there is a dual coaction $\widehat{\alpha}$ of G on $A \times_{\alpha} G$.

A *coaction* of G on a C^* -algebra A is an injective nondegenerate homomorphism $\delta : A \to A \otimes C^*(G)$ such that $(\delta \otimes id) \circ \delta = (id \otimes \delta_G) \circ \delta$. Where δ_G is the canonical coaction of G on $C^*(G)$.

There is a notion of a covariant representation of (A,δ,G) however it is a bit technical.

The crossed product $A \times_{\delta} G$ is generated by a universal covariant representation of (A, δ, G) which carries a natural dual action $\hat{\delta}$ of G.

Nonabelian Duality

Theorem 1 (Takesaki, Takai)

Let A be a C^* -algebra and G a group.

- (1) Let α be an action of G on A, then the dual coaction $\widehat{\alpha}$ of G on $A \times_{\alpha} G$ such that $(A \times_{\alpha} G) \times_{\widehat{\alpha}} G \cong A \otimes \mathcal{K}(L^{2}(G))$.
- (2) Let δ be a coaction of G on A, then the dual action $\widehat{\delta}$ of G on $A \times_{\delta} G$ such that $(A \times_{\delta} G) \times_{\widehat{\delta}} G \cong A \otimes \mathcal{K}(L^2(G))$.

Directed graphs

Definition 2

A directed graph E consists of a set E^0 of vertices, a set E^1 of edges and maps $r, s : E^1 \to E^0$ giving the direction of each edge.

Let E^n denote the directed paths λ with length $|\lambda| = n$, then $E^* = \bigcup_{n \ge 0} E^i$ denotes the collection of all finite paths in E.

Definition 3

A graph morphism $\phi: E \to F$ is a pair $\phi = (\phi^0, \phi^1)$ of maps $\phi^i: E^i \to F^i$ for i = 1, 2 such that for all $e \in E^1$

$$s(\phi^1(e)) = \phi^0(s(e)) \quad r(\phi^1(e)) = \phi^0(r(e))$$

Group actions

Definition 4

An *action* of a group G on a directed graph E is a group homomorphism $\alpha: G \to \operatorname{Aut}(E)$.

For $v \in E^0$ and $e \in E^1$ let

$$\begin{split} &[u] = \{ v \in E^0 : v = \alpha_g^0 u \text{ for some } g \in G \} \\ &[e] = \{ f \in E^1 : f = \alpha_g^1 e \text{ for some } g \in G \}. \end{split}$$

If we put $E^0/G=\{[u]: u\in E^0\},\, E^1/G=\{[e]: e\in E^1\}$ and set

$$r'([e]) = [r(e)] \quad s'([e]) = [s(e)] \text{ for } [e] \in E^1/G$$

then $E/G = (E^0/G, E^1/G, r', s')$ is a directed graph, called the *quotient graph*.

Cuntz-Krieger families

A directed graph E is *essential* if every vertex receives and emits a finite, nonzero number of edges.

Definition 5

Let E be an essential directed graph and B a C^* -algebra. A Cuntz-Krieger E-family is a function $t:\lambda\mapsto t_\lambda$ from E^* to B such that

(3)
$$t_{\lambda}^{*}t_{\lambda} = t_{s(\mu)}$$

(4) for all $v \in E^{0}$ and $n \ge 1$ we have $t_{v} = \sum_{|\lambda|=n} t_{\lambda}t_{\lambda}^{*}$

 $C^{\ast}(E)$ is then defined to be the universal $C^{\ast}-$ algebra generated by a Cuntz-Krieger E-family.

Group actions

The universal property of $C^*(E)$ is such that if $s : \lambda \mapsto s_\lambda$ is any Cuntz–Krieger E-family in a C^* -algebra D, then there is a homomorphisn $\pi_s : C^*(E) \to D$ satisfying $\pi_s(t_\lambda) = s_\lambda$ for all $\lambda \in E^*$. One may show (non-trivially!) that such a C^* -algebra exists.

An action α of G on E induces an action of G on E^* which transforms a Cuntz–Krieger E–family t in a C^* –algebra B into a Cuntz–Krieger E–family $t \circ \alpha$ in B. By the universal property of $C^*(E)$, this induces an action α_* of G on $C^*(E)$.

Hence we may form the crossed product C^* -algebra $C^*(E) \times_{\alpha_*} G$.

Free actions, skew product graphs

The action α of G on E is *free* if $\alpha_g^0 v = v$ for all $v \in E^0$ then $g = 1_G$.

Let E be a directed graph, G a group and $c: E^1 \to G$ a function. The *skew-product graph* $E \times_c G$ has vertices $E^0 \times G$, edges $E^1 \times G$ and range and source maps

$$r(e,g) = (r(e),g) \quad s(e,g) = (s(e),gc(e)).$$

There is a natural free action λ of G on $E \times_c G$ given by

$$\lambda_h^i(x,g)=(x,hg) \text{ for } i=0,1 \text{ and } h\in G.$$

The quotient $(E \times_c G)/G$ is isomorphic to E.

Gross-Tucker Theorem

The Gross–Tucker Theorem says that the situation on the previous slide is generic: if a group acts freely on a graph it is acting on a skew–product graph.

Theorem 6 (Gross–Tucker)

Let E be a directed graph and α a free action of a group G. Let $\eta : (E/G)^0 \to E^0$ be a section for the quotient map $q^0 : E^0 \to (E/G)^0$, then there is a function $c_\eta : (E/G)^1 \to G$ such that $(E/G) \times_{c_\eta} G$ is equivariantly isomorphic to E.

Back to graph algebras

Theorem 7 (Kumjian-P,P–Raeburn)

Let E be an essential directed graph and G a countable group.
(1) Let α be a free action of G on E, then C*(E) ×_{α*} G ≅ C*(E/G) ⊗ K(ℓ²(G)). Indeed C*(E) ×_{α*} G ~_{sme} C*(E/G).
(2) Let c : E¹ → G be a function, then C*(E ×_c G) ×_{λ*} G ≅ C*(E) ⊗ K(ℓ²(G)).

The connection between Theorem 7 and Theorem 1 is explained by:

Theorem 8 (Kaliszewski-Quigg-Raeburn)

Let *E* be an essential directed graph, *G* a group and $c: E^1 \to G$ a function. Then there is a coaction δ_c of *G* on $C^*(E)$ such that $C^*(E) \times_{\delta_c} G$ is equivariantly isomorphic to $C^*(E \times_c G)$.

Relative skew-product graphs

Let E be a directed graph, G a group and $c: E^1 \to G$ a function. Then for any subgroup H of G, the *relative skew product* $E \times_c (G/H)$ is the graph with $(E \times_c (G/H))^i = E^i \times (G/H)$ for i = 0, 1,

$$r(e,Hg)=(r(e),Hg) \text{ and } s(e,Hg)=(s(e),Hgc(e)).$$

When H is the trivial subgroup, this is the usual skew product $E\times_c G$

Coactions of symmetric spaces

It turns out that one can define the coaction of a symmetric space on a C^* -algebra, and define the associated crossed-product. The following is then a generalisation of Theorem 8.

Theorem 9 (Deicke–P–Raeburn)

Let E be an essential directed graph, G a group and $c: E^1 \to G$ a function and suppose H is a subgroup of G. Then

 $C^*(E \times_c (G/H)) \cong C^*(E) \times_{\delta_c} (G/H).$

More coactions

The subgroup H acts on the right of $E \times_c G$, and one can show that $E \times_c (G/H)$ is isomorphic to the quotient $(E \times_c G)/H$. Hence from Theorem 8 we have

Theorem 10 (Deicke-P-Raeburn)

Let δ_c be the coaction of G on $C^*(E)$ induced by a function $c: E^1 \to G$, and let H be a subgroup of G.

• There is an action $\widehat{\delta_c}$ of H on $C^*(E) \times_{\delta_c} G$ such that

 $C^*(E) \times_{\delta_c} (G/H) \sim_{sme} (C^*(E) \times_{\delta_c} G) \times_{\widehat{\delta_c}} H.$

• There is a coaction δ_d of H on $C^*(E) \times_{\delta_c} (G/H)$ such that

 $C^*(E) \times_{\delta_c} G \cong (C^*(E) \times_{\delta_c} (G/H)) \times_{\delta_d} H.$

Generalisations

Similar results have been given for

- Group actions on *k*-graphs: P-Quigg-Raeburn.
- Ore semigroup actions on *k*-graphs: Maloney–P–Raeburn.
- Group actions on topological graphs: Kaliszewski–Kumjian–Quigg, also Kaliszewski–Robertson–Quigg.

Future directions: Non–free actions on graphs and k–graphs: Brownlowe–Kumjian–P–Thomas.

THANK YOU!