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Crossed products

An action of G on a C∗–algebra A is a homomorphism
α : G→ Aut(A) and gives rise to a C∗–dynamical system
(A,α,G).

Let B be a C∗–algebra, a covariant representation of (A,α,G) in
B is a pair (ψ, π) of maps ψ : A→M(B), π : G→ UM(B) such
that

ψ(αg(a)) = π(g)ψ(a)π(g)∗

The crossed product A×α G is generated by a universal covariant
representation of (A,α,G).
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Coactions

When G is abelian, the crossed product A×α G, carries a natural
action α̂ of Ĝ. When G is nonabelian, there is a dual coaction α̂ of
G on A×α G.

A coaction of G on a C∗-algebra A is an injective nondegenerate
homomorphism δ : A→ A⊗ C∗(G) such that
(δ ⊗ id) ◦ δ = (id⊗ δG) ◦ δ. Where δG is the canonical coaction of
G on C∗(G).

There is a notion of a covariant representation of (A, δ,G) however
it is a bit technical.

The crossed product A×δ G is generated by a universal covariant
representation of (A, δ,G) which carries a natural dual action δ̂ of
G.
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Nonabelian Duality

Theorem 1 (Takesaki,Takai)

Let A be a C∗–algebra and G a group.
(1) Let α be an action of G on A, then the dual coaction α̂ of G

on A×α G such that (A×α G)×α̂ G ∼= A⊗K(L2(G)).
(2) Let δ be a coaction of G on A, then the dual action δ̂ of G on

A×δ G such that (A×δ G)×δ̂ G ∼= A⊗K(L2(G)).
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Directed graphs

Definition 2

A directed graph E consists of a set E0 of vertices, a set E1 of
edges and maps r, s : E1 → E0 giving the direction of each edge.

Let En denote the directed paths λ with length |λ| = n, then
E∗ = ∪n≥0Ei denotes the collection of all finite paths in E.

Definition 3

A graph morphism φ : E → F is a pair φ = (φ0, φ1) of maps
φi : Ei → F i for i = 1, 2 such that for all e ∈ E1

s(φ1(e)) = φ0(s(e)) r(φ1(e)) = φ0(r(e))
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Group actions

Definition 4
An action of a group G on a directed graph E is a group
homomorphism α : G→ Aut(E).

For v ∈ E0 and e ∈ E1 let

[u] = {v ∈ E0 : v = α0
gu for some g ∈ G}

[e] = {f ∈ E1 : f = α1
ge for some g ∈ G}.

If we put E0/G = {[u] : u ∈ E0}, E1/G = {[e] : e ∈ E1} and set

r′([e]) = [r(e)] s′([e]) = [s(e)] for [e] ∈ E1/G

then E/G = (E0/G,E1/G, r′, s′) is a directed graph, called the
quotient graph.
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Cuntz–Krieger families

A directed graph E is essential if every vertex receives and emits a
finite, nonzero number of edges.

Definition 5
Let E be an essential directed graph and B a C∗–algebra. A
Cuntz–Krieger E–family is a function t : λ 7→ tλ from E∗ to B
such that
(1) {tv : v ∈ E0} are mutually orthogonal projections
(2) tλtµ = tλµ whenever r(µ) = s(λ)

(3) t∗λtλ = ts(µ)

(4) for all v ∈ E0 and n ≥ 1 we have tv =
∑
|λ|=n tλt

∗
λ.

C∗(E) is then defined to be the universal C∗–algebra generated by
a Cuntz-Krieger E–family.
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Group actions

The universal property of C∗(E) is such that if s : λ 7→ sλ is any
Cuntz–Krieger E–family in a C∗–algebra D, then there is a
homomorphisn πs : C∗(E)→ D satisfying πs(tλ) = sλ for all
λ ∈ E∗. One may show (non–trivially!) that such a C∗–algebra
exists.

An action α of G on E induces an action of G on E∗ which
transforms a Cuntz–Krieger E–family t in a C∗–algebra B into a
Cuntz–Krieger E–family t ◦ α in B. By the universal property of
C∗(E), this induces an action α∗ of G on C∗(E).

Hence we may form the crossed product C∗–algebra C∗(E)×α∗ G.
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Free actions, skew product graphs

The action α of G on E is free if α0
gv = v for all v ∈ E0 then

g = 1G.

Let E be a directed graph, G a group and c : E1 → G a function.
The skew–product graph E ×c G has vertices E0 ×G, edges
E1 ×G and range and source maps

r(e, g) = (r(e), g) s(e, g) = (s(e), gc(e)).

There is a natural free action λ of G on E ×c G given by

λih(x, g) = (x, hg) for i = 0, 1 and h ∈ G.

The quotient (E ×c G)/G is isomorphic to E.
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Gross–Tucker Theorem

The Gross–Tucker Theorem says that the situation on the previous
slide is generic: if a group acts freely on a graph it is acting on a
skew–product graph.

Theorem 6 (Gross–Tucker)

Let E be a directed graph and α a free action of a group G. Let
η : (E/G)0 → E0 be a section for the quotient map
q0 : E0 → (E/G)0, then there is a function cη : (E/G)1 → G such
that (E/G)×cη G is equivariantly isomorphic to E.
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Back to graph algebras

Theorem 7 (Kumjian-P,P–Raeburn)

Let E be an essential directed graph and G a countable group.
(1) Let α be a free action of G on E, then

C∗(E)×α∗ G
∼= C∗(E/G)⊗K(`2(G)). Indeed

C∗(E)×α∗ G ∼sme C∗(E/G).
(2) Let c : E1 → G be a function, then

C∗(E ×c G)×λ∗ G ∼= C∗(E)⊗K(`2(G)).

The connection between Theorem 7 and Theorem 1 is explained by:

Theorem 8 (Kaliszewski-Quigg-Raeburn)

Let E be an essential directed graph, G a group and c : E1 → G a
function. Then there is a coaction δc of G on C∗(E) such that
C∗(E)×δc G is equivariantly isomorphic to C∗(E ×c G).

11 / 16



Nonabelian duality
Directed graphs and group actions

Graph C∗–algebras

Relative skew–product graphs

Let E be a directed graph, G a group and c : E1 → G a function.
Then for any subgroup H of G, the relative skew product
E ×c (G/H) is the graph with (E ×c (G/H))i = Ei × (G/H) for
i = 0, 1,

r(e,Hg) = (r(e), Hg) and s(e,Hg) = (s(e), Hgc(e)).

When H is the trivial subgroup, this is the usual skew product
E ×c G

12 / 16



Nonabelian duality
Directed graphs and group actions

Graph C∗–algebras

Coactions of symmetric spaces

It turns out that one can define the coaction of a symmetric space
on a C∗–algebra, and define the associated crossed–product. The
following is then a generalisation of Theorem 8.

Theorem 9 (Deicke–P–Raeburn)

Let E be an essential directed graph, G a group and c : E1 → G a
function and suppose H is a subgroup of G. Then

C∗(E ×c (G/H)) ∼= C∗(E)×δc (G/H).
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More coactions

The subgroup H acts on the right of E ×c G, and one can show
that E ×c (G/H) is isomorphic to the quotient (E ×c G)/H.
Hence from Theorem 8 we have

Theorem 10 (Deicke–P–Raeburn)

Let δc be the coaction of G on C∗(E) induced by a function
c : E1 → G, and let H be a subgroup of G.

There is an action δ̂c of H on C∗(E)×δc G such that

C∗(E)×δc (G/H) ∼sme (C∗(E)×δc G)×δ̂c H.

There is a coaction δd of H on C∗(E)×δc (G/H) such that

C∗(E)×δc G ∼= (C∗(E)×δc (G/H))×δd H.
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Generalisations

Similar results have been given for

Group actions on k–graphs: P–Quigg–Raeburn.
Ore semigroup actions on k-graphs: Maloney–P–Raeburn.
Group actions on topological graphs:
Kaliszewski–Kumjian–Quigg, also
Kaliszewski–Robertson–Quigg.

Future directions: Non–free actions on graphs and k–graphs:
Brownlowe–Kumjian–P–Thomas.
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THANK YOU!
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