2–graphs and Textile Systems

David Pask¹ Joint work with Kang, Sims, Tang, Webster

School of Mathematics and Applied Statistics Wollongong University AUSTRALIA

25, September, 2012

 1 with extra thanks to Aidan Sims for his brilliant pictures!

What is a 2–graph?

Definition 1 (Kumjian-P)

A 2-graph (Λ, d) consists of a countable small category Λ with a functor $d:\Lambda\to \mathbb{N}^2$ satisfying the factorization property : for every $\lambda \in \Lambda$ and $m,n \in \mathbb{N}^2$ with $d(\lambda) = m+n$, there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda = \mu \nu$ and $d(\mu) = m$, $d(\nu) = n$.

For $m \in \mathbb{N}^2$, we let $\Lambda^m = d^{-1}(m)$. For $m, n \in \mathbb{N}^2$, we say that $m \leq n$ if $m_i \leq n_i$ for each i.

Notation 2 (Raeburn–Sims–Yeend)

For $0 \le m \le n \le d(\lambda)$, by the factorization property we have $\lambda = \lambda(0, m)\lambda(m, n)\lambda(n, d(\lambda))$ where $d(\lambda(0, m)) = m$, $d(\lambda(m, n)) = n - m$ and $d(\lambda(n, d(\lambda))) = d(\lambda) - n$.

This talk concerns two equivalent ways of studying 2–graphs using directed graphs.

Directed graphs

A directed graph E consists of a set E^0 of vertices, a set E^1 of edges and maps $r, s: E^1 \to E^1$ giving the direction of each edge. Let E^n denote the paths of length n in E, and E^* denote the collection of finite paths in E .

A *graph morphism* $\phi:F\rightarrow E$ *is a pair* $\phi=(\phi^0,\phi^1)$ *of maps* $\phi^i:F^i\to E^i$ for $i=0,1$ such that for all $f\in F^1$

$$
s(\phi^1(f)) = \phi^0(s(f)), \quad r(\phi^1(f)) = \phi^0(r(f)).
$$

A graph morphism $\phi : F \to E$ has [unique] r-path (resp. s-path) lifting if for every $v \in \phi^0(F^0)$, $e \in \phi^1(F^1)$ with $r(e) = v$ (resp. $s(e) = v$) and $w \in F^0$ with $\phi^0(w) = v$ there is a [unique] $f \in \phi^1(F^1)$ with $r(f) = w$ (resp. $s(f) = w$) such that $\phi^1(f) = e$.

Coloured graphs

Let \mathbb{F}_2 be the free semigroup on 2-generators $\{b, r\}$.

Definition 3 (Hazelwood, Raburn, Sims, Webster)

A 2-coloured graph (E, c) is a directed graph E together with a map $c: E^1 \to \{r, b\}$, which we can extend to a functor $c: E^* \to \mathbb{F}_2^+.$

Example 4

With
$$
c_2(N) = b = c_2(S)
$$
 and $c_2(E) = r = c_2(W)$ we have

$$
(E_2, c_2) := W \begin{matrix} \\ w \\ \\ \vdots \\ \\ \frac{1}{2}w \end{matrix} \begin{matrix} \\ & \end{matrix} \begin{matrix} \\ & \end{matrix} \begin{matrix} \\ & \end{matrix} \\ E \\ & \frac{1}{2}w \end{matrix}
$$

Coloured graphs II

A 2-coloured-graph morphism from (E, c_E) to (F, c_F) is a graph morphism ψ from E to F such that $c_E(e)=c_F(\psi^1(e))$ for every $e \in E^1$.

Given a 2-coloured graph (E, c) , a square in E is a coloured-graph morphism $\phi : (E_2, c_2) \to (E, c)$, and we identify a square ϕ with its image in E .

For a 2-coloured graph (E, c) , a complete collection of squares is a collection C of squares in E such that for each $ef \in E^2$ with $c(e) \neq c(f)$ there exists a unique $\phi \in C$ such that $ef = \phi(S)\phi(E)$ if $c(e f) = br$ and $e f = \phi(W) \phi(N)$ if $c(e f) = rb$.

2–coloured graphs and 2–coloured graphs

Let Λ be a 2–graph, then we may define a 2-coloured graph (E_Λ, c_Λ) and a complete collection of squares \mathcal{C}_Λ in E_Λ as follows:

Let E_{Λ} be the directed graph with $E_{\Lambda}^0 = \Lambda^0$ and $E^1_\Lambda = \Lambda^{(1,0)} \cup \Lambda^{(0,1)}$ with range and source maps inherited from $\Lambda.$ The graph E_{Λ} is usually referred to as the 1-skeleton of Λ . Define $c_{\Lambda}:E^1_{\Lambda}\to \mathbb{F}_2$ by $c_{\Lambda}(e)=b$ if $d(e)=(1,0)$ and $c_{\Lambda}(e)=r$ if $d(e) = (0, 1).$

For $\lambda\in\Lambda^{(1,1)}$ define a square $\phi_\lambda:(E_2,c)\rightarrow (E_\Lambda,c_\Lambda)$ by

$$
W \mapsto \lambda((0,0),(0,1)) \in \Lambda^{(0,1)}, N \mapsto \lambda((0,1),(1,1)) \in \Lambda^{(1,0)},
$$

$$
S \mapsto \lambda((0,0),(1,0)) \in \Lambda^{(1,0)}, E \mapsto \lambda((1,0),(1,1)) \in \Lambda^{(0,1)}.
$$

One checks that $\mathcal{C}_\Lambda = \{\phi_\lambda : \lambda \in \Lambda^{(1,1)}\}$ is a complete collection of squares in E_Λ

2–coloured graphs and 2–coloured graphs II

The converse to this result is given by.

Theorem 5 (Hazelwood, Raeburn, Sims, Webster)

Let (E, c) be a 2-colored graph, and C be a complete collection of squares in E. Then there is a unique 2-graph $\Lambda = \Lambda(E, c)$ and a 2-coloured graph isomorphism from (E, c) to (E_0, c_0) taking C to \mathcal{C}_{Λ} .

Hence 2–graphs and 2–coloured graphs with a complete collections of squares are in bijective correspondence.

Textile systems

A *textile system* 2 is a quadruple $T=(F,E,p,q),$ where $F=(F^0,F^1,r_F,s_F),\,E=(E^0,E^1,r_E,s_E)$ are two directed graphs, and $p, q: F \to E$ are two graph morphisms such that the map $C:F^1\to E^1\times E^1\times F^0\times F^0$ given by $f \mapsto (p(f), q(f), r_F(f), s_F(f))$ is injective.

Intuitively, the textile condition implies that for every $f\in F^1$ there is a unique "tile" c_f as shown:

²adapted from Nasu

Examples

Example 6

Let

Define $p, q: F \to E$ by

$$
p(\alpha) = a, p(\beta) = a, p(\gamma) = b, p(\delta) = b, \text{ and}
$$

$$
q(\alpha) = c, q(\beta) = d, q(\gamma) = d, q(\delta) = c.
$$

Then $T_1 = (F, E, p, q)$ is a textile system.

Examples II

Example 7

Let

and define $p, q: F \to E$ by

 $p(u') = u, p(v') = v, p(w') = w$ and $p(a) = e, p(c) = g, p(b) = f$ $q(u') = u, q(v') = v, q(w') = u$ and $q(a) = e, q(c) = g, q(b) = e$.

Then $T_2 = (F, E, p, q)$ is a textile system.

Equivalence

Let $T_1 = (F_1, E_1, p_1, q_1), T_2 = (F_2, E_2, p_2, q_2)$ be two textile systems. Then T_1 , T_2 are *equivalent* if there are graph isomorphisms $\psi_F : F_1 \to F_2$, $\psi_E : E_1 \to E_2$ such that for all $f \in F^1$ we have

$$
p_2(\psi_F^1(f)) = \psi_E^1(p_1(f)), \quad q_2(\psi_F^1(f)) = \psi_E^1(q_1(f)).
$$

That is, the squares

commute.

Textile ststems and coloured graphs

Given a textile system $T = (F, E, p, q)$, we may define 2-colored graph (G_T, c_T) as follows. Let $G_T^0 = E^0$, $G_T^1 = E^1 \sqcup F^0$, and

$$
r(e) = r_E(e), \ s(e) = s_E(e), \ c_T(e) = b \text{ for } e \in E^1,
$$

$$
r(v) = q(v), \ s(v) = p(v), \ c_T(v) = r \text{ for } v \in F^0.
$$

Since the map C is injective, each $f\in F^1$ uniquely determines a square c_f : $(E_2, c_2) \rightarrow (G_T, c_T)$ with image in G_T given by:

$$
p(r(f)) \leftarrow \begin{cases} p(f) & p(s(f)) \\ r(f) & c_f \\ q(r(f)) \leftarrow & q(s(f)) \\ q(f) & q(f) \end{cases} \tag{2}
$$

If p has unique r–path lifting and q has unique s–path lifting then $\mathcal{C}_T = \{c_f : f \in F^1\}$ is a complete collection of squares in G_T . $\qquad \quad \quad \text{{\tiny 12/17}}$

Back to examples

Example 8

Recall the textile system T_1 described in Example [6](#page-8-0) then (G_{T_1},c_{T_1}) is the 2-coloured graph

Back to examples II

Example 9

Recall the textile system T_2 described in Example [7](#page-9-0) then (G_{T_2}, c_{T_2}) is the 2-coloured graph

Textile ststems and coloured graphs II

Given a 2–coloured graph (G, c) with a complete collection of squares $\mathcal{C} = \{\phi_i : i \in I\}$ we may define a textile ststem $T_{G,c} = (F, E, p, q)$ as follows:

Set E to be the graph with $E^0 = G^0$, $E^1 = c^{-1}(b)$ and r_E, s_E inherited from G.

Set F to be the graph with $F^0 = c^{-1}(r)$, $F^1 = \mathcal{C}$, and for $\phi_i \in \mathcal{C}$ we put $r_F(\phi_i) = \phi_i(W)$ and $s_F(\phi_i) = \phi_i(E)$.

Finally, we define $p,q:F\to E$ by $p^0(w)=r(w)$, $p^1(\phi_i)=\phi_i(N)$; $q^0(w) = s(w), q^1(\phi_i) = \phi_i(S).$

Since $\mathcal C$ is a complete collection of squares it follows that p has unique r–path lifting and q has unique s–path lifting.

Textile systems and coloured graphs III

Theorem 10

- (1) Let $T = (F, E, p, q)$ be a textile system such that p has unique r –path lifting and q has unique s –path lifting. Then T_{G, c_T} is equivalent to T.
- (2) Let (G, c) be a 2-coloured graph with a complete collection of squares C. Then there is a 2–coloured graph isomorphism from (G, c) to $(G_{T_{G, c}}, c_{T_{G, c}})$ which takes C to $\mathcal{C}_{T_{G, c}}$.

THANK YOU!