2-graphs and Textile Systems

David Pask¹ Joint work with Kang, Sims, Tang, Webster

School of Mathematics and Applied Statistics Wollongong University AUSTRALIA

25, September, 2012

¹with extra thanks to Aidan Sims for his brilliant pictures!

What is a 2-graph?

Definition 1 (Kumjian-P)

A 2-graph (Λ, d) consists of a countable small category Λ with a functor $d : \Lambda \to \mathbb{N}^2$ satisfying the factorization property : for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^2$ with $d(\lambda) = m + n$, there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda = \mu \nu$ and $d(\mu) = m$, $d(\nu) = n$.

For $m \in \mathbb{N}^2$, we let $\Lambda^m = d^{-1}(m)$. For $m, n \in \mathbb{N}^2$, we say that $m \leq n$ if $m_i \leq n_i$ for each i.

Notation 2 (Raeburn–Sims–Yeend)

For $0 \leq m \leq n \leq d(\lambda)$, by the factorization property we have $\lambda = \lambda(0,m)\lambda(m,n)\lambda(n,d(\lambda))$ where $d(\lambda(0,m)) = m$, $d(\lambda(m,n)) = n - m$ and $d(\lambda(n,d(\lambda))) = d(\lambda) - n$.

This talk concerns two equivalent ways of studying 2–graphs using directed graphs.

Directed graphs

A directed graph E consists of a set E^0 of vertices, a set E^1 of edges and maps $r, s : E^1 \to E^1$ giving the direction of each edge. Let E^n denote the paths of length n in E, and E^* denote the collection of finite paths in E.

A graph morphism $\phi: F \to E$ is a pair $\phi = (\phi^0, \phi^1)$ of maps $\phi^i: F^i \to E^i$ for i = 0, 1 such that for all $f \in F^1$

$$s(\phi^1(f)) = \phi^0(s(f)), \quad r(\phi^1(f)) = \phi^0(r(f)).$$

A graph morphism $\phi: F \to E$ has [unique] r-path (resp. s-path) lifting if for every $v \in \phi^0(F^0)$, $e \in \phi^1(F^1)$ with r(e) = v (resp. s(e) = v) and $w \in F^0$ with $\phi^0(w) = v$ there is a [unique] $f \in \phi^1(F^1)$ with r(f) = w (resp. s(f) = w) such that $\phi^1(f) = e$.

Coloured graphs

Let \mathbb{F}_2 be the free semigroup on 2-generators $\{b, r\}$.

Definition 3 (Hazelwood, Raburn, Sims, Webster)

A 2-coloured graph (E, c) is a directed graph E together with a map $c: E^1 \to \{r, b\}$, which we can extend to a functor $c: E^* \to \mathbb{F}_2^+$.

Example 4

With
$$c_2(N) = b = c_2(S)$$
 and $c_2(E) = r = c_2(W)$ we have

Coloured graphs II

A 2-coloured-graph morphism from (E, c_E) to (F, c_F) is a graph morphism ψ from E to F such that $c_E(e) = c_F(\psi^1(e))$ for every $e \in E^1$.

Given a 2-coloured graph (E,c), a square in E is a coloured-graph morphism $\phi : (E_2, c_2) \to (E, c)$, and we identify a square ϕ with its image in E.

For a 2-coloured graph (E, c), a *complete collection of squares* is a collection C of squares in E such that for each $ef \in E^2$ with $c(e) \neq c(f)$ there exists a unique $\phi \in C$ such that $ef = \phi(S)\phi(E)$ if c(ef) = br and $ef = \phi(W)\phi(N)$ if c(ef) = rb.

2-coloured graphs and 2-coloured graphs

Let Λ be a 2-graph, then we may define a 2-coloured graph $(E_{\Lambda}, c_{\Lambda})$ and a complete collection of squares C_{Λ} in E_{Λ} as follows:

Let E_{Λ} be the directed graph with $E_{\Lambda}^{0} = \Lambda^{0}$ and $E_{\Lambda}^{1} = \Lambda^{(1,0)} \cup \Lambda^{(0,1)}$ with range and source maps inherited from Λ . The graph E_{Λ} is usually referred to as the 1-skeleton of Λ . Define $c_{\Lambda} : E_{\Lambda}^{1} \to \mathbb{F}_{2}$ by $c_{\Lambda}(e) = b$ if d(e) = (1,0) and $c_{\Lambda}(e) = r$ if d(e) = (0,1).

For $\lambda \in \Lambda^{(1,1)}$ define a square $\phi_{\lambda} : (E_2, c) \to (E_{\Lambda}, c_{\Lambda})$ by

$$W \mapsto \lambda((0,0),(0,1)) \in \Lambda^{(0,1)}, \ N \mapsto \lambda((0,1),(1,1)) \in \Lambda^{(1,0)},$$
$$S \mapsto \lambda((0,0),(1,0)) \in \Lambda^{(1,0)}, \ E \mapsto \lambda((1,0),(1,1)) \in \Lambda^{(0,1)}.$$

One checks that $C_{\Lambda} = \{\phi_{\lambda} : \lambda \in \Lambda^{(1,1)}\}$ is a complete collection of squares in E_{Λ}

$2\mathrm{-coloured}$ graphs and $2\mathrm{-coloured}$ graphs II

The converse to this result is given by.

Theorem 5 (Hazelwood, Raeburn, Sims, Webster)

Let (E,c) be a 2-colored graph, and C be a complete collection of squares in E. Then there is a unique 2-graph $\Lambda = \Lambda(E,c)$ and a 2-coloured graph isomorphism from (E,c) to $(E_{\Lambda},c_{\Lambda})$ taking C to C_{Λ} .

Hence 2-graphs and 2-coloured graphs with a complete collections of squares are in bijective correspondence.

Textile systems

A textile system² is a quadruple T = (F, E, p, q), where $F = (F^0, F^1, r_F, s_F)$, $E = (E^0, E^1, r_E, s_E)$ are two directed graphs, and $p, q: F \to E$ are two graph morphisms such that the map $C: F^1 \to E^1 \times E^1 \times F^0 \times F^0$ given by $f \mapsto (p(f), q(f), r_F(f), s_F(f))$ is injective.

Intuitively, the textile condition implies that for every $f \in F^1$ there is a unique "tile" c_f as shown:

²adapted from Nasu

Examples

Example 6

Let

Define $p, q: F \to E$ by

$$\begin{split} p(\alpha) &= a, p(\beta) = a, p(\gamma) = b, p(\delta) = b, \text{ and} \\ q(\alpha) &= c, q(\beta) = d, q(\gamma) = d, q(\delta) = c. \end{split}$$

Then $T_1 = (F, E, p, q)$ is a textile system.

Examples II

Example 7

Let

and define $p,q:F\rightarrow E$ by

 $\begin{array}{l} p(u') = u, p(v') = v, p(w') = w \text{ and } p(a) = e, p(c) = g, p(b) = f \\ q(u') = u, q(v') = v, q(w') = u \text{ and } q(a) = e, q(c) = g, q(b) = e. \end{array}$

Then $T_2 = (F, E, p, q)$ is a textile system.

Equivalence

Let $T_1 = (F_1, E_1, p_1, q_1)$, $T_2 = (F_2, E_2, p_2, q_2)$ be two textile systems. Then T_1 , T_2 are *equivalent* if there are graph isomorphisms $\psi_F : F_1 \to F_2$, $\psi_E : E_1 \to E_2$ such that for all $f \in F^1$ we have

$$p_2(\psi_F^1(f)) = \psi_E^1(p_1(f)), \quad q_2(\psi_F^1(f)) = \psi_E^1(q_1(f)).$$

That is, the squares

commute.

Textile ststems and coloured graphs

Given a textile system T = (F, E, p, q), we may define 2-colored graph (G_T, c_T) as follows. Let $G_T^0 = E^0$, $G_T^1 = E^1 \sqcup F^0$, and

$$r(e) = r_E(e), \ s(e) = s_E(e), \ c_T(e) = b \text{ for } e \in E^1,$$

 $r(v) = q(v), \ s(v) = p(v), \ c_T(v) = r \text{ for } v \in F^0.$

Since the map C is injective, each $f \in F^1$ uniquely determines a square $c_f : (E_2, c_2) \to (G_T, c_T)$ with image in G_T given by:

$$p(r(f)) \leftarrow p(f) \qquad p(s(f))$$

$$r(f) \qquad c_f \qquad s(f) \qquad (2)$$

$$q(r(f)) \leftarrow q(f) \qquad q(s(f))$$

If p has unique r-path lifting and q has unique s-path lifting then $C_T = \{c_f : f \in F^1\}$ is a complete collection of squares in G_T . $_{12/17}$

Back to examples

Example 8

Recall the textile system T_1 described in Example 6 then (G_{T_1}, c_{T_1}) is the 2-coloured graph

Back to examples II

Example 9

Recall the textile system T_2 described in Example 7 then $({\cal G}_{T_2}, c_{T_2})$ is the 2-coloured graph

Textile ststems and coloured graphs II

Given a 2-coloured graph (G, c) with a complete collection of squares $C = \{\phi_i : i \in I\}$ we may define a textile ststem $T_{G,c} = (F, E, p, q)$ as follows:

Set E to be the graph with $E^0=G^0,\ E^1=c^{-1}(b)$ and r_E,s_E inherited from G.

Set F to be the graph with $F^0 = c^{-1}(r)$, $F^1 = C$, and for $\phi_i \in C$ we put $r_F(\phi_i) = \phi_i(W)$ and $s_F(\phi_i) = \phi_i(E)$.

Finally, we define $p, q: F \to E$ by $p^0(w) = r(w)$, $p^1(\phi_i) = \phi_i(N)$; $q^0(w) = s(w)$, $q^1(\phi_i) = \phi_i(S)$.

Since C is a complete collection of squares it follows that p has unique r-path lifting and q has unique s-path lifting.

Textile systems and coloured graphs III

Theorem 10

- (1) Let T = (F, E, p, q) be a textile system such that p has unique r-path lifting and q has unique s-path lifting. Then T_{G,c_T} is equivalent to T.
- (2) Let (G, c) be a 2-coloured graph with a complete collection of squares C. Then there is a 2-coloured graph isomorphism from (G, c) to (G_{TG,c}, c_{TG,c}) which takes C to C_{TG,c}.

THANK YOU!