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Self-similar actions

Suppose X is a finite set of cardinality |X |;
let X n denote the set of words of length n in X ,

let X ∗ =
⋃
n∈N

X n.

Definition
A faithful action of a group G on X ∗ is self-similar if, for all g ∈ G
and x ∈ X , there exist unique g |x ∈ G such that

g · (xw) = (g · x)(g |x · w) for all finite words w ∈ X ∗.

The pair (G ,X ) is referred to as a self-similar action and the group
element g |x is called the restriction of g to x .



Restrictions

Restrictions extend to words v ∈ X ∗ is the natural way:

g · (vw) = (g · v)(g |v · w) for all finite words w ∈ X ∗.

Lemma
Suppose (G ,X ) is a self-similar action. Restrictions satisfy

g |pq = (g |p)|q, gh|p = g |h·p h|p, g |−1p = g−1|g ·p

for all g , h ∈ G and p, q ∈ X ∗.



Example: the odometer action

Let X = {0, 1} and G = Z
Let g denote the generator 1 ∈ Z
(Z,X ) is a self-similar action described by:

g · 0w = 1w g · 1w = 0(g · w)

for every finite word w ∈ X ∗

For example, g3 denotes 3 ∈ Z and acts on the word 01100 by

g3 · 01100 = g2 · 11100 = g · 00010 = 10010.

This defines (Z,X ) as a self-similar group action called the
odometer.



The odometer continued

X ∗

∅
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Figure: The action g on the tree associated with the circle



Contracting self-similar actions

Definition
The nucleus of a self-similar action (G ,X ) is the minimal set
N ⊂ G satisfying the property: For every g ∈ G , there exists
N ∈ N such that g |v ∈ N for all words v ∈ X n with n ≥ N. A
self-similar action (G ,X ) is contracting if it has a finite nucleus
N ⊂ G .

Definition
Let S be a subset of G that is closed under restriction. The Moore
diagram of S is the labelled directed graph with vertices in S and
edges labelled:

g g |x
(x ,y)



The Moore diagram for the nucleus of the odometer

The nucleus of the odometer action is N = {e, g , g−1}.

e

(1,1)

(0,0)

g
(0,1)

(1,0)−g
(1,0)

(0,1)



The basilica group [Grigorchuk and Żuk 2003]

Let X = {x , y}
Consider the rooted homogeneous tree TX with vertex set X ∗.

Two automorphisms a and b of TX are recursively defined by

a · (xw) = y(b · w) a · (yw) = xw

b · (xw) = x(a · w) b · (yw) = yw

for w ∈ X ∗.

The basilica group B is the subgroup of Aut TX generated by
{a, b}. The pair (B,X ) is then a self-similar action.

The nucleus is N = {e, a, b, a−1, b−1, ba−1, ab−1}.



The Moore diagram for the nucleus of the basilica group

e

(y ,y)(x ,x)

b

(y ,y)

a

(y ,x)

(x ,y)

(x ,x)

b−1

(y ,y)

a−1

(x ,y)

(y ,x)

(x ,x)

ab−1

(y ,x)

ba−1

(x ,y)(y ,x)

(x ,y)



The Grigorchuk action (1980)

Let X = {x , y}
Consider the rooted homogeneous tree TX with vertex set X ∗.

Two automorphisms a and b of TX are recursively defined by

Grigorchuk group is generated by four automorphisms
a, b, c , d of TX defined recursively by

a · xw = yw a · yw = xw
b · xw = x(a · w) b · yw = y(c · w)
c · xw = x(a · w) c · yw = y(d · w)
d · xw = xw d · yw = y(b · w).

The nucleus of the Grigorchuk group is

N = {e, a, b, c , d}.



The Moore diagram for the nucleus of the Grigorchuk
action

e(y ,y)

(x ,x)

b

a

(x ,y) (y ,x)

(x ,x)

c

(y ,y)

(x ,x)

d
(x ,x)

(y ,y)

(y ,y)



C ∗-algebras

A C ∗-algebra is a Banach ∗-algebra A such that for all a in A,

‖aa∗‖ = ‖a‖2

Examples: Mn(C), C0(X ), B(H), K(H), ...

An element u ∈ A such that u∗u = uu∗ = 1 is called a unitary.

An element s ∈ A such that s∗s = 1 is called an isometry and
if ss∗ 6= 1 then s is called a non-unitary isometry.



Universal C ∗-algebras for self-similar group actions

Theorem
Let (G ,X ) be a self-similar action. The Cuntz-Pimsner algebra
O(G ,X ) is the universal C ∗-algebra generated by unitaries
{ug : g ∈ G} and a Cuntz family of isometries {sx : x ∈ X}
satisfying

1. ug sx = sg ·xug |x

2.
∑
x∈X

sxs∗x = 1

for all g ∈ G and x ∈ X .

Remark: Nekrashevych defined an algebra O(M) using a
particular representation of a self-similar action. In the case that G
is amenable Nekrashevych’s algebra is the same as O(G ,X ).



KMS states

Definition (Haag-Hugenholtz-Winnink 1967)

Given an action σ : R→ Aut(A) on a C ∗-algebras A, a state ϕ
satisfies the KMS condition at inverse temperature β ∈ [0,∞) if,
for all a, b ∈ A,

ϕ(ab) = ϕ(b σiβ(a)).

Properties of KMS states:

Haag-Hugenholtz-Winnink proposed the KMS condition as a
definition of equilibrium for quantum systems.

KMS states are a noncommutative phenomenon, If A has a
faithful KMS state and A is commutative, then σ is trivial.

If β 6= 0 and ϕ is a KMSβ state, then ϕ is σ-invariant.

KMS states have a natural notion of a phase transition (an
abrupt change in the physical properties of a system).



KMS states for self-similar actions

Proposition

Let (G ,X ) be a self-similar action, then

O(G ,X ) = span{svug s∗w : v ,w ∈ X ∗, g ∈ G}.

The action σ : R→ Aut(O(G ,X )) is given by

σt(sv ) = e it|v |sv σt(ug ) = ug .

On the spanning set {svug s∗w : v ,w ∈ X ∗, g ∈ G} we have

σt(svug s∗w ) = e it(|v |−|w |)svug s∗w



KMS states on O(G ,X )

Theorem (Laca-Raeburn-Ramagge-W)

Suppose that (G ,X ) is a self-similar action.

1. For g ∈ G \ {e}, set

F j
g := {v ∈ X j : g · v = v and g |v = e}.

Then the sequence {|X |−j |F j
g |} is increasing and converges

with limit cg ∈ [0, 1).

2. There is a KMSlog |X | state on O(G ,X ) such that

ψ(svug s∗w ) =

{
0 unless v = w

|X |−|w |cg if v = w.

3. If (G ,X ) is contracting, then the state in part (2) is the only
KMS state of O(G ,X ).



Calculating KMS states using the Moore diagram

To calculate values of the KMS states explicitly, we need to
compute the sizes of the sets F k

g and evaluate the limit

cg = lim
k→∞

|X |−k |F k
g |

For each v ∈ F k
g we have g · v = v and g |v = e.

Each v ∈ F k
g corresponds to a path µv in the Moore diagram:

µv :=g g |v1
(v1,v1)

g |v1v2
(v2,v2) · · ·

(v3,v3)
g |v = e

(vk ,vk )

Notice that all the labels have the form (x , x).

Every path with labels (x , x) arises this way.



Example: the odometer action

Proposition

The C ∗-algebra O(Z,X ) has a unique KMSlog 2 state, which is
given on the nucleus N = {e, g , g−1} by

φ(un) =

{
1 for n = e

0 for n = g , g−1

Sketch of proof.

e

(1,1)

(0,0)

g
(0,1)

(1,0)−g
(1,0)

(0,1)
reduces to

e

(1,1)

(0,0)

F k
g = F k

g−1 = ∅ cg = cg−1 = lim
n→∞

2−k · 0 = 0



Example: the basilica action

Proposition

The C ∗-algebra O(B,X ) has a unique KMSlog 2 state, which is
given on the nucleus N = {e, a, b, a−1, b−1, ab−1, ba−1} by

φ(ug ) =


1 for g = e
1
2 for g = b, b−1

0 for g = a, a−1, ab−1, ba−1.



Example: the basilica action

Sketch of proof.

e

(y ,y)(x ,x)

b (y ,y)

a

(y ,x)

(x ,y)

(x ,x)

b−1
(y ,y)

a−1

(x ,y)

(y ,x)

(x ,x)

ab−1

(y ,x)

ba−1

(x ,y)(y ,x)

(x ,y)

reduces to
e

(y ,y)(x ,x)

b (y ,y) b−1
(y ,y)



Example: the basilica action

|F k
a | = 0 ca = lim

n→∞
2−k |F k

a | = 0

|F k
a−1 | = 0 ca−1 = lim

n→∞
2−k |F k

a−1 | = 0

|F k
ba−1 | = 0 cba−1 = lim

n→∞
2−k |F k

ba−1 | = 0

|F k
ab−1 | = 0 cab−1 = lim

n→∞
2−k |F k

ab−1 | = 0

|F k
b | = 2k−1 cb = lim

n→∞
2−k |F k

b | =
1

2

|F k
b−1 | = 2k−1 cb−1 = lim

n→∞
2−k |F k

b−1 | =
1

2



Example: the Grigorchuk action

Proposition

Let (G ,X ) be the self-similar action of the Grigorchuk group.
Then (O(G ,X ), σ) has a unique KMSlog 2 state φ which is given
on the nucleus N = {e, a, b, c , d} by

φ(ug ) =



1 for g = e

0 for g = a

1/7 for g = b

2/7 for g = c

4/7 for g = d .



Example: the Grigorchuk action

Sketch of proof.

e(y ,y)

(x ,x)

b

a

(x ,y) (y ,x)

(x ,x)

c

(y ,y)

(x ,x)

d
(x ,x)

(y ,y)

(y ,y)

reduces to

e(y ,y)

(x ,x)

b

c

(y ,y)

d
(x ,x)

(y ,y)

(y ,y)



Example: the Grigorchuk group

F k
a = ∅

ca = lim
n→∞

2−k |F k
a | = 0

|F k
b | =

2k − 2k−(3j+3)

7
where 3j + 3 ≤ k ≤ 3j + 5

cb = lim
n→∞

2−k |F k
b | =

1

7

|F k
c | =

2k+1 − 2k−(3j+2)

7
where 3j + 2 ≤ k ≤ 3j + 4

cc = lim
n→∞

2−k |F k
c | =

2

7

|F k
d | =

2k+2 − 2k−(3j+1)

7
where 3j + 1 ≤ k ≤ 3j + 3

cd = lim
n→∞

2−k |F k
d | =

4

7



Questions

Is there a general formula for the KMSlog 2 states for the
basilica and Grigorchuk actions?

Do the F k
g sets appear in other computations associated with

self-similar actions?

Are there new interesting examples of SSAs that we should be
looking at?
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