Embedding Baumslag-Solitar groups into totally disconnected locally compact groups

Murray Elder, George Willis

Groups Actions Session, AustMS 2012

Scale

van Dantzig: every totally disconnected locally compact (tdlc) group has a compact open subgroup.

For each $x \in G$ and each compact open subgroup V of G, $x^{-1}Vx \cap V$ is open, so its cosets form an open cover of V.

Since V is compact, this means that $[V : x^{-1}Vx \cap V]$ is finite.

Define the scale of x to be $s(x) = \min [V : x^{-1}Vx \cap V]$. A subgroup V realising this minimum is called **minimising** for x.

Scale

The scale function $s: G \to \mathbb{Z}^+$ enjoys the following properties:

- $\bullet~s$ is continuous
- $s(gxg^{-1}) = s(x)$
- if V is minimising for x then it is minimising for x^{-1} .

Commensurated subgroups

If H is a subgroup of G, and $xHx^{-1} \cap H$ is finite index in both xHx^{-1} and H, we say H is **commensurated by** G.

Eg •
$$SL(n,\mathbb{Z})$$
 is commensurated by $SL(n,\mathbb{Q})$.

• $\langle a \rangle$ is commensurated by $BS(m,n) = \langle a,t \mid ta^m t^{-1} = a^n \rangle$

Building a tdlc group

Let G be an abstract group with (commensurated) subgroup H. Then G acts on G/H by permuting cosets, so $G \leq Sym(G/H)$. For each $x \in Sym(G/H)$ and each finite subset F of G/H, put $N(x,F) = \{y \in Sym(G/H) \mid y.(gH) = x.(gH) \forall (gH) \in F\}.$

These sets form a basis for a topology on Sym(G/H).

Building a tdlc group

If H has no subgroup that is normal in G, this topology is Hausdorf (and totally disconnected).

Take the **closure** of G in Sym(G/H) we obtain a tdlc group in which G embeds as a **dense** subgroup

(it is locally compact since H is commensurated).

Embedding BS(m,n) in a tdlc group

Applying this to BS(m,n) for $|m| \neq |n|$, with H = $\langle a \rangle$, we obtain a tdlc in which BS(m,n) is dense, which we call $G_{m,n}$.

To see that we are getting (new) (interesting) (different) groups, we can try to compute the **scales** of elements.

Scales of $G_{m,n}$

Thm (E, Willis): The set of scales for $G_{m,n}$ for $m, n \neq 0, |m| \neq |n|$ is

$$\left\{ \left(\frac{\operatorname{\mathsf{lcm}}(m,n)}{m}\right)^{\rho}, \left(\frac{\operatorname{\mathsf{lcm}}(m,n)}{n}\right)^{\rho} : \rho \in \mathbb{N} \right\}$$

Thus, for every pair of relatively prime integers m, n we get a distinct tdlc group.

Computing scales

Since $s : G_{m,n} \to \mathbb{Z}^+$ is continuous and BS(m,n) is dense in $G_{m,n}$, scales of limit points cannot take different values to scales of elements in BS(m,n).

If V is a compact open subgroup of $G_{m,n}$, put $U = V \cap BS(m,n)$. The orbit of gH under V is the same as the its orbit under U, so $[U : x^{-1}Ux \cap U] = [V : x^{-1}Vx \cap V].$

It follows that to compute scale we can work completely in BS(m,n) rather than $G_{m,n}$.

Useful facts about BS(m, n)

A pinch is a subword of the form $ta^{mp}t^{-1}$ or $t^{-1}a^{np}t$.

Lemma X If $w = a^q t^{\pm 1} u$ is freely reduced and contains no pinches, then

$$w^{-1}\left\langle a^{i}\right\rangle w\cap\left\langle a\right\rangle =u^{-1}\left(t^{\mp1}\left\langle a^{i}\right\rangle t^{\pm1}\cap\left\langle a\right\rangle\right)u\cap\left\langle a\right\rangle.$$

BS(1,*n***)**

Since $ta \to a^n t$ and $at^{-1} \to t^{-1}a^n$, any $x \in BS(1, n)$ equals a word of the form $t^{-p}a^s t^q$ $(p, q \ge 0)$.

Since scale is invariant under conjugation, $s(x) = s(a^{s}t^{q-p})$.

If $q \ge p$, put $\rho = q - p$ (we call this the *t*-exponent sum).

Then $x^{-1}\langle a \rangle x = t^{-\rho}a^{-s}\langle a \rangle a^s t^{\rho} = t^{-\rho}\langle a \rangle t^{\rho}$ and $t^{-\rho}\langle a \rangle t^{\rho} \cap \langle a \rangle = \langle a \rangle$, which means s(x) = 1 and $\langle a \rangle$ is minimising for x.

BS(1,*n***)**

Now suppose $x = a^s t^{q-p}$ with q < p. Put $\tau = p - q$.

Since $\langle a \rangle$ is minimising for x^{-1} it is minimising for x, so we compute $x^{-1} \langle a \rangle x \cap \langle a \rangle = t^{\tau} \langle a \rangle t^{-\tau} \cap \langle a \rangle = \langle a^{n^{\tau}} \rangle$

so the scale is $[\langle a \rangle : \langle a^{n^{\tau}} \rangle] = n^{\tau}$.

BS(
$$m, n$$
), $|m|, |n| \ge 2$

In this case we make use of an asymptotic formula of **Möller**: for *any* compact open subgroup V,

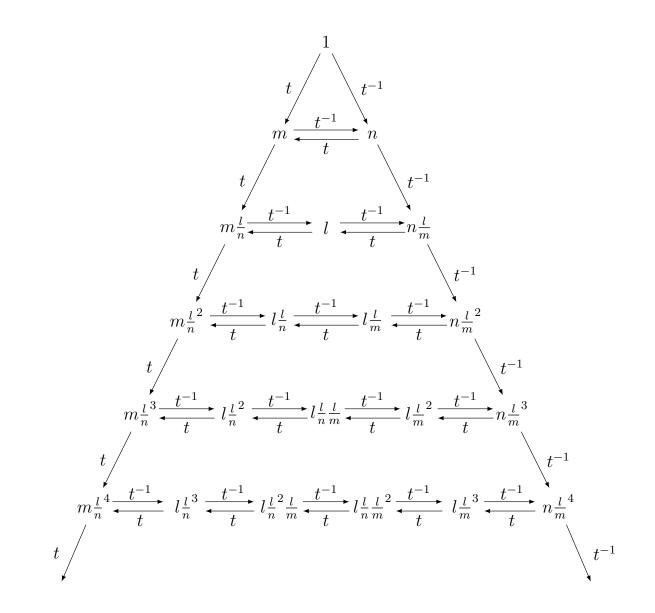
$$s(x) = \lim_{k \to \infty} \left[\mathsf{V} : x^{-k} \mathsf{V} x^k \cap \mathsf{V} \right]^{1/k}$$

We might as well choose V to be the closure of $\langle a \rangle$.

BS(m, n**),** $|m|, |n| \ge 2$

To compute $x^{-k}\langle a\rangle x^k \cap \langle a\rangle$ we use Lemma X, and draw a graph of the computation as follows.

Put p(x) = the path (or word in the free monoid over t, t^{-1}) tracing the computation for x, ρ = the t-exponent sum of x. and assume xx is freely reduced and contains no pinches (this can be arranged).



Facts about the graph

- Level i has i horizontal edges.

- Say p(x) ends at position *i* on level L:

- if $\rho = 0$ then x^k stays in level L and ends at position *i*.
- if $\rho > 0$ and *i* is distance *d* from the left side, then x^k is distance *d* from the left side and on level $L + k\rho$.
- if $\rho < 0$ and i is distance d from the right side, then x^k is distance d from the right side and on level $L + k|\rho|$.

Computing scale

Using these facts and the formula of Möller we can compute the scale for any x:

(on board)

Thanks and References

M. Elder and G. Willis, **Totally disconnected groups from Baumslag-Solitar groups**, arXiv:soon

R. Möller, Structure theory of totally disconnected locally compact groups via graphs and permutations, Canad J Math 54(2002), 795–827

Y. Shalom and G. Willis, **Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity**, arXiv:0911.1966

G. Willis, **The structure of totally disconnected, locally compact groups**, Mathematische Annalen 300(1994), 341–363

G. Willis, **Further properties of the scale function on totally disconnected groups**, J. Algebra 237(2001), 142–164

G. Willis, **A canonical form for automorphisms of totally disconnected locally compact groups**, Random walks and geometry, 2004, 295–316