Locally normal subgroups of totally disconnected groups (paper in preparation)

#### P-E. Caprace<sup>1</sup> C. D. Reid<sup>2</sup> G.A. Willis<sup>2</sup>

<sup>1</sup>Université catholique de Louvain, Belgium

<sup>2</sup>University of Newcastle, Australia

#### AustMS Annual Meeting, Ballarat 2012

Totally disconnected, locally compact groups Simple groups

### **Topological groups**

A **topological group** is a group that is also a topological space, such that  $(x, y) \mapsto xy$  and  $x \mapsto x^{-1}$  are continuous.

Any topological group *G* has a largest connected subgroup  $G_0$ . *G* is **totally disconnected** if  $G_0 = \{1\}$ .

*G* is **locally compact** if there is a compact neighbourhood of 1.

Totally disconnected, locally compact (t.d.l.c.) groups arise in several contexts, e.g.

- Automorphism groups of locally finite graphs
- Galois groups (compact)
- Linear algebraic groups over local fields

イロン 不得 とくほ とくほう 一日

## **Topological groups**

A **topological group** is a group that is also a topological space, such that  $(x, y) \mapsto xy$  and  $x \mapsto x^{-1}$  are continuous.

Any topological group *G* has a largest connected subgroup  $G_0$ . *G* is **totally disconnected** if  $G_0 = \{1\}$ .

*G* is **locally compact** if there is a compact neighbourhood of 1.

Totally disconnected, locally compact (t.d.l.c.) groups arise in several contexts, e.g.

- Automorphism groups of locally finite graphs
- Galois groups (compact)
- Linear algebraic groups over local fields

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

## **Topological groups**

A **topological group** is a group that is also a topological space, such that  $(x, y) \mapsto xy$  and  $x \mapsto x^{-1}$  are continuous.

Any topological group *G* has a largest connected subgroup  $G_0$ . *G* is **totally disconnected** if  $G_0 = \{1\}$ .

#### *G* is **locally compact** if there is a compact neighbourhood of 1.

Totally disconnected, locally compact (t.d.l.c.) groups arise in several contexts, e.g.

- Automorphism groups of locally finite graphs
- Galois groups (compact)
- Linear algebraic groups over local fields

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

# **Topological groups**

A **topological group** is a group that is also a topological space, such that  $(x, y) \mapsto xy$  and  $x \mapsto x^{-1}$  are continuous.

Any topological group *G* has a largest connected subgroup  $G_0$ . *G* is **totally disconnected** if  $G_0 = \{1\}$ .

*G* is **locally compact** if there is a compact neighbourhood of 1.

Totally disconnected, locally compact (t.d.l.c.) groups arise in several contexts, e.g.

- Automorphism groups of locally finite graphs
- Galois groups (compact)
- Linear algebraic groups over local fields

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

### van Dantzig's theorem

Special case: compact + totally disconnected = **profinite** Profinite groups are inverse limits of finite groups and can be well understood in terms of asymptotic properties of finite groups.

In particular they are **residually finite**, so have many normal subgroups.

#### Theorem (van Dantzig)

Let G be a totally disconnected, locally compact group. Then the open compact subgroups of G form a base of neighbourhoods of the identity.

### van Dantzig's theorem

Special case: compact + totally disconnected = **profinite** Profinite groups are inverse limits of finite groups and can be well understood in terms of asymptotic properties of finite groups.

In particular they are **residually finite**, so have many normal subgroups.

#### Theorem (van Dantzig)

Let G be a totally disconnected, locally compact group. Then the open compact subgroups of G form a base of neighbourhoods of the identity.

#### Lemma

Let *G* be a topological group and let *U* and *V* be open compact subgroups of *G*. Then  $U \cap V$  is open, so has finite index in both *U* and *V*. In other words *U* and *V* are **commensurate**.

#### Corollary

Every non-discrete t.d.l.c. group has a distinguished **commensurability class** of infinite residually finite subgroups, namely its open compact subgroups.

Conversely, given any group  $\Gamma$  with a residually finite subgroup  $\Delta$ , if all conjugates of  $\Delta$  are commensurate to  $\Delta$  then  $\Gamma$  can be embedded densely in a t.d.l.c. group *G* so that  $\overline{\Delta}$  is open and compact in *G*. (Belyaev)

#### Lemma

Let *G* be a topological group and let *U* and *V* be open compact subgroups of *G*. Then  $U \cap V$  is open, so has finite index in both *U* and *V*. In other words *U* and *V* are **commensurate**.

#### Corollary

Every non-discrete t.d.l.c. group has a distinguished **commensurability class** of infinite residually finite subgroups, namely its open compact subgroups.

Conversely, given any group  $\Gamma$  with a residually finite subgroup  $\Delta$ , if all conjugates of  $\Delta$  are commensurate to  $\Delta$  then  $\Gamma$  can be embedded densely in a t.d.l.c. group *G* so that  $\overline{\Delta}$  is open and compact in *G*. (Belyaev)

イロト 不得 とくほ とくほとう

э

#### Lemma

Let *G* be a topological group and let *U* and *V* be open compact subgroups of *G*. Then  $U \cap V$  is open, so has finite index in both *U* and *V*. In other words *U* and *V* are **commensurate**.

#### Corollary

Every non-discrete t.d.l.c. group has a distinguished **commensurability class** of infinite residually finite subgroups, namely its open compact subgroups.

Conversely, given any group  $\Gamma$  with a residually finite subgroup  $\Delta$ , if all conjugates of  $\Delta$  are commensurate to  $\Delta$  then  $\Gamma$  can be embedded densely in a t.d.l.c. group *G* so that  $\overline{\Delta}$  is open and compact in *G*. (Belyaev)

Totally disconnected, locally compact groups Simple groups

#### Every finitely generated group $\Gamma \neq 1$ has a **simple** quotient.

Analogue of finitely generated for t.d.l.c. groups is **compactly generated** (= generated by a compact subset). *G* is **topologically simple** if there are no proper non-trivial **closed** normal subgroups.

#### Theorem (Caprace-Monod 2011)

Let *G* be a compactly generated t.d.l.c. group. Then exactly one of the following holds.

- (i) *G* has an infinite discrete quotient.
- (ii) G has a cocompact closed normal subgroup N such that N has no infinite discrete quotient, but N has exactly n non-compact topologically simple quotients, where 0 < n < ∞.</li>

Every finitely generated group  $\Gamma \neq 1$  has a **simple** quotient. Analogue of finitely generated for t.d.l.c. groups is **compactly generated** (= generated by a compact subset). *G* is **topologically simple** if there are no proper non-trivial **closed** normal subgroups.

#### Theorem (Caprace-Monod 2011)

Let G be a compactly generated t.d.l.c. group. Then exactly one of the following holds.

- (i) *G* has an infinite discrete quotient.
- (ii) G has a cocompact closed normal subgroup N such that N has no infinite discrete quotient, but N has exactly n non-compact topologically simple quotients, where 0 < n < ∞.</li>

Every finitely generated group  $\Gamma \neq 1$  has a **simple** quotient. Analogue of finitely generated for t.d.l.c. groups is **compactly generated** (= generated by a compact subset). *G* is **topologically simple** if there are no proper non-trivial **closed** normal subgroups.

#### Theorem (Caprace-Monod 2011)

Let G be a compactly generated t.d.l.c. group. Then exactly one of the following holds.

- (i) G has an infinite discrete quotient.
- (ii) *G* has a cocompact closed normal subgroup *N* such that *N* has no infinite discrete quotient, but *N* has exactly *n* non-compact topologically simple quotients, where  $0 < n < \infty$ .

Say a subgroup *K* of a t.d.l.c. group *G* is **locally normal** if *K* is compact and  $N_G(K)$  is open.

General idea:

- Study t.d.l.c. groups via their locally normal subgroups
- Use structures that are invariant under commensurability
- Special interest in compactly generated, topologically simple groups

Say a subgroup *K* of a t.d.l.c. group *G* is **locally normal** if *K* is compact and  $N_G(K)$  is open.

General idea:

- Study t.d.l.c. groups via their locally normal subgroups
- Use structures that are invariant under commensurability
- Special interest in compactly generated, topologically simple groups

Say a subgroup *K* of a t.d.l.c. group *G* is **locally normal** if *K* is compact and  $N_G(K)$  is open.

General idea:

- Study t.d.l.c. groups via their locally normal subgroups
- Use structures that are invariant under commensurability
- Special interest in compactly generated, topologically simple groups

Locally normal subgroups Direct factors

### The structure lattice

#### Definition

Let *G* be a t.d.l.c. group. Given a subgroup *K* of *G*, write [*K*] for the set of compact subgroups *L* of *G* such that  $K \cap L$  is open in *K* and *L* ( $\Rightarrow$  finite index if *K* is compact). The **structure lattice** of *G* is the set

 $\mathcal{LN}(G) := \{ [K] \mid K \text{ is locally normal in } G \},\$ 

equipped with a partial order:  $[K] \leq [L]$  if  $K \cap L$  is open in K.

This is a **lattice** in the sense that any pair of elements has a least upper bound and greatest lower bound.

Locally normal subgroups Direct factors

# Fixed points in $\mathcal{LN}(G)$

# Two 'trivial' elements of *LN*(*G*): 0 := [{1}] ∞ := {open compact subgroups}.

- G acts on  $\mathcal{LN}(G)$  by conjugation, fixing 0 and  $\infty$ .
- It can happen that  $|\mathcal{LN}(G)| = 2$ , e.g.  $G = PSL_n(\mathbb{Q}_p)$ .

#### Proposition

If *G* is compactly generated and **abstractly** simple, then *G* has no fixed points in  $\mathcal{LN}(G)$  other than 0 and  $\infty$ .

What if G is only topologically simple?

Locally normal subgroups Direct factors

# Fixed points in $\mathcal{LN}(G)$

### • Two 'trivial' elements of $\mathcal{LN}(G)$ :

- $0:=[\{1\}]\quad \infty:=\{\text{open compact subgroups}\}.$
- *G* acts on  $\mathcal{LN}(G)$  by conjugation, fixing 0 and  $\infty$ .
- It can happen that  $|\mathcal{LN}(G)| = 2$ , e.g.  $G = PSL_n(\mathbb{Q}_p)$ .

#### Proposition

If *G* is compactly generated and **abstractly** simple, then *G* has no fixed points in  $\mathcal{LN}(G)$  other than 0 and  $\infty$ .

What if G is only topologically simple?

ヘロン 人間 とくほ とくほ とう

Locally normal subgroups Direct factors

# Fixed points in $\mathcal{LN}(G)$

# • Two 'trivial' elements of $\mathcal{LN}(G)$ :

 $0:=[\{1\}]\quad \infty:=\{\text{open compact subgroups}\}.$ 

- *G* acts on  $\mathcal{LN}(G)$  by conjugation, fixing 0 and  $\infty$ .
- It can happen that  $|\mathcal{LN}(G)| = 2$ , e.g.  $G = PSL_n(\mathbb{Q}_p)$ .

#### Proposition

If *G* is compactly generated and **abstractly** simple, then *G* has no fixed points in  $\mathcal{LN}(G)$  other than 0 and  $\infty$ .

What if G is only topologically simple?

ヘロン 人間 とくほ とくほ とう

Locally normal subgroups Direct factors

# Fixed points in $\mathcal{LN}(G)$

# • Two 'trivial' elements of $\mathcal{LN}(G)$ :

 $0:=[\{1\}]\quad \infty:=\{\text{open compact subgroups}\}.$ 

- *G* acts on  $\mathcal{LN}(G)$  by conjugation, fixing 0 and  $\infty$ .
- It can happen that  $|\mathcal{LN}(G)| = 2$ , e.g.  $G = PSL_n(\mathbb{Q}_p)$ .

#### Proposition

If *G* is compactly generated and **abstractly** simple, then *G* has no fixed points in  $\mathcal{LN}(G)$  other than 0 and  $\infty$ .

What if *G* is only topologically simple?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Locally normal subgroups Direct factors

# Fixed points in $\mathcal{LN}(G)$

# • Two 'trivial' elements of $\mathcal{LN}(G)$ :

 $0:=[\{1\}]\quad \infty:=\{\text{open compact subgroups}\}.$ 

- *G* acts on  $\mathcal{LN}(G)$  by conjugation, fixing 0 and  $\infty$ .
- It can happen that  $|\mathcal{LN}(G)| = 2$ , e.g.  $G = PSL_n(\mathbb{Q}_p)$ .

#### Proposition

If *G* is compactly generated and **abstractly** simple, then *G* has no fixed points in  $\mathcal{LN}(G)$  other than 0 and  $\infty$ .

What if G is only topologically simple?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Locally normal subgroups Direct factors

### **Boolean algebras**

A **Boolean algebra** is a uniquely complemented distributive lattice. It can be thought of as a collection of subsets of an ambient set, ordered by inclusion, that is closed under complementation and under pairwise unions and intersections.

For every Boolean algebra  $\mathcal{A}$  there is a corresponding compact topological space  $\mathfrak{S}$ , the **Stone space** of  $\mathcal{A}$ . elements of  $\mathcal{A} \leftrightarrow$  clopen subsets of  $\mathfrak{S}$  automorphisms of  $\mathcal{A} \leftrightarrow$  homeomorphisms of  $\mathfrak{S}$ 

So if we can find a *G*-invariant Boolean algebra in  $\mathcal{LN}(G)$ , this will give an action of *G* on a compact space.

Locally normal subgroups Direct factors

### **Boolean algebras**

A **Boolean algebra** is a uniquely complemented distributive lattice. It can be thought of as a collection of subsets of an ambient set, ordered by inclusion, that is closed under complementation and under pairwise unions and intersections.

For every Boolean algebra  $\mathcal{A}$  there is a corresponding compact topological space  $\mathfrak{S}$ , the **Stone space** of  $\mathcal{A}$ . elements of  $\mathcal{A} \leftrightarrow$  clopen subsets of  $\mathfrak{S}$  automorphisms of  $\mathcal{A} \leftrightarrow$  homeomorphisms of  $\mathfrak{S}$ 

So if we can find a *G*-invariant Boolean algebra in  $\mathcal{LN}(G)$ , this will give an action of *G* on a compact space.

Locally normal subgroups Direct factors

### **Boolean algebras**

A **Boolean algebra** is a uniquely complemented distributive lattice. It can be thought of as a collection of subsets of an ambient set, ordered by inclusion, that is closed under complementation and under pairwise unions and intersections.

For every Boolean algebra  $\mathcal{A}$  there is a corresponding compact topological space  $\mathfrak{S}$ , the **Stone space** of  $\mathcal{A}$ . elements of  $\mathcal{A} \leftrightarrow$  clopen subsets of  $\mathfrak{S}$  automorphisms of  $\mathcal{A} \leftrightarrow$  homeomorphisms of  $\mathfrak{S}$ 

So if we can find a *G*-invariant Boolean algebra in  $\mathcal{LN}(G)$ , this will give an action of *G* on a compact space.

Locally normal subgroups Direct factors

### Local decomposition lattice

# A **local factor** of *G* is a direct factor of an open compact subgroup of *G*.

The **quasi-centre** QZ(G) of G is the set of elements that centralise an open subgroup of G.

#### Proposition

Let *G* be a t.d.l.c. group such that QZ(G) = 1. Then

 $\mathcal{CD}(G) := \{[K] \mid K \text{ is a local factor of } G\}$ 

is a Boolean algebra.

ヘロト 人間 ト ヘヨト ヘヨト

Locally normal subgroups Direct factors

Local decomposition lattice

A **local factor** of *G* is a direct factor of an open compact subgroup of *G*.

The **quasi-centre** QZ(G) of *G* is the set of elements that centralise an open subgroup of *G*.

Let G be a t.d.l.c. group such that QZ(G) = 1. Ther

 $\mathcal{CD}(G) := \{[K] \mid K \text{ is a local factor of } G\}$ 

is a Boolean algebra.

ヘロト 人間 ト ヘヨト ヘヨト

Locally normal subgroups Direct factors

Local decomposition lattice

A **local factor** of *G* is a direct factor of an open compact subgroup of *G*.

The **quasi-centre** QZ(G) of *G* is the set of elements that centralise an open subgroup of *G*.

#### Proposition

Let *G* be a t.d.l.c. group such that QZ(G) = 1. Then

 $\mathcal{LD}(G) := \{[K] \mid K \text{ is a local factor of } G\}$ 

is a Boolean algebra.

Locally normal subgroups Direct factors

### **Centraliser lattice**

With an extra condition we can obtain another Boolean algebra that accounts for all direct decompositions of locally normal subgroups into locally normal factors.

#### Proposition

Let *G* be a t.d.l.c. group such that QZ(G) = 1 and suppose *G* has no non-trivial abelian locally normal subgroups. Then

 $\mathcal{LC}(G) := \{ [C_G(K)] \mid K \text{ is locally normal in } G \}$ 

is a Boolean algebra.

Locally normal subgroups Direct factors

### **Centraliser lattice**

With an extra condition we can obtain another Boolean algebra that accounts for all direct decompositions of locally normal subgroups into locally normal factors.

#### Proposition

Let *G* be a t.d.l.c. group such that QZ(G) = 1 and suppose *G* has no non-trivial abelian locally normal subgroups. Then

 $\mathcal{LC}(G) := \{ [C_G(K)] \mid K \text{ is locally normal in } G \}$ 

is a Boolean algebra.



### $\{0,\infty\} \subseteq \mathcal{LD}(G) \subseteq \mathcal{LC}(G) \subseteq \mathcal{LN}(G)$

From now on *G* is a compactly generated, topologically simple t.d.l.c. group.

For some of our results we need no further assumptions. But we can show more in the case that  $|\mathcal{LC}(G)| > 2$ .

Most known examples have  $|\mathcal{LC}(G)| > 2$  (excluding linear algebraic groups over local fields).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $\frac{\text{General}}{\mathcal{LC}(G) > 2}$ 

### Quasi-centre and abelian subgroups

# To define $\mathcal{LD}(G)$ and $\mathcal{LC}(G)$ we needed to impose some conditions. Fortunately:

#### Theorem (Barnea–Ershov–Weigel; CRW

Let G be a compactly generated, topologically simple t.d.l.c. group. Then QZ(G) = 1 and G has no non-trivial abelian locally normal subgroups.

So  $\mathcal{LD}(G)$  and  $\mathcal{LC}(G)$  are always Boolean algebras in this context.

 $\frac{\text{General}}{\mathcal{LC}(G) > 2}$ 

### Quasi-centre and abelian subgroups

To define  $\mathcal{LD}(G)$  and  $\mathcal{LC}(G)$  we needed to impose some conditions. Fortunately:

Theorem (Barnea–Ershov–Weigel; CRW)

Let *G* be a compactly generated, topologically simple t.d.l.c. group. Then QZ(G) = 1 and *G* has no non-trivial abelian locally normal subgroups.

So  $\mathcal{LD}(G)$  and  $\mathcal{LC}(G)$  are always Boolean algebras in this context.

ヘロン 人間 とくほ とくほ とう

1

General  $\mathcal{LC}(G) > 2$ 

## Dynamics on the centraliser lattice

#### Theorem (CRW)

Let  $\mathcal{A}$  be a G-invariant subalgebra of  $\mathcal{LC}(G)$ . Suppose  $|\mathcal{A}| > 2$ .

(i) Every orbit of G on  $\mathfrak{S}(\mathcal{A})$  is dense. ( $\Rightarrow$  faithful action)

- (ii) There exists  $\alpha \in \mathcal{A} \setminus \{0\}$  such that for all  $\beta \in \mathcal{A} \setminus \{0\}$  there is some  $g \in G$  such that  $g\alpha < \beta$ .
- (iii)  $\mathcal{A}$  is infinite and has no atoms.
- (iv) G is not amenable.
- (v) There exists  $g \in G$  with non-trivial contraction group.
- (vi) There exist  $g, h \in G$  such that the submonoid of G generated by g and h is free on  $\{g, h\}$ .

General  $\mathcal{LC}(G) > 2$ 

### Dynamics on the centraliser lattice

#### Theorem (CRW)

Let  $\mathcal{A}$  be a G-invariant subalgebra of  $\mathcal{LC}(G)$ . Suppose  $|\mathcal{A}| > 2$ .

- (i) Every orbit of G on  $\mathfrak{S}(\mathcal{A})$  is dense. ( $\Rightarrow$  faithful action)
- (ii) There exists  $\alpha \in \mathcal{A} \setminus \{0\}$  such that for all  $\beta \in \mathcal{A} \setminus \{0\}$  there is some  $g \in G$  such that  $g\alpha < \beta$ .
- (iii)  $\mathcal{A}$  is infinite and has no atoms.
- (iv) G is not amenable.
- (v) There exists  $g \in G$  with non-trivial contraction group.
- (vi) There exist  $g, h \in G$  such that the submonoid of G generated by g and h is free on  $\{g, h\}$ .

General  $\mathcal{LC}(G) > 2$ 

# Dynamics on the centraliser lattice

#### Theorem (CRW)

Let  $\mathcal{A}$  be a G-invariant subalgebra of  $\mathcal{LC}(G)$ . Suppose  $|\mathcal{A}| > 2$ .

- (i) Every orbit of G on  $\mathfrak{S}(\mathcal{A})$  is dense. ( $\Rightarrow$  faithful action)
- (ii) There exists  $\alpha \in \mathcal{A} \setminus \{0\}$  such that for all  $\beta \in \mathcal{A} \setminus \{0\}$  there is some  $g \in G$  such that  $g\alpha < \beta$ .
- (iii)  $\mathcal{A}$  is infinite and has no atoms.
- (iv) G is not amenable.
- (v) There exists  $g \in G$  with non-trivial contraction group.
- (vi) There exist  $g, h \in G$  such that the submonoid of G generated by g and h is free on  $\{g, h\}$ .

General  $\mathcal{LC}(G) > 2$ 

### Dense normal subgroups

#### Theorem (CRW)

Let  $\mathcal{A}$  be a *G*-invariant subalgebra of  $\mathcal{LC}(G)$ . Suppose  $|\mathcal{A}| > 2$ . Then there is a unique smallest dense normal subgroup D of G. D contains a compact subgroup K such that  $[K] \in \mathcal{A} \setminus \{0\}$ .

#### Corollary

If  $|\mathcal{LD}(G)| > 2$  then G is abstractly simple.

<ロ> <問> <問> < 回> < 回> < 回> < 回> < 回

General  $\mathcal{LC}(G) > 2$ 

### Dense normal subgroups

#### Theorem (CRW)

Let  $\mathcal{A}$  be a *G*-invariant subalgebra of  $\mathcal{LC}(G)$ . Suppose  $|\mathcal{A}| > 2$ . Then there is a unique smallest dense normal subgroup D of G. D contains a compact subgroup K such that  $[K] \in \mathcal{A} \setminus \{0\}$ .

#### Corollary

If  $|\mathcal{LD}(G)| > 2$  then G is abstractly simple.

ヘロン 人間 とくほ とくほ とう

General  $\mathcal{LC}(G) > 2$ 

### Last slide

### Thank you for your attention!

Caprace, Reid, Willis Locally normal subgroups of totally disconnected groups

・ロト ・ 同ト ・ ヨト ・ ヨト

э