Property (P^k) for groups acting on trees 0000

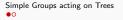
Simple Groups of Automorphisms of Trees

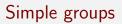
Chris Banks, Murray Elder and George Willis

CARMA, University of Newcastle

September 25th, 2012

Chris Banks, Murray Elder and George Willis





Property (P^k) for groups acting on trees 0000

The structure of finite groups and connected Lie groups can be understood by reducing to building blocks - their **simple groups**.

Property (P^k) for groups acting on trees 0000

The structure of finite groups and connected Lie groups can be understood by reducing to building blocks - their **simple groups**. Recent developments have shown that simple groups have a role to play in the case of *totally disconnected locally compact topological groups*.

Property (P^k) for groups acting on trees 0000

The structure of finite groups and connected Lie groups can be understood by reducing to building blocks - their **simple groups**. Recent developments have shown that simple groups have a role to play in the case of *totally disconnected locally compact topological groups*.

• [Willis, 2007] finds that simplicity imposes restrictions on the compact open subgroups.

Property (P^k) for groups acting on trees 0000

The structure of finite groups and connected Lie groups can be understood by reducing to building blocks - their **simple groups**. Recent developments have shown that simple groups have a role to play in the case of *totally disconnected locally compact topological groups*.

- [Willis, 2007] finds that simplicity imposes restrictions on the compact open subgroups.
- [Caprace & Monod, 2011] decompose compactly generated tdlc groups into simple pieces.

Property (P^k) for groups acting on trees 0000

The structure of finite groups and connected Lie groups can be understood by reducing to building blocks - their **simple groups**. Recent developments have shown that simple groups have a role to play in the case of *totally disconnected locally compact topological groups*.

- [Willis, 2007] finds that simplicity imposes restrictions on the compact open subgroups.
- [Caprace & Monod, 2011] decompose compactly generated tdlc groups into simple pieces.

Groups acting on trees are well-studied examples of tdlc groups.

The k-closure of G acting on \mathcal{T}_{000}

Property (P^k) for groups acting on trees 0000

Groups acting on trees

• [Tits, 1970] (amongst other things) provides "Property (P)" of groups acting on trees, which is used to find simple groups.

The k-closure of G acting on \mathcal{T}_{000}

Property (P^k) for groups acting on trees 0000

Groups acting on trees

- [Tits, 1970] (amongst other things) provides "Property (P)" of groups acting on trees, which is used to find simple groups.
- [Moller & Vonk, 2012] new paper on arXiv; investigates a more general property, but with similar results.

Groups acting on trees

- [Tits, 1970] (amongst other things) provides "Property (P)" of groups acting on trees, which is used to find simple groups.
- [Moller & Vonk, 2012] new paper on arXiv; investigates a more general property, but with similar results.
- [Burger & Mozes, 2000] finds characteristic subgroups (the *quasicentre* QZ(G) and the *cocompact core* G^{∞}) of any tdlc group. These produce simple groups given certain conditions on the *local action* of *G*.

Groups acting on trees

- [Tits, 1970] (amongst other things) provides "Property (P)" of groups acting on trees, which is used to find simple groups.
- [Moller & Vonk, 2012] new paper on arXiv; investigates a more general property, but with similar results.
- [Burger & Mozes, 2000] finds characteristic subgroups (the quasicentre QZ(G) and the cocompact core G[∞]) of any tdlc group. These produce simple groups given certain conditions on the local action of G. Also define the class of universal groups U(F) acting on regular trees.

The *k*-closure of *G* acting on $\mathcal{T} = 000$

Property (P^k) for groups acting on trees 0000

Local actions and universal groups

Definition

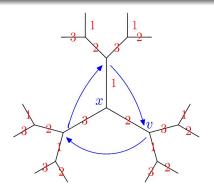
For $G < \operatorname{Aut}(\mathcal{T})$, the *local action* of G at any vertex $v \in V(\mathcal{T})$ is the permutation group formed by restricting $\operatorname{Stab}_G(v)$ to E(v); the set of edges incident on v.

The *k*-closure of *G* acting on \mathcal{T} •••• Property (P^k) for groups acting on trees 0000

Local actions and universal groups

Definition

For $G < \operatorname{Aut}(\mathcal{T})$, the *local action* of G at any vertex $v \in V(\mathcal{T})$ is the permutation group formed by restricting $\operatorname{Stab}_G(v)$ to E(v); the set of edges incident on v.



For $F < S_d$ the universal group U(F) acts vertex-transitively on the *d*-regular tree with local action *F*.

The *k*-closure of *G* acting on \mathcal{T} $\bigcirc \bigcirc \bigcirc$ Property (P^k) for groups acting on trees 0000

The *k*-closure of *G* acting on \mathcal{T}

Definition

Suppose $G < \operatorname{Aut}(\mathcal{T})$ and $k \in \mathbb{N}$. Let *d* be the distance metric on \mathcal{T} and let B = B(v, k) be the closed ball of radius *k* centred at $v \in V(\mathcal{T})$.

The *k*-closure of *G* acting on \mathcal{T} $\bigcirc \bigcirc \bigcirc$ Property (P^k) for groups acting on trees 0000

The *k*-closure of *G* acting on \mathcal{T}

Definition

Suppose $G < \operatorname{Aut}(\mathcal{T})$ and $k \in \mathbb{N}$. Let *d* be the distance metric on \mathcal{T} and let B = B(v, k) be the closed ball of radius *k* centred at $v \in V(\mathcal{T})$. Then the *k*-closure of *G* is

 $G^{(k)} := \{ \alpha \in \mathsf{Aut}(\mathcal{T}) : \forall v \in V(\mathcal{T}), \ \exists \ g \in G \ \text{with} \ g|_B = \alpha|_B \}$

The *k*-closure of *G* acting on \mathcal{T} $\bigcirc \bigcirc \bigcirc$ Property (P^k) for groups acting on trees 0000

The *k*-closure of *G* acting on \mathcal{T}

Definition

Suppose $G < \operatorname{Aut}(\mathcal{T})$ and $k \in \mathbb{N}$. Let *d* be the distance metric on \mathcal{T} and let B = B(v, k) be the closed ball of radius *k* centred at $v \in V(\mathcal{T})$. Then the *k*-closure of *G* is

$$\mathcal{G}^{(k)} := \{ lpha \in \mathsf{Aut}(\mathcal{T}) : orall \mathbf{v} \in \mathcal{V}(\mathcal{T}), \; \exists \; \mathbf{g} \in \mathcal{G} \; ext{with} \; \mathbf{g}|_{\mathcal{B}} = lpha|_{\mathcal{B}} \}$$

 $G^{(k)}$ is a closed subgroup of $Aut(\mathcal{T})$.

The *k*-closure of *G* acting on \mathcal{T} $\bigcirc \bigcirc \bigcirc$ Property (P^k) for groups acting on trees 0000

The *k*-closure of *G* acting on \mathcal{T}

Definition

Suppose $G < \operatorname{Aut}(\mathcal{T})$ and $k \in \mathbb{N}$. Let *d* be the distance metric on \mathcal{T} and let B = B(v, k) be the closed ball of radius *k* centred at $v \in V(\mathcal{T})$. Then the *k*-closure of *G* is

$$\mathcal{G}^{(k)} := \{ lpha \in \mathsf{Aut}(\mathcal{T}) : orall v \in \mathcal{V}(\mathcal{T}), \; \exists \; g \in \mathcal{G} \; ext{with} \; g|_B = lpha|_B \}$$

 $G^{(k)}$ is a closed subgroup of Aut (\mathcal{T}) . $G^{(k+1)} \leq G^{(k)}$ and $\bigcap_{k \in \mathbb{N}} G^{(k)} = \overline{G}$, the closure of G.

The *k*-closure of *G* acting on \mathcal{T} $\bigcirc \bigcirc \bigcirc$ Property (P^k) for groups acting on trees 0000

The *k*-closure of *G* acting on \mathcal{T}

Definition

Suppose $G < \operatorname{Aut}(\mathcal{T})$ and $k \in \mathbb{N}$. Let *d* be the distance metric on \mathcal{T} and let B = B(v, k) be the closed ball of radius *k* centred at $v \in V(\mathcal{T})$. Then the *k*-closure of *G* is

$$\mathcal{G}^{(k)} := \{ lpha \in \mathsf{Aut}(\mathcal{T}) : orall \mathbf{v} \in \mathcal{V}(\mathcal{T}), \; \exists \; \mathbf{g} \in \mathcal{G} \; ext{with} \; \mathbf{g}|_{\mathcal{B}} = lpha|_{\mathcal{B}} \}$$

 $G^{(k)}$ is a closed subgroup of Aut (\mathcal{T}) . $G^{(k+1)} \leq G^{(k)}$ and $\bigcap_{k \in \mathbb{N}} G^{(k)} = \overline{G}$, the closure of G. The orbit $G^{(k)}.v$ is equal to G.v for every $v \in V(\mathcal{T})$.

The *k*-closure of *G* acting on \mathcal{T} $\bigcirc \bigcirc \bigcirc$ Property (P^k) for groups acting on trees 0000

The *k*-closure of *G* acting on \mathcal{T}

Definition

Suppose $G < \operatorname{Aut}(\mathcal{T})$ and $k \in \mathbb{N}$. Let *d* be the distance metric on \mathcal{T} and let B = B(v, k) be the closed ball of radius *k* centred at $v \in V(\mathcal{T})$. Then the *k*-closure of *G* is

$$\mathcal{G}^{(k)} := \{ lpha \in \mathsf{Aut}(\mathcal{T}) : orall v \in V(\mathcal{T}), \; \exists \; g \in \mathcal{G} \; ext{with} \; g|_B = lpha|_B \}$$

 $G^{(k)}$ is a closed subgroup of Aut (\mathcal{T}) . $G^{(k+1)} \leq G^{(k)}$ and $\bigcap_{k \in \mathbb{N}} G^{(k)} = \overline{G}$, the closure of G. The orbit $G^{(k)}.v$ is equal to G.v for every $v \in V(\mathcal{T})$.

Proposition

 $G^{(k)} = H^{(k)}$ iff G, H act with the same orbits and Stab_Gv|_{B(v,k)} = Stab_Hv|_{B(v,k)} for vertices in each orbit.

The *k*-closure of *G* acting on \mathcal{T}

Property (P^k) for groups acting on trees 0000

Characterising and Calculating $G^{(k)}$

Let Γ be a finite graph with universal covering tree \mathcal{T} . Then a discrete group $G < \operatorname{Aut}(\mathcal{T})$ exists such that

$$\pi_1(\Gamma) \hookrightarrow G \twoheadrightarrow \operatorname{Aut}(\Gamma)$$

is an exact sequence,

The *k*-closure of *G* acting on \mathcal{T}

Property (P^k) for groups acting on trees 0000

Characterising and Calculating $G^{(k)}$

Let Γ be a finite graph with universal covering tree \mathcal{T} . Then a discrete group $G < \operatorname{Aut}(\mathcal{T})$ exists such that

 $\pi_1(\Gamma) \hookrightarrow G \twoheadrightarrow \operatorname{Aut}(\Gamma)$

is an exact sequence, then $G^{(k)} = G$ for all $k \ge \text{diam}(\Gamma)$, but perhaps $G^{(k)}$ is non-discrete for all $k < \text{diam}(\Gamma)$.

The *k*-closure of *G* acting on \mathcal{T}

Property (P^k) for groups acting on trees 0000

Characterising and Calculating $G^{(k)}$

Let Γ be a finite graph with universal covering tree \mathcal{T} . Then a discrete group $G < \operatorname{Aut}(\mathcal{T})$ exists such that

 $\pi_1(\Gamma) \hookrightarrow G \twoheadrightarrow \operatorname{Aut}(\Gamma)$

is an exact sequence, then $G^{(k)} = G$ for all $k \ge \text{diam}(\Gamma)$, but perhaps $G^{(k)}$ is non-discrete for all $k < \text{diam}(\Gamma)$.

Example

The graphs $\Gamma = C(p, r, 1)$ introduced in [Gardiner & Praeger, 1994], with vertex set $\{(i, k) : i \in \mathbb{Z}_r, 1 \le k \le p\}$ and (i, k) adjacent to (j, l) iff $j = i \pm 1$. If r > 4 then Stab $(v) \cong (S_{p-1} \times S_p^{r-1}) \rtimes \mathbb{Z}_2$.

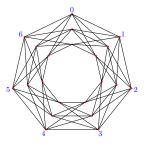


Figure: *C*(3,7,1)

The *k*-closure of *G* acting on \mathcal{T}

Property (P^k) for groups acting on trees 0000

Characterising and Calculating $G^{(k)}$

Let Γ be a finite graph with universal covering tree \mathcal{T} . Then a discrete group $G < \operatorname{Aut}(\mathcal{T})$ exists such that

 $\pi_1(\Gamma) \hookrightarrow G \twoheadrightarrow \operatorname{Aut}(\Gamma)$

is an exact sequence, then $G^{(k)} = G$ for all $k \ge \text{diam}(\Gamma)$, but perhaps $G^{(k)}$ is non-discrete for all $k < \text{diam}(\Gamma)$.

Example

The graphs $\Gamma = C(p, r, 1)$ introduced in [Gardiner & Praeger, 1994], with vertex set $\{(i,k): i \in \mathbb{Z}_r, 1 \le k \le p\}$ and (i,k) adjacent to (j,l) iff $j = i \pm 1$. If r > 4 then Stab $(v) \cong (S_{p-1} \times S_p^{r-1}) \rtimes \mathbb{Z}_2$. Γ is covered by \mathcal{T}_{2p} ; G (and $G^{(k)}$) is vertex-transitive with local action $\cong S_p^2 \rtimes \mathbb{Z}_2$.

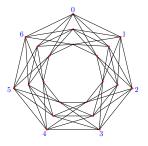


Figure: C(3, 7, 1)

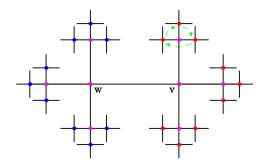
The *k*-closure of *G* acting on \mathcal{T} 000

Property (P^k) for groups acting on trees •••••

Independence Property (P^k)

Definition

Suppose $G < \operatorname{Aut}(\mathcal{T})$ and fix $k \in \mathbb{N}$. For any edge $\{v, w\}$, let $\mathcal{T}_{(v,w)}$ denote the semitree of \mathcal{T} containing v but not $\{v, w\}$. Let $\mathcal{B} = B(v, k) \cap B(w, k)$ and denote $F := \operatorname{Fix}_{G}(\mathcal{B})$.



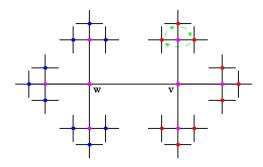
The *k*-closure of *G* acting on \mathcal{T} 000

Property (P^k) for groups acting on trees •••••

Independence Property (P^k)

Definition

Suppose $G < \operatorname{Aut}(\mathcal{T})$ and fix $k \in \mathbb{N}$. For any edge $\{v, w\}$, let $\mathcal{T}_{(v,w)}$ denote the semitree of \mathcal{T} containing v but not $\{v, w\}$. Let $\mathcal{B} = B(v, k) \cap B(w, k)$ and denote $F := \operatorname{Fix}_G(\mathcal{B})$. Then G satisfies *Property* (P^k) if $F \cong \operatorname{Fix}_F(\mathcal{T}_{(v,w)})\operatorname{Fix}_F(\mathcal{T}_{(w,v)})$.



The k-closure of G acting on \mathcal{T}_{000}

Property (P^k) for groups acting on trees

Properties of Property (P^k)

• If G is closed, (P^1) is equivalent to Property (P) [Tits, 1970].

The *k*-closure of *G* acting on \mathcal{T} 000

Property (P^k) for groups acting on trees 0000

Properties of Property (P^k)

- If G is closed, (P^1) is equivalent to Property (P) [Tits, 1970].
- Property (P^k) implies Property (P^j) for all j > k.

The k-closure of G acting on \mathcal{T} 000

Property (P^k) for groups acting on trees 0000

Properties of Property (P^k)

- If G is closed, (P^1) is equivalent to Property (P) [Tits, 1970].
- Property (P^k) implies Property (P^j) for all j > k.
- The sequence {G^(k) : k ∈ N} terminates at G^(k) = Ḡ iff G has Property (P^k).

The *k*-closure of *G* acting on \mathcal{T} 000

Property (P^k) for groups acting on trees $\circ \circ \circ \circ \circ$

Independence Property (P^k)

Theorem

Let $G < \operatorname{Aut}(\mathcal{T})$ be closed, fix $k \in \mathbb{N}$ and let $G^{(k)+}$ denote the group generated by automorphisms in $\operatorname{Fix}_G(\mathcal{B})$ for any edge of \mathcal{T} . Suppose that G satisfies Property (P^k) and does not stabilise a proper non-empty subtree or an end of \mathcal{T} .

The *k*-closure of *G* acting on \mathcal{T} 000

Property (P^k) for groups acting on trees $\bigcirc \bigcirc \bigcirc \bigcirc$

Independence Property (P^k)

Theorem

Let $G < \operatorname{Aut}(\mathcal{T})$ be closed, fix $k \in \mathbb{N}$ and let $G^{(k)+}$ denote the group generated by automorphisms in $\operatorname{Fix}_G(\mathcal{B})$ for any edge of \mathcal{T} . Suppose that G satisfies Property (P^k) and does not stabilise a proper non-empty subtree or an end of \mathcal{T} . Then every nontrivial subgroup of G normalised by $G^{(k)+}$ contains $G^{(k)+}$;

The *k*-closure of *G* acting on \mathcal{T} 000

Property (P^k) for groups acting on trees $\bigcirc \bigcirc \bigcirc \bigcirc$

Independence Property (P^k)

Theorem

Let $G < \operatorname{Aut}(\mathcal{T})$ be closed, fix $k \in \mathbb{N}$ and let $G^{(k)+}$ denote the group generated by automorphisms in $\operatorname{Fix}_G(\mathcal{B})$ for any edge of \mathcal{T} . Suppose that G satisfies Property (P^k) and does not stabilise a proper non-empty subtree or an end of \mathcal{T} . Then every nontrivial subgroup of G normalised by $G^{(k)+}$ contains $G^{(k)+}$; in particular $G^{(k)+}$ is simple or trivial.

The k-closure of G acting on \mathcal{T}_{000}

Property (P^k) for groups acting on trees $\bigcirc \bigcirc \bigcirc \bigcirc$

References and Further Information

- M. Burger & S. Mozes, *PHIMES* **92** (2000), 113–150.
- P.-E. Caprace & N. Monod, Math. Proc. Camb. Phil. Soc. 150 (2011), 97–128.
- A. Gardiner & C. E. Praeger, *Europ. J. Combinatorics*, **15** (1994), 383–397.
- R. G. Möller & J. Vonk, arXiv:1209.3625v1 (2012).
- J. Tits, In *Essays on topology and related topics*, 188–211, Springer Verlag, 1970.
- G. Willis, J. Algebra, **312** (2007), 405–417.