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Simple groups

The structure of finite groups and connected Lie groups can be
understood by reducing to building blocks - their simple groups.

Recent developments have shown that simple groups have a role to
play in the case of totally disconnected locally compact topological
groups.

[Willis, 2007] finds that simplicity imposes restrictions on the
compact open subgroups.

[Caprace & Monod, 2011] decompose compactly generated
tdlc groups into simple pieces.

Groups acting on trees are well-studied examples of tdlc groups.
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Groups acting on trees

[Tits, 1970] (amongst other things) provides “Property (P)”
of groups acting on trees, which is used to find simple groups.

[Moller & Vonk, 2012] - new paper on arXiv; investigates a
more general property, but with similar results.

[Burger & Mozes, 2000] - finds characteristic subgroups (the
quasicentre QZ (G ) and the cocompact core G∞) of any tdlc
group. These produce simple groups given certain conditions
on the local action of G . Also define the class of universal
groups U(F ) acting on regular trees.
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Local actions and universal groups

Definition

For G < Aut(T ), the local action of G at any vertex v ∈ V (T ) is
the permutation group formed by restricting StabG (v) to E (v);
the set of edges incident on v .

For F < Sd the
universal group

U(F ) acts
vertex-transitively
on the d-regular
tree with local

action F .

Chris Banks, Murray Elder and George Willis Simple Groups of Automorphisms of Trees 4 / 10



Simple Groups acting on Trees The k-closure of G acting on T Property (Pk ) for groups acting on trees

Local actions and universal groups

Definition

For G < Aut(T ), the local action of G at any vertex v ∈ V (T ) is
the permutation group formed by restricting StabG (v) to E (v);
the set of edges incident on v .

For F < Sd the
universal group

U(F ) acts
vertex-transitively
on the d-regular
tree with local

action F .

Chris Banks, Murray Elder and George Willis Simple Groups of Automorphisms of Trees 4 / 10



Simple Groups acting on Trees The k-closure of G acting on T Property (Pk ) for groups acting on trees

The k-closure of G acting on T

Definition

Suppose G < Aut(T ) and k ∈ N. Let d be the distance metric on
T and let B = B(v , k) be the closed ball of radius k centred at
v ∈ V (T ).

Then the k-closure of G is

G (k) := {α ∈ Aut(T ) : ∀v ∈ V (T ), ∃ g ∈ G with g |B = α|B}

G (k) is a closed subgroup of Aut(T ). G (k+1) ≤ G (k) and⋂
k∈N G (k) = G , the closure of G . The orbit G (k).v is equal to G .v

for every v ∈ V (T ).

Proposition

G (k) = H(k) iff G ,H act with the same orbits and
StabGv |B(v ,k) = StabHv |B(v ,k) for vertices in each orbit.
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Characterising and Calculating G (k)

Let Γ be a finite graph with universal covering tree T . Then a
discrete group G < Aut(T ) exists such that

π1(Γ) ↪→ G � Aut(Γ)

is an exact sequence,

then G (k) = G for all k ≥ diam(Γ), but
perhaps G (k) is non-discrete for all k < diam(Γ).

Example

The graphs Γ = C (p, r , 1) introduced in
[Gardiner & Praeger, 1994], with vertex set
{(i , k) : i ∈ Zr , 1 ≤ k ≤ p} and (i , k) adjacent
to (j , l) iff j = i ± 1. If r > 4 then
Stab(v) ∼= (Sp−1 × S r−1

p ) o Z2.

Γ is covered by T2p; G (and G (k)) is
vertex-transitive with local action ∼= S2

p o Z2.

0

1

2

34

5

6

Figure: C (3, 7, 1)
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Independence Property (Pk)

Definition

Suppose G < Aut(T ) and fix k ∈ N. For any edge {v ,w}, let
T(v ,w) denote the semitree of T containing v but not {v ,w}. Let
B = B(v , k) ∩ B(w , k) and denote F := FixG (B).

Then G
satisfies Property (Pk) if F ∼= FixF (T(v ,w))FixF (T(w ,v)).

vvvwww
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Properties of Property (Pk)

If G is closed, (P1) is equivalent to Property (P) [Tits, 1970].

Property (Pk) implies Property (P j) for all j > k.

The sequence {G (k) : k ∈ N} terminates at G (k) = G iff G
has Property (Pk).
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Independence Property (Pk)

Theorem

Let G < Aut(T ) be closed, fix k ∈ N and let G (k)+ denote the
group generated by automorphisms in FixG (B) for any edge of T .
Suppose that G satisfies Property (Pk) and does not stabilise a
proper non-empty subtree or an end of T .

Then every nontrivial
subgroup of G normalised by G (k)+ contains G (k)+; in particular
G (k)+ is simple or trivial.
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