Relative hyperbolicity and near-hyperbolicity

Lawrence Reeves University of Melbourne

24 September 2012

A bit of background

- **IDED** Hyperbolic groups are groups that act geometrically on δ -hyperbolic spaces.
- \triangleright Suppose that G acts on a δ -hyperbolic space X.
- **►** The boundary at infinity ∂X is a compact metrizable space.
- **►** There is an induced action of G on ∂X by homeomorphisms.
- \triangleright The existence and dynamics of such an action on a compact metric space K , actually characterises hyperbolic groups.
- \triangleright Can also consider the induced equivalence relation on K.
	- \blacktriangleright Is it hyperfinite? Tame? Near-hyperbolic?

Relative hyperbolicity

Definition

Let G be a countable group acting a compact metric space K . The action is a *convergence action* if the induced action on the space of distinct triples is properly discontinuous.

Theorem (Tukia)

Suppose that a group G acts properly discontinuously on a proper δ-hyperbolic space X. Then the induced action on ∂X is a convergence action.

Theorem (Bowditch)

Suppose that a group G admits a convergence action on a compact metric space K. If the action on $[K]^3$ is cocompact, then G is hyperbolic. Then G is hyperbolic.

Definition

Let G be a countable group with a convergence action on compact metric space K .

- 1. An element $g \in G$ is loxodromic if it fixes exactly two points of K.
- 2. A subgroup $P \le G$ is *parabolic* is if it is infinite and contains no loxodromic element. The fixed point of P is called a *parabolic* point.
- 3. A parabolic point $p \in K$ is called *bounded* if $Stab_G(p)$ acts cocompactly on $K \setminus \{p\}$.
- 4. A point $\xi \in K$ is a conical limit point if there exists a sequence $\{g_i\} \subseteq G$ and distinct points $\alpha, \beta \in K$ such that $g_i(\xi) \to \alpha$ and $g_i(\xi') \to \beta$ for all $\xi' \in K \setminus {\xi}.$

Relative hyperbolicity

Definition (Gromov, Farb, Bowditch,...)

A countable group G is relatively hyperbolic if it admits a properly discontinuous action on a proper δ -hyperbolic space X such that the induced convergence group action on ∂X is such that every point of ∂X is either a bounded parabolic point or a conical limit point.

We say that (G, \mathcal{P}) is relatively hyperbolic, where $\mathcal P$ is a set of representatives of the conjucacy classes of maximal parabolic subgroups.

Examples

- \blacktriangleright free groups
- \blacktriangleright geometrically finite Kleinian groups
- \triangleright fundamental groups of complete non-compact finite volume Riemannian manifolds of pinched negative sectional curvature
- \blacktriangleright limit groups (Dahmani-Groves)

Consider $F_2 = \langle x, y | - \rangle$ acting on a regular 4-valent tree T (its Cayley graph).

Get an action on $K = \partial T$, the space of ends of T.

All elements of K are conical limit points: Identifying K with the set of infinite reduced words over $\{x, x^{-1}, y, y^{-1}\}$ Given $\xi=(a_i)\in K$, let $g_i=(a_1a_2\ldots a_i)^{-1}$, $\alpha=\lim g_i\xi$ and $\beta=\lim g_i$

Induced equivalence relation on K

The induced equivalence relation is tail equivalence:

$$
(a_i)E_t(b_i) \iff \exists n \exists m \forall i (a_{n+i} = b_{m+i})
$$

Theorem

- 1. E_t is not tame.
- 2. E_t is hyperfinite. (Dougherty-Jackson-Kechris)

Borel equivalence relations

Definition

Let X be a *standard Borel space*, that is, a set equipped with a σ -algebra that is Borel isomorphic to the σ -algebra of the Borel sets in a Polish space.

A Borel equivalence relation E on X is an equivalence relation which is Borel as a subset of X^2 (with the product Borel structure).

Let E be a Borel equivalence relation on a standard Borel space X .

- 1. E is finite if every equivalence class is finite.
- 2. E is called *hyperfinite* if $E = \bigcup_{n} E_n$, where $\{E_n\}$ is an increasing sequence of finite Borel equivalence relations.
- 3. E is called *tame* if there is a Borel map $f : X \rightarrow Y$ with Y a standard Borel space and $x_1Ex_2 \iff f(x_1) = f(x_2)$.

Near-hyperbolicity

Introduced by Adams 1996, Kechris-Hjorth 2005

Used to prove various results about Borel reducibility. For example, they produce an infinite family of countable groups ${G_{p}}$ each with a Borel, free action on a standard Borel space X_p so that $E_{G_p}^{X_p}$ $\frac{X_p}{G_p} \nleq B$ $E_{G_q}^{X_q}$ G_q if $p \neq q$.

Given a compact metric space K, denote by $\mathcal{M}(K)$ the compact metric space of all probability Borel measures on K. Denote by $\mathcal{M}_{\leq 2}(K)$ the subset of $M(K)$ consisting of those measures having support of cardinality at most 2, that is,

 $\mathcal{M}_{\leq 2}(K) = \{ \mu \in \mathcal{M}(K) \mid \exists \; a, b \in K \text{ such that } \mu(\{a, b\}) = 1 \}.$

Denote its complement in $\mathcal{M}(K)$ by $\mathcal{M}_3(K)$, that is,

$$
\mathcal{M}_3(K)=\mathcal{M}(K)\setminus \mathcal{M}_{\leqslant 2}(K)
$$

Definition

A countable group G is called near-hyperbolic if it admits a continuous action on a compact metric space K with the following properties:

- 1. The induced action on $\mathcal{M}_{\leq 2}(K)$ has amenable stabilizers and the induced equivalence relation on $\mathcal{M}_{\leq 2}(K)$ is hyperfinite.
- 2. The induced action of G on $M_3(K)$ has finite stabilizers and the induced equivalence relation on $\mathcal{M}_3(K)$ is tame.

- \triangleright Closed under taking subgroups.
- \blacktriangleright Amenable groups are near-hyperbolic.
- \blacktriangleright F₂ is near-hyperbolic.

Theorem (Kechris-Hjorth 2005)

Every hyperbolic group is near-hyperbolic.

Theorem

Let (G, P) be relatively hyperbolic. If each element of P is amenable then G is near-hyperbolic.

$F₂$ is near-hyperbolic

- Let $K = \partial F_2$
	- ► For $a, b \in K$, $\text{Stab}_{F_2}\{a, b\}$ is either trivial or \mathbb{Z} , so $F_2 \curvearrowright \mathcal{M}_{\leq 2}(K)$ has stabilizers that are either trivial or $\mathbb Z$
	- \blacktriangleright $E_{F_2}^{\mathcal{M}_{\leq 2}(K)}$ $F_2^{(N)}$ is hyperfinite follows from Dougherty-Jackson-Kechris. ▶ DJK \implies $E_{F_2}^{[K]^2}$ $F_2^{[N]}$ is hyperfinite

$$
\triangleright E_{F_2}^{\mathcal{M}_3(K)}
$$
 is tame:

- \blacktriangleright 'median' map $\varphi: [\mathcal{K}]^3 \to \mathcal{F}_2$ is a Borel \mathcal{F}_2 -map
- \triangleright Define a Borel F₂-map θ : $M_3(K)$ → $\mathcal{F} = \{A \subseteq F_2 \mid |A| < \infty\}$ via

 $\theta(\mu)=\{ \text{$g\in\mathit{F}_2$} \mid \nu(\{g\}) \text{ is maximal }\} \quad \text{ where } \quad \nu=\varphi_*(\mu^3 \mid_{[K]^3})$

- ► take 'centre of mass' of $A \in \mathcal{F}$ to get a Borel F_2 -map $\mathcal{M}_3(K) \rightarrow F_2$
- Follows that $E_{F_2}^{\mathcal{M}_3(K)}$ $\frac{\mathcal{M}_3(\mathsf{N})}{F_2}$ is tame with trivial stabilizers (Adams 1996)

Thanks for listening