Relative hyperbolicity and near-hyperbolicity

Lawrence Reeves University of Melbourne

24 September 2012

A bit of background

- Hyperbolic groups are groups that act geometrically on δ-hyperbolic spaces.
- Suppose that G acts on a δ -hyperbolic space X.
- The boundary at infinity ∂X is a compact metrizable space.
- There is an induced action of G on ∂X by homeomorphisms.
- The existence and dynamics of such an action on a compact metric space K, actually characterises hyperbolic groups.
- Can also consider the induced equivalence relation on K.
 - Is it hyperfinite? Tame? Near-hyperbolic?

Relative hyperbolicity

Definition

Let G be a countable group acting a compact metric space K. The action is a *convergence action* if the induced action on the space of distinct triples is properly discontinuous.

Theorem (Tukia)

Suppose that a group G acts properly discontinuously on a proper δ -hyperbolic space X. Then the induced action on ∂X is a convergence action.

Theorem (Bowditch)

Suppose that a group G admits a convergence action on a compact metric space K. If the action on $[K]^3$ is cocompact, then G is hyperbolic. Then G is hyperbolic.

Definition

Let G be a countable group with a convergence action on compact metric space K.

- 1. An element $g \in G$ is *loxodromic* if it fixes exactly two points of K.
- 2. A subgroup $P \leq G$ is *parabolic* is if it is infinite and contains no loxodromic element. The fixed point of P is called a *parabolic* point.
- A parabolic point p ∈ K is called *bounded* if Stab_G(p) acts cocompactly on K \ {p}.
- 4. A point $\xi \in K$ is a *conical limit point* if there exists a sequence $\{g_i\} \subseteq G$ and distinct points α , $\beta \in K$ such that $g_i(\xi) \to \alpha$ and $g_i(\xi') \to \beta$ for all $\xi' \in K \setminus \{\xi\}$.

Relative hyperbolicity

Definition (Gromov, Farb, Bowditch,...)

A countable group G is *relatively hyperbolic* if it admits a properly discontinuous action on a proper δ -hyperbolic space X such that the induced convergence group action on ∂X is such that every point of ∂X is either a bounded parabolic point or a conical limit point.

We say that (G, \mathcal{P}) is relatively hyperbolic, where \mathcal{P} is a set of representatives of the conjucacy classes of maximal parabolic subgroups.

Examples

- free groups
- geometrically finite Kleinian groups
- fundamental groups of complete non-compact finite volume Riemannian manifolds of pinched negative sectional curvature
- limit groups (Dahmani-Groves)

Consider $F_2 = \langle x, y \mid - \rangle$ acting on a regular 4-valent tree T (its Cayley graph).

Get an action on $K = \partial T$, the space of ends of T.

All elements of K are conical limit points: Identifying K with the set of infinite reduced words over $\{x, x^{-1}, y, y^{-1}\}$ Given $\xi = (a_i) \in K$, let $g_i = (a_1 a_2 \dots a_i)^{-1}$, $\alpha = \lim g_i \xi$ and $\beta = \lim g_i$

Induced equivalence relation on K

The induced equivalence relation is tail equivalence:

$$(a_i)E_t(b_i) \iff \exists n \exists m \forall i(a_{n+i} = b_{m+i})$$

Theorem

- 1. E_t is not tame.
- 2. *E_t* is hyperfinite. (Dougherty-Jackson-Kechris)

Borel equivalence relations

Definition

Let X be a *standard Borel space*, that is, a set equipped with a σ -algebra that is Borel isomorphic to the σ -algebra of the Borel sets in a Polish space.

A Borel equivalence relation E on X is an equivalence relation which is Borel as a subset of X^2 (with the product Borel structure).

Let E be a Borel equivalence relation on a standard Borel space X.

- 1. *E* is *finite* if every equivalence class is finite.
- 2. *E* is called *hyperfinite* if $E = \bigcup_n E_n$, where $\{E_n\}$ is an increasing sequence of finite Borel equivalence relations.
- 3. *E* is called *tame* if there is a Borel map $f : X \to Y$ with *Y* a standard Borel space and $x_1 E x_2 \iff f(x_1) = f(x_2)$.

Near-hyperbolicity

Introduced by Adams 1996, Kechris-Hjorth 2005

Used to prove various results about Borel reducibility. For example, they produce an infinite family of countable groups $\{G_p\}$ each with a Borel, free action on a standard Borel space X_p so that $E_{G_p}^{X_p} \leq B E_{G_q}^{X_q}$ if $p \neq q$.

Given a compact metric space K, denote by $\mathcal{M}(K)$ the compact metric space of all probability Borel measures on K. Denote by $\mathcal{M}_{\leq 2}(K)$ the subset of $\mathcal{M}(K)$ consisting of those measures having support of cardinality at most 2, that is,

 $\mathcal{M}_{\leqslant 2}(\mathcal{K}) = \{ \mu \in \mathcal{M}(\mathcal{K}) \mid \exists a, b \in \mathcal{K} \text{ such that } \mu(\{a, b\}) = 1 \}.$

Denote its complement in $\mathcal{M}(K)$ by $\mathcal{M}_3(K)$, that is,

$$\mathcal{M}_3(K) = \mathcal{M}(K) \setminus \mathcal{M}_{\leqslant 2}(K)$$

Definition

A countable group G is called *near-hyperbolic* if it admits a continuous action on a compact metric space K with the following properties:

- 1. The induced action on $\mathcal{M}_{\leq 2}(K)$ has amenable stabilizers and the induced equivalence relation on $\mathcal{M}_{\leq 2}(K)$ is hyperfinite.
- 2. The induced action of G on $\mathcal{M}_3(K)$ has finite stabilizers and the induced equivalence relation on $\mathcal{M}_3(K)$ is tame.

- Closed under taking subgroups.
- Amenable groups are near-hyperbolic.
- ► *F*₂ is near-hyperbolic.

Theorem (Kechris-Hjorth 2005)

Every hyperbolic group is near-hyperbolic.

Theorem

Let (G, \mathcal{P}) be relatively hyperbolic. If each element of \mathcal{P} is amenable then G is near-hyperbolic.

F_2 is near-hyperbolic

- Let $K = \partial F_2$
 - For a, b ∈ K, Stab_{F2}{a, b} is either trivial or Z, so F₂ ∼ M_{≤2}(K) has stabilizers that are either trivial or Z
 - *E*_{F2}^{M≤2(K)} is hyperfinite follows from Dougherty-Jackson-Kechris.

 DJK ⇒ E_{F2}^{[K]²} is hyperfinite

•
$$E_{F_2}^{\mathcal{M}_3(K)}$$
 is tame:

- 'median' map $\varphi : [K]^3 \to F_2$ is a Borel F_2 -map
- ▶ Define a Borel F_2 -map $\theta : \mathcal{M}_3(K) \to \mathcal{F} = \{A \subseteq F_2 \mid |A| < \infty\}$ via

 $\theta(\mu) = \{g \in F_2 \mid \nu(\{g\}) \text{ is maximal } \} \quad \text{ where } \quad \nu = \varphi_*(\mu^3 \mid_{[\mathcal{K}]^3})$

- ▶ take 'centre of mass' of $A \in \mathcal{F}$ to get a Borel F_2 -map $\mathcal{M}_3(K) \to F_2$
- Follows that $E_{F_2}^{\mathcal{M}_3(K)}$ is tame with trivial stabilizers (Adams 1996)

Thanks for listening