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Definition

A directed graph E is a set E 0 of vertices and a set E 1 of directed
edges, with direction determined by range and source maps
r , s : E 1 → E 0.

Example

ve w
f

E 0 = {v ,w} E 1 = {e, f }
s(e) = r(e) = r(f ) = v s(f ) = w



 

Paths

I A sequence µ1µ2µ3 . . . of edges is a path if s(µi ) = r(µi+1) for
all i .

r(µ)
µ1

s(µ)
µn

I En = {µ : µ is a path with n (possibly = ∞) edges}
I E ∗ = {µ : µ has finitely many edges}.
I For V ⊂ E 0 and F ⊂ E ∗, define VF := F ∩ r−1(V ).

I In particular, for v ∈ E 0, vF = F ∩ r−1(v).
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Graph C ∗-algebras

I E≤n := {µ ∈ E ∗ : |µ| = n, or |µ| < n and s(µ)E 1 = ∅}.
I The graph C ∗-algebra C ∗(E ) is universal for C ∗-algebras

containing a Cuntz-Krieger E -family: a family consisting of
mutually orthogonal projections {sv : v ∈ E 0} and partial
isometries {sµ : µ ∈ E ∗} such that {sµ : µ ∈ E≤n} have mutually
orthogonal ranges for each n ∈ N, and such that

1. s∗µsµ = ss(µ);
2. sµsν = sµν when s(µ) = r(ν);
3. sµs∗µ ≤ sr(µ); and

4. sv =
∑

µ∈vE≤n

sµs∗µ for every v ∈ E 0 and n ∈ N such that

|vE≤n| <∞.



 

Diagonal sub-C ∗-algebra

I We call DE := C ∗(sλs∗λ : λ ∈ E ∗) the diagonal C ∗-subalgebra of
C ∗(E ).

I It can be deduced from the Cuntz-Krieger relations that
D = span{sλs∗λ : λ ∈ E ∗}.

I For each n ∈ N, {sλs∗λ : λ ∈ En} are mutually orthogonal
projections.

I Write µ � λ ⇐⇒ λ = µµ′. Then µ � λ ⇐⇒ sλs∗λ ≤ sµs∗µ.

I Denote the spectrum of D by ∆D .Then for each φ ∈ ∆D and
µ � λ, we have φ(sλs∗λ) = 1 =⇒ φ(sµs∗µ) = 1.

I Hence for each φ ∈ ∆D , the elements of {λ : φ(sλs∗λ) = 1}
determine a path.
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Boundary Paths

I The paths we get turn out to be all infinite paths, and all finite
paths whose source is a singular vertex: elements v ∈ E 0

satisfying either
I vE 1 = ∅, in which case we call v a source; or
I |vE 1| =∞, in which case we call v an infinite receiver.

I We define the boundary paths
∂E := E∞ ∪ {µ ∈ E ∗ : s(µ) is singular}.

I The formula

hE (x)(sµs∗µ) =

{
1 if µ � x

0 otherwise.

uniquely determines a bijection from ∂E onto ∆D [W].
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Topology

I Following the approach of [PW], define α : E ∗ ∪ E∞ → {0, 1}E∗

by

α(x)(µ) =

{
1 if x = µµ′

0 otherwise.

I Give E ∗ ∪ E∞ the initial topology induced by α.

I For µ ∈ E ∗, define Z(µ) := {µµ′ ∈ E ∗ ∪ E∞}.
I For G ⊂ E ∗, we write Z(µ \ G ) := Z(µ) \

⋃
ν∈G Z(ν).

I The cylinder sets {Z(µ \G ) : µ ∈ E ∗,G ⊂ s(µ)E 1 is finite} are a
basis for our topology. [W].

I With this topology, E ∗ ∪ E∞ is locally compact and Hausdorff
[W].
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Desingularisation

Drinen and Tomforde developed a construction they called
desingularisation [DT]:

I Suppose E has some singular vertices. Fix µ ∈ ∂E ∩ E ∗.

I If |s(µ)E 1| = 0, then append on an infinite path:

• •
µ

becomes • •
µ

. . .

I If |s(µ)| =∞, then append an infinite path, and distribute the
incoming edges along it:

s(µ)

•

. . .

becomes
s(µ)

•

• • •

. . .

. . .
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Desingularisation

I Let E be a directed graph, and F be a Drinen-Tomforde
desingularisation of E .

I This gives a homeomorphism φ∞ : E 0F∞ → ∂E [DT,W].

I Then there exists a full projection p and an isomorphism
π : C ∗(E )→ pC ∗(F )p [DT].



 

All together now

I For each directed graph E , we have hE : ∂E ∼= ∆DE
. [W]

I Given a desingularisation of E , we have φ∞ : E 0F∞ ∼= ∂E .
[DT,W].

I π induces a homeomorphism π∗ : ∆pDFp → ∆DE
[W].

I These maps commute [W]:

E 0F∞

∆pDFp

η

∂E
φ∞

∆DE

hE

π∗

Where η is essentially the restriction of hF

to paths with ranges in E 0.
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