The boundary-path space of a directed graph 56th AustMS AGM, Ballarat

S.B.G. Webster

University of Wollongong

25 September 2012

MODEL / ANALYSE / FORMULATE / ILLUMINATE <u>CONNECT:IMIA</u>

Definition

A directed graph E is a set E^0 of vertices and a set E^1 of directed edges, with direction determined by range and source maps $r, s : E^1 \to E^0$.

Example

$$E^0 = \{v, w\}$$
 $E^1 = \{e, f\}$
 $s(e) = r(e) = r(f) = v$ $s(f) = w$

< <p>I >

Paths

A sequence µ₁µ₂µ₃... of edges is a path if s(µ_i) = r(µ_{i+1}) for all i.

$$r(\mu) \xleftarrow{\mu_1} \cdots \xleftarrow{\mu_n} s(\mu)$$

Paths

A sequence µ₁µ₂µ₃... of edges is a path if s(µ_i) = r(µ_{i+1}) for all i.

$$r(\mu) \xleftarrow{\mu_1} \cdots \xleftarrow{\mu_n} s(\mu)$$

Eⁿ = {µ : µ is a path with *n* (possibly = ∞) edges} *E** = {µ : µ has finitely many edges}.

Paths

A sequence µ₁µ₂µ₃... of edges is a path if s(µ_i) = r(µ_{i+1}) for all i.

$$r(\mu) \xleftarrow{\mu_1} \cdots \xleftarrow{\mu_n} s(\mu)$$

Eⁿ = {μ : μ is a path with n (possibly = ∞) edges}
E^{*} = {μ : μ has finitely many edges}.
For V ⊂ E⁰ and F ⊂ E^{*}, define VF := F ∩ r⁻¹(V).
In particular, for v ∈ E⁰, vF = F ∩ r⁻¹(v).

Graph C*-algebras

►
$$E^{\leq n} := \{ \mu \in E^* : |\mu| = n, \text{ or } |\mu| < n \text{ and } s(\mu)E^1 = \emptyset \}.$$

The graph C*-algebra C*(E) is universal for C*-algebras containing a Cuntz-Krieger E-family: a family consisting of mutually orthogonal projections {s_v : v ∈ E⁰} and partial isometries {s_µ : µ ∈ E*} such that {s_µ : µ ∈ E^{≤n}} have mutually orthogonal ranges for each n ∈ N, and such that

1.
$$s_{\mu}^{*}s_{\mu} = s_{s(\mu)};$$

2. $s_{\mu}s_{\nu} = s_{\mu\nu}$ when $s(\mu) = r(\nu);$
3. $s_{\mu}s_{\mu}^{*} \le s_{r(\mu)};$ and
4. $s_{\nu} = \sum_{\mu \in \nu E^{\le n}} s_{\mu}s_{\mu}^{*}$ for every $\nu \in E^{0}$ and $n \in \mathbb{N}$ such that $|\nu E^{\le n}| < \infty.$

We call D_E := C^{*}(s_λs^{*}_λ : λ ∈ E^{*}) the diagonal C^{*}-subalgebra of C^{*}(E).

- We call D_E := C^{*}(s_λs^{*}_λ : λ ∈ E^{*}) the diagonal C^{*}-subalgebra of C^{*}(E).
- ► It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}} \{ s_{\lambda} s_{\lambda}^* : \lambda \in E^* \}.$

- We call D_E := C^{*}(s_λs^{*}_λ : λ ∈ E^{*}) the diagonal C^{*}-subalgebra of C^{*}(E).
- ► It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}} \{ s_{\lambda} s_{\lambda}^* : \lambda \in E^* \}.$
- For each n ∈ N, {s_λs_λ^{*}: λ ∈ Eⁿ} are mutually orthogonal projections.

- We call D_E := C^{*}(s_λs^{*}_λ : λ ∈ E^{*}) the diagonal C^{*}-subalgebra of C^{*}(E).
- ► It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}} \{ s_{\lambda} s_{\lambda}^* : \lambda \in E^* \}.$
- For each n ∈ N, {s_λs_λ^{*}: λ ∈ Eⁿ} are mutually orthogonal projections.

• Write
$$\mu \preceq \lambda \iff \lambda = \mu \mu'$$
. Then $\mu \preceq \lambda \iff s_{\lambda} s_{\lambda}^* \leq s_{\mu} s_{\mu}^*$.

- We call D_E := C^{*}(s_λs^{*}_λ : λ ∈ E^{*}) the diagonal C^{*}-subalgebra of C^{*}(E).
- ► It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}} \{ s_{\lambda} s_{\lambda}^* : \lambda \in E^* \}.$
- For each n ∈ N, {s_λs_λ^{*}: λ ∈ Eⁿ} are mutually orthogonal projections.
- Write $\mu \preceq \lambda \iff \lambda = \mu \mu'$. Then $\mu \preceq \lambda \iff s_{\lambda} s_{\lambda}^* \leq s_{\mu} s_{\mu}^*$.

▲□▶ ▲ 🖓 ▶ ▲ 🖹 ▶ ▲ 🖹 ▶ 🛛 🚊 🔊 ९ ९ ९

• Denote the spectrum of D by Δ_D .

- We call D_E := C^{*}(s_λs^{*}_λ : λ ∈ E^{*}) the diagonal C^{*}-subalgebra of C^{*}(E).
- ► It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}} \{ s_{\lambda} s_{\lambda}^* : \lambda \in E^* \}.$
- For each n ∈ N, {s_λs_λ^{*}: λ ∈ Eⁿ} are mutually orthogonal projections.
- Write $\mu \preceq \lambda \iff \lambda = \mu \mu'$. Then $\mu \preceq \lambda \iff s_{\lambda} s_{\lambda}^* \leq s_{\mu} s_{\mu}^*$.
- ▶ Denote the spectrum of *D* by Δ_D . Then for each $\phi \in \Delta_D$ and $\mu \leq \lambda$, we have $\phi(s_\lambda s_\lambda^*) = 1 \implies \phi(s_\mu s_\mu^*) = 1$.

- We call D_E := C^{*}(s_λs^{*}_λ : λ ∈ E^{*}) the diagonal C^{*}-subalgebra of C^{*}(E).
- ► It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}} \{ s_{\lambda} s_{\lambda}^* : \lambda \in E^* \}.$
- For each n ∈ N, {s_λs_λ^{*}: λ ∈ Eⁿ} are mutually orthogonal projections.
- Write $\mu \preceq \lambda \iff \lambda = \mu \mu'$. Then $\mu \preceq \lambda \iff s_{\lambda} s_{\lambda}^* \leq s_{\mu} s_{\mu}^*$.
- ▶ Denote the spectrum of *D* by Δ_D . Then for each $\phi \in \Delta_D$ and $\mu \leq \lambda$, we have $\phi(s_\lambda s_\lambda^*) = 1 \implies \phi(s_\mu s_\mu^*) = 1$.
- Hence for each φ ∈ Δ_D, the elements of {λ : φ(s_λs_λ^{*}) = 1} determine a path.

- ► The paths we get turn out to be all infinite paths, and all finite paths whose source is a *singular vertex*: elements v ∈ E⁰ satisfying either
 - $vE^1 = \emptyset$, in which case we call v a *source*; or
 - ▶ $|vE^1| = \infty$, in which case we call v an *infinite receiver*.

► The paths we get turn out to be all infinite paths, and all finite paths whose source is a *singular vertex*: elements v ∈ E⁰ satisfying either

EMATICS &

nac

- $vE^1 = \emptyset$, in which case we call v a *source*; or
- ▶ $|vE^1| = \infty$, in which case we call v an *infinite receiver*.
- We define the *boundary paths* $\partial E := E^{\infty} \cup \{\mu \in E^* : s(\mu) \text{ is singular}\}.$

- ► The paths we get turn out to be all infinite paths, and all finite paths whose source is a *singular vertex*: elements v ∈ E⁰ satisfying either
 - $vE^1 = \emptyset$, in which case we call v a *source*; or
 - ▶ $|vE^1| = \infty$, in which case we call v an *infinite receiver*.
- ▶ We define the *boundary paths* $\partial E := E^{\infty} \cup \{\mu \in E^* : s(\mu) \text{ is singular}\}.$
- The formula

$$h_E(x)(s_\mu s_\mu^*) = egin{cases} 1 & ext{if } \mu \preceq x \ 0 & ext{otherwise.} \end{cases}$$

uniquely determines a bijection from ∂E onto Δ_D [W].

Topology

Following the approach of [PW], define α : E^{*} ∪ E[∞] → {0,1}^{E^{*}} by

$$\alpha(x)(\mu) = \begin{cases} 1 & \text{if } x = \mu\mu' \\ 0 & \text{otherwise.} \end{cases}$$

• Give $E^* \cup E^{\infty}$ the initial topology induced by α .

Topology

Following the approach of [PW], define α : E^{*} ∪ E[∞] → {0,1}^{E^{*}} by

$$\alpha(x)(\mu) = \begin{cases} 1 & \text{if } x = \mu\mu' \\ 0 & \text{otherwise.} \end{cases}$$

• Give $E^* \cup E^{\infty}$ the initial topology induced by α .

- For $\mu \in E^*$, define $\mathcal{Z}(\mu) := \{\mu \mu' \in E^* \cup E^\infty\}$.
- ▶ For $G \subset E^*$, we write $\mathcal{Z}(\mu \setminus G) := \mathcal{Z}(\mu) \setminus \bigcup_{\nu \in G} \mathcal{Z}(\nu)$.
- The cylinder sets {Z(µ \ G) : µ ∈ E*, G ⊂ s(µ)E¹ is finite} are a basis for our topology. [W].

MATICS & UNIVERSITY OF WOLLONGONG

□→ < □→ < □→</p>

Topology

Following the approach of [PW], define α : E^{*} ∪ E[∞] → {0,1}^{E^{*}} by

$$\alpha(x)(\mu) = \begin{cases} 1 & \text{if } x = \mu\mu' \\ 0 & \text{otherwise.} \end{cases}$$

• Give $E^* \cup E^{\infty}$ the initial topology induced by α .

- For $\mu \in E^*$, define $\mathcal{Z}(\mu) := \{\mu \mu' \in E^* \cup E^\infty\}$.
- ▶ For $G \subset E^*$, we write $\mathcal{Z}(\mu \setminus G) := \mathcal{Z}(\mu) \setminus \bigcup_{\nu \in G} \mathcal{Z}(\nu)$.
- The cylinder sets {Z(µ \ G) : µ ∈ E*, G ⊂ s(µ)E¹ is finite} are a basis for our topology. [W].
- With this topology, E^{*} ∪ E[∞] is locally compact and Hausdorff [W].

- Fix a path $\mu \in E^*$ with $0 < |s(\mu)E^1| < \infty$.
- Then $\{\mu\} = \mathcal{Z}(\mu \setminus \{s(\mu)E^1\})$ an open set.

Then

$$U:=igcup igl\{\{\mu\}:\mu\in {\sf E}^* ext{ such that } {\sf 0}<|s(\mu){\sf E}^1|<\inftyigr\}$$

is open.

- Fix a path $\mu \in E^*$ with $0 < |s(\mu)E^1| < \infty$.
- Then $\{\mu\} = \mathcal{Z}(\mu \setminus \{s(\mu)E^1\})$ an open set.

Then

$$U:=igcup igl\{\{\mu\}:\mu\in {\sf E}^* ext{ such that } {\sf 0}<|s(\mu){\sf E}^1|<\inftyigr\}$$

is open.

So ∂E = U^c is closed in E^{*} ∪ E[∞], and hence locally compact and Hausdorff.

- Fix a path $\mu \in E^*$ with $0 < |s(\mu)E^1| < \infty$.
- Then $\{\mu\} = \mathcal{Z}(\mu \setminus \{s(\mu)E^1\})$ an open set.

Then

$$U:=igcup igl\{\{\mu\}:\mu\in {\sf E}^* ext{ such that } {\sf 0}<|s(\mu){\sf E}^1|<\inftyigr\}$$

is open.

- So ∂E = U^c is closed in E^{*} ∪ E[∞], and hence locally compact and Hausdorff.
- The map $h_E : \partial E \to \Delta_D$ is a homeomorphism [W].

Drinen and Tomforde developed a construction they called *desingularisation* [DT]:

- Suppose *E* has some singular vertices. Fix $\mu \in \partial E \cap E^*$.
- If $|s(\mu)E^1| = 0$, then append on an infinite path:

Drinen and Tomforde developed a construction they called *desingularisation* [DT]:

- Suppose *E* has some singular vertices. Fix $\mu \in \partial E \cap E^*$.
- If $|s(\mu)E^1| = 0$, then append on an infinite path:

Drinen and Tomforde developed a construction they called *desingularisation* [DT]:

- Suppose *E* has some singular vertices. Fix $\mu \in \partial E \cap E^*$.
- If $|s(\mu)E^1| = 0$, then append on an infinite path:

•
$$\stackrel{\mu}{\longleftarrow}$$
 • becomes • $\stackrel{\mu}{\longleftarrow}$ • \longleftarrow ...

If |s(µ)| = ∞, then append an infinite path, and distribute the incoming edges along it:

Drinen and Tomforde developed a construction they called *desingularisation* [DT]:

- Suppose *E* has some singular vertices. Fix $\mu \in \partial E \cap E^*$.
- If $|s(\mu)E^1| = 0$, then append on an infinite path:

If |s(µ)| = ∞, then append an infinite path, and distribute the incoming edges along it:

- ► Let *E* be a directed graph, and *F* be a Drinen-Tomforde desingularisation of *E*.
- This gives a homeomorphism $\phi_{\infty} : E^0 F^{\infty} \to \partial E$ [DT,W].
- Then there exists a full projection p and an isomorphism $\pi: C^*(E) \to pC^*(F)p$ [DT].

▶ For each directed graph *E*, we have $h_E : \partial E \cong \Delta_{D_E}$. [W]

- ► For each directed graph *E*, we have $h_E : \partial E \cong \Delta_{D_E}$. [W]
- ► Given a desingularisation of E, we have φ_∞ : E⁰F[∞] ≅ ∂E. [DT,W].

- ► For each directed graph *E*, we have $h_E : \partial E \cong \Delta_{D_E}$. [W]
- ► Given a desingularisation of E, we have φ_∞ : E⁰F[∞] ≅ ∂E. [DT,W].
- π induces a homeomorphism $\pi^* : \Delta_{pD_Fp} \to \Delta_{D_E}$ [W].

- ► For each directed graph *E*, we have $h_E : \partial E \cong \Delta_{D_E}$. [W]
- Given a desingularisation of E, we have φ_∞ : E⁰F[∞] ≅ ∂E. [DT,W].
- π induces a homeomorphism $\pi^* : \Delta_{pD_Fp} \to \Delta_{D_F}$ [W].
- These maps commute [W]:

Where η is essentially the restriction of h_F to paths with ranges in E^0 .

References

- [DT] D. Drinen and M. Tomforde, The C*-algebras of arbitrary graphs, Rocky Mountain J. Math. 35 (2005), 105–135.
- [PW] A.L.T. Paterson and A.E. Welch, *Tychonoff's theorem for locally compact spaces and an elementary approach to the topology of path spaces*, Proc. Amer. Math. Soc. **133** (2005), 2761–2770.

★ Ξ ► ★ Ξ ►

SQA

[W] S.B.G. Webster, *The path space of a directed graph*, Proc. Amer. Math. Soc., to appear.