The boundary-path space of a directed graph 56th AustMS AGM, Ballarat

S.B.G. Webster

University of Wollongong

25 September 2012

MODEL / ANALYSE / FORMULATE / ILLUMINATE CONNECT:IMIA

Definition

A *directed graph E* is a set E^0 of vertices and a set E^1 of directed edges, with direction determined by range and source maps $r,s:E^1\to E^0.$

Example

$$
E^{0} = \{v, w\} \quad E^{1} = \{e, f\}
$$

$$
s(e) = r(e) = r(f) = v \quad s(f) = w
$$

4 □ ▶

Paths

A sequence $\mu_1\mu_2\mu_3\ldots$ of edges is a path if $s(\mu_i) = r(\mu_{i+1})$ for all i.

$$
r(\mu) \xleftarrow{\mu_1} \cdots \cdots \xleftarrow{\mu_n} s(\mu)
$$

Paths

A sequence $\mu_1\mu_2\mu_3\ldots$ of edges is a path if $s(\mu_i) = r(\mu_{i+1})$ for all i.

$$
r(\mu) \leftarrow \frac{\mu_1}{\cdots} \cdots \cdots \leftarrow \frac{\mu_n}{\cdots} s(\mu)
$$

► $E^n = \{ \mu : \mu \text{ is a path with } n \text{ (possibly } = \infty \}$ edges ► $E^* = \{\mu : \mu \text{ has finitely many edges}\}.$

Paths

A sequence $\mu_1\mu_2\mu_3\ldots$ of edges is a path if $s(\mu_i) = r(\mu_{i+1})$ for all i.

$$
r(\mu) \leftarrow \frac{\mu_1}{\cdots} \cdots \cdots \leftarrow \frac{\mu_n}{\cdots} s(\mu)
$$

MATICS & WORLD NET WORKSITY OF

4 重 ▶ (4 重)

 \equiv ΩQ

► $E^n = \{ \mu : \mu \text{ is a path with } n \text{ (possibly } = \infty \}$ edges

► $E^* = \{\mu : \mu \text{ has finitely many edges}\}.$

- ► For $V \subset E^0$ and $F \subset E^*$, define $V\!F := F \cap r^{-1}(V)$.
- In particular, for $v \in E^0$, $vF = F \cap r^{-1}(v)$.

Graph C ∗ -algebras

$$
\blacktriangleright E^{\leq n} := \{ \mu \in E^* : |\mu| = n, \text{ or } |\mu| < n \text{ and } s(\mu)E^1 = \emptyset \}.
$$

► The graph C^* -algebra $C^*(E)$ is universal for C^* -algebras containing a Cuntz-Krieger E-family: a family consisting of mutually orthogonal projections $\{s_{\textsf{v}}: \textsf{v}\in E^0\}$ and partial isometries $\{s_\mu : \mu \in E^*\}$ such that $\{s_\mu : \mu \in E^{\le n}\}$ have mutually orthogonal ranges for each $n \in \mathbb{N}$, and such that

\n- 1.
$$
s_{\mu}^{*} s_{\mu} = s_{s(\mu)}
$$
;
\n- 2. $s_{\mu} s_{\nu} = s_{\mu \nu}$ when $s(\mu) = r(\nu)$;
\n- 3. $s_{\mu} s_{\mu}^{*} \leq s_{r(\mu)}$; and
\n- 4. $s_{\nu} = \sum_{\mu \in \nu E \leq n} s_{\mu} s_{\mu}^{*}$ for every $\nu \in E^0$ and $n \in \mathbb{N}$ such that $|\nu E^{\leq n}| < \infty$.
\n

► We call $D_E := C^*(s_\lambda s^*_\lambda : \lambda \in E^*)$ the *diagonal* C^* -subalgebra of $C^*(E)$.

- ► We call $D_E := C^*(s_\lambda s^*_\lambda : \lambda \in E^*)$ the *diagonal* C^* -subalgebra of $C^*(E)$.
- It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}}\{s_\lambda s^*_\lambda : \lambda \in E^*\}.$

- ► We call $D_E := C^*(s_\lambda s^*_\lambda : \lambda \in E^*)$ the *diagonal* C^* -subalgebra of $C^*(E)$.
- It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}}\{s_\lambda s^*_\lambda : \lambda \in E^*\}.$
- ► For each $n \in \mathbb{N}$, $\{s_{\lambda}s_{\lambda}^*: \lambda \in E^n\}$ are mutually orthogonal projections.

- ► We call $D_E := C^*(s_\lambda s^*_\lambda : \lambda \in E^*)$ the *diagonal* C^* -subalgebra of $C^*(E)$.
- It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}}\{s_\lambda s^*_\lambda : \lambda \in E^*\}.$
- ► For each $n \in \mathbb{N}$, $\{s_{\lambda}s_{\lambda}^*: \lambda \in E^n\}$ are mutually orthogonal projections.

$$
\triangleright \text{ Write } \mu \preceq \lambda \iff \lambda = \mu \mu'. \text{ Then } \mu \preceq \lambda \iff s_{\lambda} s_{\lambda}^* \leq s_{\mu} s_{\mu}^*.
$$

- ► We call $D_E := C^*(s_\lambda s^*_\lambda : \lambda \in E^*)$ the *diagonal* C^* -subalgebra of $C^*(E)$.
- It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}}\{s_\lambda s^*_\lambda : \lambda \in E^*\}.$
- ► For each $n \in \mathbb{N}$, $\{s_{\lambda}s_{\lambda}^*: \lambda \in E^n\}$ are mutually orthogonal projections.
- ► Write $\mu \preceq \lambda \iff \lambda = \mu \mu'$. Then $\mu \preceq \lambda \iff s_{\lambda} s_{\lambda}^* \leq s_{\mu} s_{\mu}^*$.

MATICS & WOLLOWGONG

 \equiv \cap α

 \triangleright Denote the spectrum of D by Δ_D .

- ► We call $D_E := C^*(s_\lambda s^*_\lambda : \lambda \in E^*)$ the *diagonal* C^* -subalgebra of $C^*(E)$.
- It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}}\{s_\lambda s^*_\lambda : \lambda \in E^*\}.$
- ► For each $n \in \mathbb{N}$, $\{s_{\lambda}s_{\lambda}^*: \lambda \in E^n\}$ are mutually orthogonal projections.
- ► Write $\mu \preceq \lambda \iff \lambda = \mu \mu'$. Then $\mu \preceq \lambda \iff s_{\lambda} s_{\lambda}^* \leq s_{\mu} s_{\mu}^*$.
- \triangleright Denote the spectrum of D by Δ_D . Then for each $\phi \in \Delta_D$ and $\mu \preceq \lambda$, we have $\phi(\mathsf{s}_{\lambda} \mathsf{s}_{\lambda}^*) = 1 \implies \phi(\mathsf{s}_{\mu} \mathsf{s}_{\mu}^*) = 1$.

- ► We call $D_E := C^*(s_\lambda s^*_\lambda : \lambda \in E^*)$ the *diagonal* C^* -subalgebra of $C^*(E)$.
- It can be deduced from the Cuntz-Krieger relations that $D = \overline{\text{span}}\{s_\lambda s^*_\lambda : \lambda \in E^*\}.$
- ► For each $n \in \mathbb{N}$, $\{s_{\lambda}s_{\lambda}^*: \lambda \in E^n\}$ are mutually orthogonal projections.
- ► Write $\mu \preceq \lambda \iff \lambda = \mu \mu'$. Then $\mu \preceq \lambda \iff s_{\lambda} s_{\lambda}^* \leq s_{\mu} s_{\mu}^*$.
- \triangleright Denote the spectrum of D by Δ_D . Then for each $\phi \in \Delta_D$ and $\mu \preceq \lambda$, we have $\phi(\mathsf{s}_{\lambda} \mathsf{s}_{\lambda}^*) = 1 \implies \phi(\mathsf{s}_{\mu} \mathsf{s}_{\mu}^*) = 1$.
- ► Hence for each $\phi \in \Delta_D$, the elements of $\{\lambda : \phi(s_\lambda s^*_\lambda) = 1\}$ determine a path.

- \triangleright The paths we get turn out to be all infinite paths, and all finite paths whose source is a *singular vertex*: elements $v \in E^0$ satisfying either
	- $\triangleright \forall E^1 = \emptyset$, in which case we call v a source; or
	- $\blacktriangleright |\nu E^1| = \infty$, in which case we call v an *infinite receiver*.

- \triangleright The paths we get turn out to be all infinite paths, and all finite paths whose source is a *singular vertex*: elements $v \in E^0$ satisfying either
	- $V = V E^1 = \emptyset$, in which case we call v a source; or
	- $\blacktriangleright |\nu E^1| = \infty$, in which case we call v an *infinite receiver*.
- \triangleright We define the *boundary paths* $\partial E := E^{\infty} \cup \{ \mu \in E^* : s(\mu) \text{ is singular} \}.$

- \triangleright The paths we get turn out to be all infinite paths, and all finite paths whose source is a *singular vertex*: elements $v \in E^0$ satisfying either
	- $\triangleright \forall E^1 = \emptyset$, in which case we call v a source; or
	- $\blacktriangleright |\nu E^1| = \infty$, in which case we call v an *infinite receiver*.
- \triangleright We define the *boundary paths* $\partial E := E^{\infty} \cup \{ \mu \in E^* : s(\mu) \text{ is singular} \}.$
- \blacktriangleright The formula

$$
h_E(x)(s_\mu s_\mu^*) = \begin{cases} 1 & \text{if } \mu \leq x \\ 0 & \text{otherwise.} \end{cases}
$$

uniquely determines a bijection from ∂E onto Δ_D [W].

Topology

► Following the approach of [PW], define $\alpha: E^* \cup E^\infty \to \{0,1\}^{E^*}$ by

$$
\alpha(x)(\mu) = \begin{cases} 1 & \text{if } x = \mu\mu' \\ 0 & \text{otherwise.} \end{cases}
$$

► Give $E^* \cup E^\infty$ the initial topology induced by α .

Topology

► Following the approach of [PW], define $\alpha: E^* \cup E^\infty \to \{0,1\}^{E^*}$ by

$$
\alpha(x)(\mu) = \begin{cases} 1 & \text{if } x = \mu\mu' \\ 0 & \text{otherwise.} \end{cases}
$$

► Give $E^* \cup E^\infty$ the initial topology induced by α .

- For $\mu \in E^*$, define $\mathcal{Z}(\mu) := \{\mu \mu' \in E^* \cup E^{\infty}\}.$
- ► For $G \subset E^*$, we write $\mathcal{Z}(\mu \setminus G) := \mathcal{Z}(\mu) \setminus \bigcup_{\nu \in G} \mathcal{Z}(\nu).$
- ► The *cylinder sets* $\{ \mathcal{Z}(\mu \setminus G) : \mu \in E^*, G \subset s(\mu)E^1$ *is finite} are a* basis for our topology. [W].

 QQ

違い

4 重 ▶ (4 重)

Topology

► Following the approach of [PW], define $\alpha: E^* \cup E^\infty \to \{0,1\}^{E^*}$ by

$$
\alpha(x)(\mu) = \begin{cases} 1 & \text{if } x = \mu\mu' \\ 0 & \text{otherwise.} \end{cases}
$$

► Give $E^* \cup E^\infty$ the initial topology induced by α .

- For $\mu \in E^*$, define $\mathcal{Z}(\mu) := \{\mu \mu' \in E^* \cup E^{\infty}\}.$
- ► For $G \subset E^*$, we write $\mathcal{Z}(\mu \setminus G) := \mathcal{Z}(\mu) \setminus \bigcup_{\nu \in G} \mathcal{Z}(\nu).$
- ► The *cylinder sets* $\{ \mathcal{Z}(\mu \setminus G) : \mu \in E^*, G \subset s(\mu)E^1$ *is finite} are a* basis for our topology. [W].
- ► With this topology, $E^* \cup E^\infty$ is locally compact and Hausdorff [W].

- ► Fix a path $\mu \in E^*$ with $0 < |s(\mu)E^1| < \infty$.
- \blacktriangleright Then $\{\mu\} = \mathcal{Z}\big(\mu \setminus \{\mathsf{s}(\mu)\mathsf{E}^1\}\big)$ an open set.

 \blacktriangleright Then

$$
U:=\bigcup\big\{\{\mu\} : \mu\in E^*\text{ such that } 0<|s(\mu)E^1|<\infty\big\}
$$

is open.

- ► Fix a path $\mu \in E^*$ with $0 < |s(\mu)E^1| < \infty$.
- \blacktriangleright Then $\{\mu\} = \mathcal{Z}\big(\mu \setminus \{\mathsf{s}(\mu)\mathsf{E}^1\}\big)$ an open set.

 \blacktriangleright Then

$$
U:=\bigcup\big\{\{\mu\} : \mu\in E^*\text{ such that } 0<|s(\mu)E^1|<\infty\big\}
$$

is open.

► So $\partial E = U^c$ is closed in $E^* \cup E^\infty$, and hence locally compact and Hausdorff.

- ► Fix a path $\mu \in E^*$ with $0 < |s(\mu)E^1| < \infty$.
- \blacktriangleright Then $\{\mu\} = \mathcal{Z}\big(\mu \setminus \{\mathsf{s}(\mu)\mathsf{E}^1\}\big)$ an open set.

 \blacktriangleright Then

$$
U:=\bigcup\big\{\{\mu\} : \mu\in E^*\text{ such that } 0<|s(\mu)E^1|<\infty\big\}
$$

is open.

- ► So $\partial E = U^c$ is closed in $E^* \cup E^\infty$, and hence locally compact and Hausdorff.
- **►** The map $h_E : \partial E \to \Delta_D$ is a homeomorphism [W].

Drinen and Tomforde developed a construction they called desingularisation [DT]:

- ► Suppose E has some singular vertices. Fix $\mu \in \partial E \cap E^*$.
- If $|s(\mu)E^1|=0$, then append on an infinite path:

Drinen and Tomforde developed a construction they called desingularisation [DT]:

- ► Suppose E has some singular vertices. Fix $\mu \in \partial E \cap E^*$.
- If $|s(\mu)E^1|=0$, then append on an infinite path:

$$
\bullet \stackrel{\mu}{\longleftarrow} \bullet \qquad \text{becomes} \qquad \bullet \stackrel{\mu}{\longleftarrow} \bullet \longleftarrow \cdots
$$

Drinen and Tomforde developed a construction they called desingularisation [DT]:

- ► Suppose E has some singular vertices. Fix $\mu \in \partial E \cap E^*$.
- If $|s(\mu)E^1|=0$, then append on an infinite path:

$$
\bullet \stackrel{\mu}{\longleftarrow} \bullet \qquad \text{becomes} \qquad \bullet \stackrel{\mu}{\longleftarrow} \bullet \longleftarrow \cdots
$$

 2990 重。

If $|s(\mu)| = \infty$, then append an infinite path, and distribute the incoming edges along it:

$$
\int\limits_{s(\mu)}\ldots
$$

Drinen and Tomforde developed a construction they called desingularisation [DT]:

- ► Suppose E has some singular vertices. Fix $\mu \in \partial E \cap E^*$.
- If $|s(\mu)E^1|=0$, then append on an infinite path:

If $|s(\mu)| = \infty$, then append an infinite path, and distribute the incoming edges along it:

- Exect E be a directed graph, and F be a Drinen-Tomforde desingularisation of E.
- ► This gives a homeomorphism $\phi_{\infty}: E^0 F^{\infty} \to \partial E$ [DT,W].
- \triangleright Then there exists a full projection p and an isomorphism $\pi: C^*(E) \to pC^*(F)p$ [DT].

► For each directed graph E, we have $h_E : \partial E \cong \Delta_{D_E}$. [W]

- ► For each directed graph E, we have $h_E : \partial E \cong \Delta_{D_E}$. [W]
- ► Given a desingularisation of E, we have $\phi_{\infty}: E^0 F^{\infty} \cong \partial E$. [DT,W].

- ► For each directed graph E, we have $h_E : \partial E \cong \Delta_{D_E}$. [W]
- ► Given a desingularisation of E, we have $\phi_{\infty}: E^0 F^{\infty} \cong \partial E$. [DT,W].
- ► π induces a homeomorphism $\pi^* : \Delta_{pD_F p} \to \Delta_{D_E}$ [W].

- ► For each directed graph E, we have $h_E : \partial E \cong \Delta_{D_E}$. [W]
- ► Given a desingularisation of E, we have $\phi_{\infty}: E^0 F^{\infty} \cong \partial E$. [DT,W].
- ► π induces a homeomorphism $\pi^* : \Delta_{pD_F p} \to \Delta_{D_E}$ [W].
- \blacktriangleright These maps commute $[W]$:

Where η is essentially the restriction of h_F to paths with ranges in E^0 .

References

- [DT] D. Drinen and M. Tomforde, The C^{*}-algebras of arbitrary graphs, Rocky Mountain J. Math. 35 (2005), 105–135.
- [PW] A.L.T. Paterson and A.E. Welch, Tychonoff's theorem for locally compact spaces and an elementary approach to the topology of path spaces, Proc. Amer. Math. Soc. 133 (2005), 2761–2770.
	- [W] S.B.G. Webster, The path space of a directed graph, Proc. Amer. Math. Soc., to appear.

